Various embodiments of the present invention pertain to methods and apparatus for rebuilding a solenoid, and in particular with regards to solenoids for automatic transmissions.
The present invention relates to a fluid control device consisting of several actuators, or solenoids, arranged and secured within a manifold block, hence constituting a solenoid block assembly or module, which is primarily adapted for automatic transmissions used in motor vehicles.
Within the field of the automotive aftermarket, there are numerous parts that are considered to be “non-serviceable” items. In such cases, a new part must be purchased at a substantial cost to the end user. In the field of automatic transmissions, one such common device is the solenoid module assembly that controls hydraulic flow and pressure within the transmission. A typical solenoid module consists of a hydraulic manifold and one or more electromechanical solenoids. The hydraulic manifold contains numerous fluid circuit passages that hydraulically communicate with the solenoids. The electromechanical solenoids control either the flow (on/off control) through the passages or regulate pressure within the passages. Typically, the solenoids are electrically connected to a terminal housing that provides for a removable connection to a wire harness, allowing for communication to the powertrain control unit (PCU).
One such module assembly is described in U.S. Pat. Nos. 4,687,006 and 4,783,049. In the described invention, a device consisting of five electrically actuated solenoid assemblies are situated on an aluminum manifold block consisting of multiple fluid passageways. This particular solenoid module has been used in the Ford E4OD and 4R100 automatic transmission since 1989. It has several failure modes and is a common replacement item. These new modules typically cost $150-200 to the end user. Several companies rebuild these modules by disassembling the unit, cleaning and reassembling the components. A new PCB of similar configuration to the original is soldered into place. A rebuilt unit costs approximately $100 to the end user.
Another solenoid device is described in U.S. Pat. No. 7,503,347. In the described device, the pressure is controlled via a solenoid that motivates a spool valve inside a valve housing. In the '347 device, the solenoid is mechanically mounted to said valve housing by a crimped flange.
The Ford 5R55S, 5R55W and 5R55N automatic transmission solenoid module is shown in
There has been extensive interest in rebuilding this module as the failure is generally localized to at least one of the three variable force solenoids (VFS) and/or a broken circuit trace within the module. However, the circuit assembly cannot be easily removed in one piece for reuse. The circuit assembly consists of multiple circuit tracks that are placed within two plastic housings that are snapped together, sandwiching the circuit tracks into place. During the removal process, the circuit assembly flexes, which releases the snapped connections between the 2 housings, and results in the circuit tracks to fall out of location. The defective solenoids can be replaced with new, good used or rebuilt ones. Unfortunately, new ones are not available to the general public. It has also been found that a substantial failure rate exists in used ones. Therefore, even if a good used one is installed, the long-term reliability of the solenoid is not known.
The present invention describes a methodology for rebuilding a solenoid assembly where multiple solenoids share a common valve housing.
Various aspects of some of the embodiments described herein pertain to methods for restoring a solenoid and valve assembly.
Yet other aspects of some embodiments pertain to methods for restoring the proper hydraulic function of a solenoid and valve assembly by reworking some existing components and substituting other components that are different in size than the component they replace.
Another aspect of the present invention pertains to a method for restoring a used solenoid and valve assembly. Some embodiments include providing a used solenoid assembly including a solenoid housing connected by a non-continuous circular crimped mechanical connection to a valve housing, the solenoid housing holding within it an electromagnetic actuator, and removing a segment of the crimped connection. Still other embodiments include retaining the remainder of the crimped connection after said removing. Yet other embodiments include pulling apart the used valve housing from the used solenoid housing after said removing and after said retaining.
Another aspect of the present invention pertains to a method for restoring a used solenoid and valve assembly. Some embodiments include providing a used solenoid assembly including a solenoid housing connected by a non-continuous circular crimped connection to a valve housing, the housing holding within it an electromagnetic actuator, the valve housing holding within it a spool valve movable by the actuator along an axis. Still further embodiments include disassembling the used valve housing and used spool valve from the used solenoid assembly, and replacing the used spool valve with a different spool valve, having substantially the same dimensional relationships in the axial direction as the used spool valve, and having larger metering diameters than the corresponding metering diameters of the used valve. Still other embodiments include increasing the inner diameters of the metering lands of the used valve housing to receive therethrough the corresponding metering diameters of the different valve;
Another aspect of the present invention pertains to a method for rebuilding a solenoid assembly from an automatic transmission. Some embodiments include providing a used solenoid assembly from an automatic transmission. Other embodiments include removing the used spool valve having a first outer diameter, reaming the spool valve bore to a larger bore diameter, and inserting in the bore a new spool valve having a second outer diameter larger than the first outer diameter. Other embodiments include placing the new spool valve into the reamed bore.
