This disclosure relates generally to laser scanning and, more particularly, to using a fiber optic cable in the receive path of a laser scanning system.
Light detection and ranging (LiDAR) systems use light pulses to create an image or point cloud of the external environment. Some typical LiDAR systems include a light source, a pulse steering system, and light detector. The light source generates light pulses that are directed by the pulse steering system in particular directions when being transmitted from the LiDAR system. When a transmitted light pulse is scattered by an object, some of the scattered light is returned to the LiDAR system as a returned pulse. The light detector detects the returned pulse. Using the time it took for the returned pulse to be detected after the light pulse was transmitted and the speed of light, the LiDAR system can determine the distance to the object along the path of the transmitted light pulse. The pulse steering system can direct light pulses along different paths to allow the LiDAR system to scan the surrounding environment and produce an image or point cloud. LiDAR systems can also use techniques other than time-of-flight and scanning to measure the surrounding environment
The following presents a simplified summary of one or more examples to provide a basic understanding of the disclosure. This summary is not an extensive overview of all contemplated examples, and is not intended to either identify key or critical elements of all examples or delineate the scope of any or all examples. Its purpose is to present some concepts of one or more examples in a simplified form as a prelude to the more detailed description that is presented below.
In accordance with some embodiments, a light detection and ranging (LiDAR) system comprises: a light source configured to generated a pulse signal from the LiDAR system; one or more mirrors configured to steer a returned light pulses associated with the transmitted pulse signal along an optical receive path; a fiber having a receiving end configured to receive the returned light pulse along the optical receive path; and a light detector configured to receive the returned light pulse from an end of the fiber opposite the receiving end.
In accordance with some embodiments, a light detection and ranging (LiDAR) system comprises: a light source configured to generated a pulse signal from the LiDAR system; one or more mirrors configured to steer a returned light pulses associated with the transmitted pulse signal along an optical receive path; a light detector configured to receive the returned light pulse; and a field lens positioned along the optical receive path, wherein the field lens is configured to redirect the returned light pulse from the one or more mirrors into the light detector.
In accordance with some embodiments, a light detection and ranging (LiDAR) system comprises: a light source configured to generate a pulse signal from the LiDAR system; one or more mirrors configured to steer a returned light pulse associated with the transmitted pulse signal along an optical receive path; a fiber having a receiving end configured to receive the returned light pulse along the optical receive path; and a light detector configured to receive the returned light pulse from an end of the fiber opposite the receiving end.
In accordance with some embodiments, a method comprises transmitting, using a light source, a pulse signal; steering, using one or more mirrors, a returned light pulse associated with the transmitted pulse signal along an optical receive path; redirecting, using a field lens positioned along the optical receive path, the returned light pulse; receiving, using a receiving end of a fiber, the returned light pulse from the field lens along the optical receive path; and receiving, using a light detector, the returned light pulse from an end of the fiber opposite the receiving end.
The present application can be best understood by reference to the figures described below taken in conjunction with the accompanying drawing figures, in which like parts may be referred to by like numerals.
In the following description of examples, reference is made to the accompanying drawings which form a part hereof, and in which it is shown by way of illustration specific examples that can be practiced. It is to be understood that other examples can be used and structural changes can be made without departing from the scope of the disclosed examples.
Some LiDAR systems use an open air optical path or optical path with one or more lenses to receive and optimize detection of returned pulse signals. This has a disadvantage in that the detection mechanism needs to either be close to where the returned pulse enters the system or a potentially complex system needs to be in place to redirect the returned pulse signal to the detector. In some embodiments of the present technology, an optical fiber is used to direct returned light pulses to a light detector. This way, the detector can be placed in an arbitrary location relative to the signal steering system that receives the return signal. Further, the detector can be placed fairly close to the exit end of the fiber, thus improving the integrity and amount of the detected light signals. Depending on how the returned light pulse is received by the LiDAR system, errors (e.g., walk-off error) that reduce signal strength or place more stringent tolerances on the system may be reduced. Some embodiments of the present technology use a field lens to redirect returned light pulses into an optical fiber core or directly into a light detector, thus reducing the errors due to walk-off of the pulses.