Yet another aspect of present invention pertains to a method for rebuilding a solenoid assembly from an automatic transmission. Some embodiments include providing a used solenoid assembly from an automatic transmission. Other embodiments include removing a portion of the crimp that retains the solenoid in the housing. Some embodiments include removing the solenoid pole piece, removing magnetically attached particles from the pole piece, and placing the used pole piece into the solenoid housing.
Yet other aspects of some embodiments pertain to a method for disassembling a solenoid assembly that is coupled together by a crimped or swaged mechanical connection. In some embodiments, the swaged connection is cut into segments. In yet other embodiments, the swaged portion of the connection is machined to a thinner cross section. In some embodiments, the swaged connection is at the end of the assembly that includes an electrical connector. In yet other embodiments, the swaged connection is on the end of the housing opposite of the electrical connector.
Yet other embodiments of the present invention pertain to restoring the proper functioning of a solenoid and valve assembly by replacing the used aluminum valve housing with a valve housing fabricated from a powered metal.
One aspect of the present invention pertains to a method for restoring a used solenoid and valve assembly. Some embodiments include providing a used solenoid assembly including a housing connected by a crimped mechanical connection to a valve housing. Other embodiments include removing at least two, separated segments of the crimped connection, and pulling apart the used valve housing from the used housing.
Another aspect of the present invention pertains to a method for restoring a used solenoid and valve assembly. Some embodiments include providing a used solenoid assembly including a housing connected to a valve housing, the housing holding within it an electromagnetically actuator, the valve housing holding within it a holding within it an actuatable valve element movable by the actuator along an axis. Other embodiments include disassembling the used valve housing and used spool valve from the used solenoid assembly, and replacing the used spool valve with a different spool valve. Still other embodiments include increasing the inner diameters of the metering lands of the used valve housing to receive therethrough the corresponding metering diameters of the different valve, reassembling the different spool valve and the used valve housing, and testing the flow characteristics of the reassembled solenoid assembly.
It will be appreciated that the various apparatus and methods described in this summary section, as well as elsewhere in this application, can be expressed as a large number of different combinations and subcombinations. All such useful, novel, and inventive combinations and subcombinations are contemplated herein, it being recognized that the explicit expression of each of these combinations is unnecessary.
Some of the figures shown herein may include dimensions. Further, some of the figures shown herein may have been created from scaled drawings or from photographs that are scalable. It is understood that such dimensions, or the relative scaling within a figure, are by way of example, and not to be construed as limiting.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, such alterations and further modifications in the illustrated device, and such further applications of the principles of the invention as illustrated therein being contemplated as would normally occur to one skilled in the art to which the invention relates. At least one embodiment of the present invention will be described and shown, and this application may show and/or describe other embodiments of the present invention. It is understood that any reference to “the invention” is a reference to an embodiment of a family of inventions, with no single embodiment including an apparatus, process, or composition that should be included in all embodiments, unless otherwise stated. Further, although there may be discussion with regards to “advantages” provided by some embodiments of the present invention, it is understood that yet other embodiments may not include those same advantages, or may include yet different advantages. Any advantages described herein are not to be construed as limiting to any of the claims. The usage of words indicating preference, such as “preferably,” refers to features and aspects that are present in at least one embodiment, but which are optional for some embodiments.
Common elements and common features of related elements may be drawn in the same manner in different figures, and/or use the same symbology in different figures. As such, it is not necessary to describe the features that are the same, since these common features are apparent to a person of ordinary skill in the related field of technology.
The use of a prime (′) designation after an element number refers to that same element number as it was previously known (i.e., before the same element is modified to include a feature according to an embodiment of the present invention. For example, 30′ refers to a solenoid and valve assembly prior to modification of the solenoid and valve assembly according to an embodiment of the present invention.