Some LiDAR systems use the time-of-flight of light signals (e.g., light pulses) to determine the distance to objects in the path of the light. For example, with respect to
Referring back to
By directing many light pulses, as depicted in
If a corresponding light pulse is not received for a particular transmitted light pulse, then it can be determined that there are no objects within a certain range of LiDAR system 100 (e.g., the max scanning distance of LiDAR system 100). For example, in
In
The density of points in point cloud or image from a LiDAR system 100 is equal to the number of pulses divided by the field of view. Given that the field of view is fixed, to increase the density of points generated by one set of transmission-receiving optics, the LiDAR system should fire a pulse more frequently, in other words, a light source with a higher repetition rate is needed. However, by sending pulses more frequently the farthest distance that the LiDAR system can detect may be more limited. For example, if a returned signal from a far object is received after the system transmits the next pulse, the return signals may be detected in a different order than the order in which the corresponding signals are transmitted and get mixed up if the system cannot correctly correlate the returned signals with the transmitted signals. To illustrate, consider an exemplary LiDAR system that can transmit laser pulses with a repetition rate between 500 kHz and 1 MHz. Based on the time it takes for a pulse to return to the LiDAR system and to avoid mix-up of returned pulses from consecutive pulses in conventional LiDAR design, the farthest distance the LiDAR system can detect may be 300 meters and 150 meters for 500 kHz and 1 Mhz, respectively. The density of points of a LiDAR system with 500 kHz repetition rate is half of that with 1 MHz. Thus, this example demonstrates that, if the system cannot correctly correlate returned signals that arrive out of order, increasing the repetition rate from 500 kHz to 1 Mhz (and thus improving the density of points of the system) would significantly reduce the detection range of the system.
LiDAR system 100 can also include other components not depicted in
Some other light sources include one or more laser diodes, short-cavity fiber lasers, solid-state lasers, and/or tunable external cavity diode lasers, configured to generate one or more light signals at various wavelengths. In some examples, light sources use amplifiers (e.g., pre-amps or booster amps) include a doped optical fiber amplifier, a solid-state bulk amplifier, and/or a semiconductor optical amplifier, configured to receive and amplify light signals.
Returning to
Some implementations of signal steering systems include one or more optical redirection elements (e.g., mirrors or lens) that steers returned light signals (e.g., by rotating, vibrating, or directing) along a receive path to direct the returned light signals to the light detector. The optical redirection elements that direct light signals along the transmit and receive paths may be the same components (e.g., shared), separate components (e.g., dedicated), and/or a combination of shared and separate components. This means that in some cases the transmit and receive paths are different although they may partially overlap (or in some cases, substantially overlap).
Returning to
Controller 408 optionally is also configured to process data received from these components. In some examples, controller determines the time it takes from transmitting a light pulse until a corresponding returned light pulse is received; determines when a returned light pulse is not received for a transmitted light pulse; determines the transmitted direction (e.g., horizontal and/or vertical information) for a transmitted/returned light pulse; determines the estimated range in a particular direction; and/or determines any other type of data relevant to LiDAR system 100.
In some embodiments, returned light pulses collected by pulse steering system 700 are redirected into an optical fiber (e.g., fiber 710), which carries the returned light pulses to a photodetector. This allows the pulse steering system to be located in an arbitrary position with respect to the light detector.
In some embodiments of the present technology, a lens, a lens group, or other optical element is used in the optical receive path to increase the tolerance of walk-off error of the returned pulses. For example, in
In some embodiments of the present technology, the field lens 708 is configured to redirect returned light pulses traveling along paths 710 directly to a detector (e.g., an avalanche photodiode). In these embodiments, the steering system does not include a fiber. The returned light pulses are directed via the mirrors of the steering system to reach the detector. The detector can be placed fairly close to or directly on the field lens to improve the integrity of the detected signals.