Although various specific quantities (spatial dimensions, temperatures, pressures, times, force, resistance, current, voltage, concentrations, wavelengths, frequencies, heat transfer coefficients, dimensionless parameters, etc.) may be stated herein, such specific quantities are presented as examples only, and further, unless otherwise explicitly noted, are approximate values, and should be considered as if the word “about” prefaced each quantity. Further, with discussion pertaining to a specific composition of matter, that description is by example only, and does not limit the applicability of other species of that composition, nor does it limit the applicability of other compositions unrelated to the cited composition.
What will be shown and described herein, along with various embodiments of the present invention, is discussion of one or more tests that were performed. It is understood that such examples are by way of example only, and are not to be construed as being limitations on any embodiment of the present invention. Further, it is understood that embodiments of the present invention are not necessarily limited to or described by the mathematical analysis presented herein.
Various references may be made to one or more processes, algorithms, operational methods, or logic, accompanied by a diagram showing such organized in a particular sequence. It is understood that the order of such a sequence is by example only, and is not intended to be limiting on any embodiment of the invention.
Incorporated herein in its entirety is pending U.S. Continuation Patent Application No. 13/772,453, filed Feb. 21, 2013, titled METHOD OF REBUILDING SOLENOIDS FOR AUTOMATIC TRANSMISSIONS.
Various embodiments of the present invention include methods and apparatus for restoring the proper functioning of a used solenoid and valve assembly. Such assemblies are typically not reworked, and are simply discarded. However, it has been discovered that such used assemblies, heretofore considered scrap, can be economically returned to full working status. In so doing, the restored assembly saves resources (since it is not necessary to use additional raw materials to build a new device), saves energy (since the energy expended restoring the used solenoid is likely only a fraction of the energy required to make a new one), and of course saves money.
Used solenoid and valve assemblies are often acquired from transmissions that have been removed from service, and which are subsequently disassembled. The various disassembled parts can then be individually examined to see if they can be used again in a rebuilt transmission. In some cases it is preferable to restore the used part to the original equipment manufacturer (OEM) performance specification prior to the incorporation of the restored parts into a rebuilt transmission. Some components (such as used seals) may be so worn, and the cost of a new component so low, that the components are simply discarded. Yet other components, such as the solenoid valve assemblies discussed herein, are relatively more expensive to replace, and therefore are candidates for restoration to OEM-type operation.
In one embodiment, there is a method for removing a valve housing from a solenoid. In some situations, a new valve housing and a new solenoid are connected to each other in a permanent manner by a method that includes elastically deforming part of one component over another part of a different component. Since the method of making the new connection involves inelastic deformation, it is difficult to remove the valve assembly from the solenoid assembly without so much damage to either component that one or both components must be discarded. In one embodiment, the inelastically deformed section is mechanically removed (such as by machining) in spaced apart segments. Since the portions of the connections that remain are smaller, and further, have lost the structural integrity provided by being a continuous hoop, the solenoid assembly can be forced apart from the valve assembly without damaging either component. The remainder of the deformed section still holding the solenoid and valve together is significantly weaker because of the segments that have been removed, and during the operation where the components are forced apart the remainder of the deformed connection simply bends inelastically out of the way (thus permitting disassembly).
Yet other embodiments of the present invention pertain to methods for replacing a spool valve actuatable by a solenoid. In some applications, the exiting spool valve is fabricated from a hardened steel, and a valve operates within the bore of a valve housing Since the aluminum is softer, continued operation of the valve over a long period of time tends to wear down the aluminum. One embodiment of the present invention pertains to reworking the bores of the aluminum valve housing to predetermined larger diameters. A different spool valve replaces the original spool valve. The different spool valve has substantially the same axial dimensional relationships as the original valve, but the metering diameters of the different spool valve are adapted and configured to operate within the reworked aluminum valve housing (i.e., the metering diameters of the different spool valve are larger than the corresponding diameters of the original spool valve).
Yet other embodiments pertain to a method for restoring a used solenoid valve assembly to a proper functioning state. The method includes replacing the original valve housing with a housing fabricated from a powered metal. In yet other embodiments, the original steel spool valve is replaced with an aluminum spool valve having hardened metering diameters. It is believed that the powered metal housing and the replacement aluminum spool valve have significantly longer life.
Some embodiments of the present invention relate to a fluid control device such as a solenoid module assembly 20 including several actuators or solenoid valve assemblies 30, arranged and secured within a manifold block, hence constituting a solenoid block assembly or module, which is primarily adapted for automatic transmissions used in motor vehicles. A solenoid valve assembly 30 includes an electromagnetic actuator that operates directly on a spool valve received within a valve housing provided with hydraulic fluid. These actuators 30 are provided with electrical actuation via plastic circuit assembly 24. In such an assembly, if at least one component fails, the whole module is affected and deemed defective. However, some embodiments of the present invention also relate to individual solenoids that are not arranged and secured within a solenoid block assembly or module. For example, actuators and solenoids that are individually inserted and secured in a valve body primarily adapted for automatic transmissions in general.
Some embodiments of the present invention include replacing failed components within these solenoids; however, some embodiments of the present invention also relate to individual solenoids in general. One embodiment of the invention allows for improved durability and subsequent reliability of the solenoid. Another embodiment provides for a low cost method of restoring the solenoid function. In both cases, a method for disassembling the solenoid is demonstrated.
For illustrative purposes of one application of one embodiment of the present invention, a variable force solenoid 30 (VFS) that is used in the solenoid module assembly for the Ford 5R55 transmission is used. In particular, this assembly is utilized in the 5R55N, 5R55W and 5R55S versions. However, it is understood that various embodiments of the present invention pertain to any type of solenoid that includes a continuous circular crimped connection between the external housing of the solenoid assembly and a part of the internal assembly of that solenoid assembly.
The hydraulic pressures of various hydraulic circuits within the transmission are controlled by three of these VFS solenoids. The VFS solenoids are shown as VFS A, B and C in
A disassembled VFS solenoid is depicted in
The spool valve includes two lobes with metering diameters of OD1a (44) and OD2a (43), where OD1a<OD2a. The spool valve 42 is resisted by the plate/pin assembly in the axial direction towards the coil. The spool valve 42 is free floating in the opposing direction; however, it is prevented from slipping out of the housing by the larger lobe (OD2a) on the spool valve 42.
In operation, the spool valve 42 is hydraulically urged towards the plate/pin assembly 32 because of the area difference between OD1a and OD2a. Therefore, the spool valve will tend to move in conjunction with the plate/pin assembly. The pressure is controlled through the housing by varying the position of the spool valve relative to the inlet and outlet port in the housing. The position of the spool valve is changed by varying the current flow through the coil. As the current is incrementally increased, the plate/pin assembly incrementally moves against the spring pressures into the coil and hence the spool valve is urged towards the coil. As the spool valve moves, the pressure drops between the inlet and outlet of the housing changes.
The positions of the spool valve in the maximum positions are depicted in
An example of the pressure drop response for a new VFS solenoid is shown in
As shown in
An example of the pressure drop of a used VFS solenoid is shown in
A methodology has been developed according to one embodiment of the present invention for restoring the function of the solenoid by (1) disassembling (or opening) the solenoid 30, (2) returning the hydraulic function of the solenoid 30 by restoring the clearances between the spool valve 42 and housing 40, (3) repairing or replacing various components within the solenoid and (4) reassembling the solenoid 30. It is understood, that one or more of the aspects in the disclosed methodology may not be required for repairing the solenoid. For example, the clearances of the spool valve and housing may be within specification and therefore this particular aspect may not be performed in the rebuilding of the solenoid. As another example, various components of the solenoid, such as the spring and adjustment set screw/bushing assembly, can be repaired or replaced without “opening” the solenoid.
The solenoid can be assembled together by crimping the circular flange (shown in
In order to open the solenoid, the crimp 29′ is reversed or released allowing the valve housing to be removed, thus providing access to the internal components. Various methods of releasing the crimped flange include removing the entire crimped section via machining or using a tool to “peel” the crimp back. There are disadvantages to these methods. If the entire crimped section is removed, then a sleeve should be attached to the coil/housing that provides for a new flange that can be crimped over the valve housing. This is time consuming and therefore expensive to perform in a production setting. If a tool is used to “peel” the crimp back, one of two methods is generally used. Either a tool is used to “peel” small sections of the crimp around the perimeter, or, a tool is used to “peel” the entire perimeter of the crimp in one operation. The first method is time-consuming and therefore expensive to perform in a production setting. The second method may not be feasible because of the configuration of the solenoid.