The improved walk-off characteristics of embodiments of the present technology are shown in
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/634,084, filed Feb. 22, 2018, entitled “Receive Path for LiDAR System,” the content of which is hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3897150 | Bridges et al. | Jul 1975 | A |
4119362 | Holzman | Oct 1978 | A |
4464048 | Farlow | Aug 1984 | A |
4676586 | Jones et al. | Jun 1987 | A |
5006721 | Cameron | Apr 1991 | A |
5157451 | Taboada et al. | Oct 1992 | A |
5319434 | Croteau et al. | Jun 1994 | A |
5336900 | Peters | Aug 1994 | A |
5369661 | Yamaguchi et al. | Nov 1994 | A |
5442358 | Keeler | Aug 1995 | A |
5504731 | Lee | Apr 1996 | A |
5546188 | Wangler et al. | Aug 1996 | A |
5579153 | Laming et al. | Nov 1996 | A |
5657077 | Deangelis | Aug 1997 | A |
5793491 | Wangler et al. | Aug 1998 | A |
5838239 | Stern et al. | Nov 1998 | A |
5864391 | Hosokawa et al. | Jan 1999 | A |
5926259 | Bamberger | Jul 1999 | A |
5936756 | Nakajima | Aug 1999 | A |
6163378 | Khoury | Dec 2000 | A |
6317202 | Hosokawa et al. | Nov 2001 | B1 |
6594000 | Green | Jul 2003 | B2 |
6650404 | Crawford | Nov 2003 | B1 |
6950733 | Stopczynski | Sep 2005 | B2 |
7128267 | Reichenbach et al. | Oct 2006 | B2 |
7202941 | Munro | Apr 2007 | B2 |
7345271 | Boehlau et al. | Mar 2008 | B2 |
7440084 | Kane | Oct 2008 | B2 |
7440175 | Di Teodoro | Oct 2008 | B2 |
7489865 | Varshneya | Feb 2009 | B2 |
7576837 | Liu et al. | Aug 2009 | B2 |
7830527 | Chen | Nov 2010 | B2 |
7835068 | Brooks | Nov 2010 | B1 |
7847235 | Krupkin | Dec 2010 | B2 |
7880865 | Tanaka et al. | Feb 2011 | B2 |
7936448 | Albuquerque | May 2011 | B2 |
7969558 | Hall | Jun 2011 | B2 |
7982861 | Abshire | Jul 2011 | B2 |
8072582 | Meneely | Dec 2011 | B2 |
8471895 | Banks | Jun 2013 | B2 |
8736818 | Weimer | May 2014 | B2 |
8749764 | Hsu | Jun 2014 | B2 |
8812149 | Doak | Aug 2014 | B2 |
8994928 | Shiraishi | Mar 2015 | B2 |
9048616 | Robinson | Jun 2015 | B1 |
9085243 | Asobe et al. | Jun 2015 | B2 |
9086273 | Gruver | Jul 2015 | B1 |
9194701 | Bösch | Nov 2015 | B2 |
9255790 | Zhu | Feb 2016 | B2 |
9300321 | Zalik | Mar 2016 | B2 |
9304316 | Weiss et al. | Apr 2016 | B2 |
9316724 | Gehring et al. | Apr 2016 | B2 |
9354485 | Fermann | May 2016 | B2 |
9465175 | Shi | Oct 2016 | B2 |
9510505 | Halloran | Dec 2016 | B2 |
9575184 | Gilliland | Feb 2017 | B2 |
9605998 | Nozawa | Mar 2017 | B2 |
9621876 | Federspiel | Apr 2017 | B2 |
9638799 | Goodwin | May 2017 | B2 |
9696426 | Zuk | Jul 2017 | B2 |
9702966 | Batcheller | Jul 2017 | B2 |
9804264 | Villeneuve et al. | Oct 2017 | B2 |
9810786 | Welford et al. | Nov 2017 | B1 |
9812838 | Villeneuve et al. | Nov 2017 | B2 |
9823353 | Eichenholz et al. | Nov 2017 | B2 |
9857468 | Eichenholz et al. | Jan 2018 | B1 |
9869754 | Campbell et al. | Jan 2018 | B1 |
9879990 | Klepsvik et al. | Jan 2018 | B2 |
9880263 | Droz | Jan 2018 | B2 |
9880278 | Uffelen et al. | Jan 2018 | B2 |
9885778 | Dussan | Feb 2018 | B2 |
9897689 | Dussan | Feb 2018 | B2 |
9915726 | Bailey | Mar 2018 | B2 |
9927915 | Frame | Mar 2018 | B2 |
9958545 | Eichenholz et al. | May 2018 | B2 |
9989629 | LaChapelle | Jun 2018 | B1 |
10003168 | Villeneuve | Jun 2018 | B1 |
10007001 | LaChapelle et al. | Jun 2018 | B1 |
10012732 | Eichenholz et al. | Jul 2018 | B2 |