The crimp 29′ can also be reversed by forcing an opposed relative motion between the coil/housing and the valve housing. For example, the coil/housing can be held statically while pulling the valve housing or vice versa. Or, the coil/housing and valve housing can be pulled in opposite directions simultaneously. However, the force required to release the crimp is high because of the circumferential stress in the crimp. In the illustrated solenoid, the valve housing is unable to withstand this induced stress and will break. Thus, a methodology according to one embodiment is disclosed for lowering the circumferential stress by notching the crimp at one or more sections along the perimeter of the crimp. Now, one embodiment of this methodology will be discussed in detail.
In one embodiment, the solenoid is secured in a fixture and notches are machined at a plurality of locations around the circumference of the coil/housing flange and valve housing interface. As best seen in
Machining in one embodiment is performed using a computer numerical control (CNC) milling machine. Tooling in one embodiment includes a 4.76 mm diameter end mill. However, yet other embodiments of the present invention utilize any tool size, and further any machining process, that provide for removal of a crimped over segment of the housing, such that adjacent segments of the crimp are thereafter separated by an opened angular segment (without any of the former crimp).
Several solenoids can be fixtured at one time, allowing multiple solenoids to be machined without operator intervention. The solenoid before this operation is depicted in
Although what has been shown and described is a method of using a particular cutting tool in a particular machining operation, it is understood that yet other embodiments of the present invention are not so constrained. As one example, the segments can be created by notching the crimped connection with a small cutoff wheel attached to a die grinder. In addition, various types of saw blades can be used to make a saw cut that removes a segment of the crimped material, and further which breaks the hoop configuration of the previously crimped connection. The removal of the crimped connection can be done in any manner, including from a single side, with no mirrored cut on the opposing side. Various embodiments of the present invention contemplate both symmetric and asymmetric removals of material.
It has been found that by removing discrete, separated segments of the crimped joint that the remaining portions of crimped joint become too weak to resist the forcing apart of the valve housing 40 from the coil housing 31. It is believed that there are at least two factors involved in the weakening of the remaining crimped joint: (1) because of the removal of crimped material, there is simply less remaining crimped material to hold components 40 and 31 together; and (2) because the removal is performed in discrete, separated segments, the remaining crimped joint takes on more of the character of a straight, folded over segment as opposed to the original hoop configuration.
With the solenoid opened, the various components within the solenoid can be removed for cleaning, repair or replacement. In situations where the spool valve and housings clearances are outside of specification (and thus resulting in excessive leakage), two methods are contemplated for hydraulically restoring the solenoid. In one embodiment, the valve housing is replaced and in another, the valve housing is machined and paired with a new spool valve.
In one embodiment, the solenoid is hydraulically restored by replacing the valve housing with a new housing. In some embodiments, the housings are constructed from powdered metal. The original spool valve may or may not be reused. Since the spool valve does not typically experience significant wear, it is preferred that the powdered metal housing has the correct inside bore sizes ID1a and ID2a to allow the reuse of the original spool valve. The inside bore diameters of ID1a=4.30 mm and ID2a=5.45 mm are preferred to provide proper mating with the original spool valve. The preferred surface finish (Ra) on the inside bore surfaces is 0.8 micrometers (32 micro inches) or less. The housing is of similar dimensional construct to the original housing; however, the powdered metal provides for improved wear resistance between the inside bores and the spool valve. In one embodiment, an F-0000 metal is used at 6.7 g/cc density.
For rebuilding the illustrated solenoid, the solenoid is opened using the previously discussed method and the old valve housing is discarded, the internal components of the solenoid are cleaned and checked for damage. If undamaged, the existing spool valve is inspected and installed into the new powder metal housing. The solenoid is assembled with the other components, which may be new, repaired or reused. The solenoid is hydraulically crimped together using a special tool. In those embodiments in which the solenoid housing has been machined to remove separated segments of the previous crimp, then this used housing can be reused, with the remaining segments being inelastically re-deformed to mechanically connect to the spool valve housing. However, in some embodiments, the restoration includes discarding the used solenoid housing 31 after the separated segments have been machined away. To continue restoration new O-rings are installed and the rebuilt solenoid is tested for electrical and hydraulic function. Similar rebuilt solenoids are then installed into a used solenoid module assembly. The original overmolded circuit assembly or a printed circuit board assembly is installed to connect the solenoids to the terminal connector. The solenoid module assembly is subsequently tested.
In another embodiment, the solenoid is hydraulically restored by enlarging the inside bore diameters of the original valve housing and installing a new oversized spool valve with diameters of OD1b and OD2b, where OD1b>OD1a and OD2b>OD2a. A preferred method is via machining the housing with one or more reamers. In one method, a custom reamer with two outside diameters of approximately ID1b and ID2b is used to enlarge each of the individual bores. This reamer may or may not be piloted. A similar secondary, finishing reamer may be used for producing the desired surface finish by removing minimal material.
In another method, a reamer with an outside diameter of approximately ID1b is used for the small, through bores. Then, the larger bores are machined via a piloted reamer with an outside diameter of approximately ID2b . The piloted section of the reamer locates the center of the reamer to the small bores ID1b. A non-piloted reamer with an approximate diameter of ID2b may be used in place of a piloted reamer. The reamers can be constructed of high speed steel (HSS) or carbide and may have 2 or more flutes.
Preferred dimensions for the bores are ID1=4.38 mm and ID2b=5.53 mm; however, other sizes can be used with similar results. A new spool valve is installed with preferred dimensions of OD1b=4.36 mm and OD2b=5.50 mm. The spool valve has a preferred surface hardness of 58-62 on the Rockwell C scale (HRC). As examples, the valve can be constructed of 4140, 12L14 or 41L40. A valve with a lower surface hardness is also acceptable. The preferred surface finish (Ra) on the outside surfaces is 0.8 micrometers (32 micro inches) or less.
Preferably, the replacement spool valve has dimensional relationships in the axial direction that are substantially the same as the used spool valve that it replaces. Referring to
In another version of the invention, a valve constructed from 6061 or 7075 aluminum may be used. The valve may also be coated with a hard coat anodized coating to provide a surface hardness of 60-70 HRC. This coating may or may not be ground afterwards to maintain the critical dimensions of the spool valve. There are several aspects to this embodiment of the invention. First, aluminum has superior thermal properties to a steel valve. Second, the dynamic response of an aluminum valve is faster than a steel valve.
In one method of the currently described embodiment, the solenoid is opened using the previously discussed method. The valve housing is cleaned and inspected for damage. The valve housing is secured in a fixture and the inside diameters are machined using a piloted, stepped reamer. The reamer 60 is shown in
Afterwards, a second piloted, stepped reamer is used to remove a slight amount of material and improve the surface finish. Preferred dimensions for the finished bores are ID1b=4.38 mm and ID2b=5.53 mm; however, other sizes can be used with similar results. A spool valve is installed with preferred dimensions of OD1b=4.36 mm and OD2b=5.50 mm. The material for the spool valve is 7075 with a hard coat anodized layer that is ground to the preferred dimensions. The preferred surface hardness is 58-62 HRC. The preferred surface finish (Ra) on the outside surfaces is 0.8 micrometers (32 micro inches) or less.
The other internal components of the solenoid are cleaned and checked for damage. The oversized spool valve is inserted into the valve housing. The solenoid is assembled with the other components, which may be new, repaired or reused. The solenoid is hydraulically crimped together using a special tool. New O-rings are installed and the rebuilt solenoid is tested for electrical and hydraulic function. Similar rebuilt solenoids are then installed into a used solenoid module assembly. The original overmolded circuit assembly or a printed circuit board assembly is installed to connect the solenoids to the terminal connector. The solenoid module assembly is subsequently tested.
The illustrated solenoid contains other internal components that may experience wear and cause performance issues. One such component is the threaded set screw/bushing assembly that performs two functions. First, the set screw assembly can be adjusted to control the spring pressure within the solenoid. This has the net effect of controlling the pressure response curve in
One method for repairing the bushing is to mechanically remove the existing bushing from the set screw. Another method would be to insert a new bushing into a new set screw. The bushing can be made from several materials, including polytetrafluoroethylene (PTFE), nylon, bronze or a self-lubricating alloy or composite such as graphite/bronze. A multiple piece type bushing could be used as well, such as a steel bushing that is coated with an above mentioned material. In the preferred embodiment, the bushing is removed from the existing set screw. A new bushing is lightly coated with an adhesive and inserted into the existing set screw. The preferred material is a self-lubricating graphite/bronze material. The threaded section of the set screw/bushing assembly is coated with a thread locking material prior to assembly with the VFS solenoid.
Yet another embodiment of the present invention is shown in
In one embodiment of the present invention, the solenoids are mechanically removed from the valve housing either by cutting and pulling the solenoids from the housing or by manually bending the crimped section of the solenoid. After removal, the valve housing components including of the spool valves (101c, 102c), adjusting caps (104), springs (101d, 102d) and pressure tap bolt (105) are removed. In addition, the solenoid components consisting of the electrical coil (101e, 102e), guide bushing assembly (106) and solenoid housing assembly (107) are separated. After removal, all components are thoroughly cleaned and checked. One embodiment of the methodology would include providing new electrical coils. Another embodiment would include replacing the guide assembly bushing or the entire guide assembly with new ones.
In the preferred embodiment, the valve housing bores are enlarged by reaming both bores to new, larger sizes. For some dual linear solenoid (such as with some sold by Honda), there are two distinct diameters per bore. New valves of anodized aluminum are provided with larger diameters, such that hydraulic clearances are restored between valve lobes and the valve bores. The same reamer is used for reaming both bores for the Honda dual linear solenoid. However, it is not expected that this would be the case for other applications. An alternate embodiment includes reusing the existing valves without reaming the valve housing.
Removal of the solenoids is helpful to repairing the dual linear solenoid assembly for several reasons. First, the valve housing should be reamed with the solenoids removed. Second, the direct acting bore components valve assembly (102) should be removed from the solenoid end. Also, a common failure mode for some dual linear solenoids is contamination within the solenoid housing assembly. Referring to
The illustrated solenoid contains other internal components that may experience wear and cause performance issues. One such component is the guide bushing of the guide bushing assembly 106. The guide bushing assembly contains a bushing that supports the pin section (FIG. 16—107b1) of the pole piece assembly (FIG. 17—107b2).
One method for repairing the bushing is to mechanically remove and replace the existing bushing from the used guide bushing housing with a new bushing. Another method would be to insert a new bushing into a new guide bushing housing. The bushing can be made from several materials, including polytetrafluoroethylene (PTFE), nylon, bronze or a self-lubricating alloy or composite such as graphite/bronze. A multiple piece type bushing could be used as well, such as a steel bushing that is coated with an above mentioned material. In the preferred embodiment, the bushing is removed from the existing guide bushing housing. A new bushing is inserted into the existing guide bushing housing. One preferred material is a self-lubricating graphite/bronze material.
After the described operations are completed, the components are re-assembled with new o-rings/springs and the solenoid housing assemblies are mechanically crimped to the valve housing. The rebuilt assembly is tested for electrical and hydraulic functions. The adjusting caps are adjusted to the correct calibration.
Various aspects of different embodiments of the present invention are expressed in paragraphs X1 and X2, as follows:
X1. One aspect of the present invention pertains to a method for restoring a used solenoid valve assembly. The method preferably includes providing a used solenoid valve assembly including a multibore valve housing having at least two bores and a pair of solenoid assemblies, each bore of the valve housing holding within it a corresponding valve element, each solenoid assembly being connected by a corresponding non-continuous circular crimped mechanical connection to the valve housing, each solenoid assembly holding within it a corresponding electromagnetic actuator acting directly on a corresponding one of the valve elements. The method preferably includes removing a segment of the non-continuous crimped connection between each of the solenoid assemblies and the valve housing. The method preferably includes removing each of the solenoid assemblies from the valve housing, removing each spool valve from its bore, and cleaning the valve housing.
X2. Another aspect of the present invention pertains to a method for rebuilding a solenoid valve assembly. The method preferably includes providing a used solenoid valve assembly including a multibore valve housing having at least two bores and a pair of solenoid assemblies, each bore of the valve housing holding within it a corresponding valve element, each solenoid assembly having a housing connected to a corresponding bore of the valve housing, each solenoid assembly holding within it a pole piece adapted and configured to provide a force on one of the valve elements. The method preferably includes plastically deforming each solenoid housing to remove the connection to the bore, removing the used solenoid pole pieces, and cleaning particles from the pole pieces.
Yet other embodiments pertain to any of the previous statements X1 or X2, which are combined with one or more of the following other aspects.
Wherein said providing includes at least one replacement spool valve having at least one lobe with a diameter larger than the corresponding lobe diameter of the used spool valve, and which further comprises inserting the replacement spool valve into one of the bores after said cleaning.
Which further comprises reaming the one bore prior to said inserting the spool valve.
Wherein one of said bores includes a threaded aperture having a threaded cap on an end of the bore located opposite of the solenoid assembly, and which further comprises removing the cap, wherein said removing one of the spool valves is through the threaded aperture.
Wherein said removing a spool valve is after said removing the corresponding solenoid assembly, or said removing a spool valve is through the end of the bore formerly coupled to the corresponding solenoid.
Which further comprises recrimping the installed solenoid assemblies to the cleaned valve housing.
Wherein at least one of the installed solenoid assemblies is the same as one of the removed solenoid assemblies, or at least one of the installed solenoid assemblies is not the same as one of the removed solenoid assemblies.
Wherein one of valve elements is hydraulically direct acting and the other of the valve elements is hydraulically reverse acting.
Wherein said plastically deforming is to a non-continuous circular crimped mechanical connection.
Wherein said plastically deforming is to a continuous circular crimped mechanical connection.
Wherein each bore is threadably coupled at one end to a corresponding adjustment cap, and which further comprises removing each adjustment cap prior to said reinstalling.
Which further comprises installing a threaded adjustment cap onto the end of each bore after said reinstalling, and which further comprises adjusting the position of the cap until the solenoid valve assembly demonstrates electrohydraulic flow characteristics within the OEM range of flow characteristics.
Wherein the reinstalled pole piece is reinstalled into a different used solenoid housing than the provided used solenoid housing.
Any of the above method or apparatus wherein said removing is performed by machining away a portion of the used solenoid housing and a portion of the used valve housing within each segment.
Any of the above method or apparatus wherein said removing comprises removing a plurality of segments from the crimped connection.
Any of the above method or apparatus which further comprises replacing one of the used valve housing or the used valve element with a corresponding different valve housing or spool valve, and reassembling the one used and the one replaced into the used solenoid housing.
Any of the above method or apparatus which further comprises reassembling the valve housing into the used housing after said pulling and recrimping the used solenoid housing to the valve housing.
Any of the above method or apparatus wherein said valve housing is a powdered metal valve housing, and said method further comprises reassembling the powdered metal valve housing into the used housing.
Any of the above method or apparatus wherein said increasing is performed by mechanically reaming each inner diameter.
Any of the above method or apparatus wherein said reaming is performed with a stepped reamer.
Any of the above method or apparatus wherein each inner diameter is mechanically reamed simultaneously with each other inner diameter.
Any of the above method or apparatus wherein said recrimping is of the remainder of the crimped connection.
Any of the above method or apparatus wherein the valve element is a spool valve, or the valve element is a ball.
Any of the above method or apparatus which further comprises calibrating the operation of the new spool valve in the reamed bore.
Any of the above method or apparatus wherein the new spool valve comprises anodized aluminum.
Any of the above method or apparatus which further comprises removing the solenoids prior to said reaming.
Any of the above method or apparatus which further comprises removed bore components from the end of the assembly proximate to the solenoid.
Any of the above method or apparatus which further comprises replacing the used springs with new springs in the reamed bore.
Any of the above method or apparatus which further comprises crimping a new connection between the solenoid housing and the solenoid assembly after said placing. which further comprises calibrating the operation of the solenoid assembly on a test bench.
Any of the above method or apparatus wherein the new spool valve comprises anodized aluminum.
Any of the above method or apparatus which further comprises removed bore components from the end of the assembly proximate to the solenoid.
Any of the above method or apparatus which further comprises replacing the used springs with new springs in the reamed bore.
Any of the above method or apparatus wherein said providing includes a guide bushing for guiding the pole piece, and which further comprises replacing the bushing.
Any of the above method or apparatus wherein the guide bushing is a press fit within a guiding assembly.
While the inventions have been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain embodiments have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 61/620,217, filed Apr. 4, 2012, titled METHOD FOR REBUILDING SOLENOID ASSEMBLY FOR AUTOMATIC TRANSMISSIONS, and U.S. Provisional Patent Application Ser. No. 61/793,642, filed Mar. 15, 2013, titled REBUILDING SOLENOID ASSEMBLIES FOR AUTOMATIC TRANSMISSIONS, and U.S. patent application Ser. No. 12/905,409, filed Oct. 15, 2010, now issued as U.S. Pat. No. 8,387,254, and U.S. Continuation patent application Ser. No. 13/772,453, filed Feb. 21, 2013, all of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61620217 | Apr 2012 | US | |
61793642 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12905409 | Oct 2010 | US |
Child | 13772453 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13772453 | Feb 2013 | US |
Child | 13856862 | US |