10042159 | Dussan et al. | Aug 2018 | B2 |
10061019 | Campbell et al. | Aug 2018 | B1 |
10073166 | Dussan | Sep 2018 | B2 |
10078133 | Dussan | Sep 2018 | B2 |
10094925 | LaChapelle | Oct 2018 | B1 |
10157630 | Vaughn | Dec 2018 | B2 |
10191155 | Curatu | Jan 2019 | B2 |
10215847 | Scheim | Feb 2019 | B2 |
10267898 | Campbell et al. | Apr 2019 | B2 |
10295656 | Li et al. | May 2019 | B1 |
10310058 | Campbell et al. | Jun 2019 | B1 |
10324170 | Enberg, Jr. et al. | Jun 2019 | B1 |
10324185 | McWhirter et al. | Jun 2019 | B2 |
10393877 | Hall et al. | Aug 2019 | B2 |
10429495 | Wang et al. | Oct 2019 | B1 |
10444356 | Wu et al. | Oct 2019 | B2 |
10451716 | Hughes et al. | Oct 2019 | B2 |
10466342 | Zhu et al. | Nov 2019 | B1 |
10502831 | Eichenholz | Dec 2019 | B2 |
10509112 | Pan | Dec 2019 | B1 |
10520602 | Villeneuve et al. | Dec 2019 | B2 |
10557923 | Watnik | Feb 2020 | B2 |
10571567 | Campbell et al. | Feb 2020 | B2 |
10578720 | Hughes et al. | Mar 2020 | B2 |
10591600 | Villeneuve | Mar 2020 | B2 |
10627491 | Hall et al. | Apr 2020 | B2 |
10641872 | Dussan et al. | May 2020 | B2 |
10663564 | LaChapelle | May 2020 | B2 |
10663585 | McWhirter | May 2020 | B2 |
10663596 | Dussan et al. | May 2020 | B2 |
10684360 | Campbell | Jun 2020 | B2 |
10852398 | Yu et al. | Dec 2020 | B2 |
10908262 | Dussan | Feb 2021 | B2 |
10908265 | Dussan | Feb 2021 | B2 |
10908268 | Zhou et al. | Feb 2021 | B2 |
10969475 | Li et al. | Apr 2021 | B2 |
10983218 | Hall et al. | Apr 2021 | B2 |
11002835 | Pan et al. | May 2021 | B2 |
11009605 | Li et al. | May 2021 | B2 |
11194048 | Burbank et al. | Dec 2021 | B1 |
20020136251 | Green | Sep 2002 | A1 |
20020149757 | Kelsey et al. | Oct 2002 | A1 |
20040135992 | Munro | Jul 2004 | A1 |
20050013535 | Popescu | Jan 2005 | A1 |
20050033497 | Stopczynski | Feb 2005 | A1 |
20050190424 | Reichenbach et al. | Sep 2005 | A1 |
20050195383 | Breed et al. | Sep 2005 | A1 |
20050232541 | Mihailov | Oct 2005 | A1 |
20060071846 | Yanagisawa et al. | Apr 2006 | A1 |
20060132752 | Kane | Jun 2006 | A1 |
20070091948 | Di Teodoro | Apr 2007 | A1 |
20070188735 | Braunecker | Aug 2007 | A1 |
20070216995 | Bollond et al. | Sep 2007 | A1 |
20080174762 | Liu et al. | Jul 2008 | A1 |
20080193135 | Du et al. | Aug 2008 | A1 |
20090010644 | Varshneya | Jan 2009 | A1 |
20090028193 | Islam | Jan 2009 | A1 |
20090051926 | Chen | Feb 2009 | A1 |
20090059201 | Willner | Mar 2009 | A1 |
20090067453 | Mizuuchi et al. | Mar 2009 | A1 |
20090142066 | Leclair | Jun 2009 | A1 |
20090147239 | Zhu | Jun 2009 | A1 |
20090237639 | Shinozaki | Sep 2009 | A1 |
20090262760 | Krupkin | Oct 2009 | A1 |
20090316134 | Michael et al. | Dec 2009 | A1 |
20100006760 | Lee | Jan 2010 | A1 |
20100020306 | Hall | Jan 2010 | A1 |
20100020377 | Brochers et al. | Jan 2010 | A1 |
20100027602 | Abshire | Feb 2010 | A1 |
20100045965 | Meneely | Feb 2010 | A1 |
20100053715 | O'Neill et al. | Mar 2010 | A1 |
20100128109 | Banks | May 2010 | A1 |
20100271614 | Albuquerque | Oct 2010 | A1 |
20110181864 | Schmitt et al. | Jul 2011 | A1 |
20110216792 | Chann et al. | Sep 2011 | A1 |
20120038903 | Weimer | Feb 2012 | A1 |
20120124113 | Zalik | May 2012 | A1 |
20120162749 | Gusev et al. | Jun 2012 | A1 |
20120221142 | Doak | Aug 2012 | A1 |
20130107016 | Federspiel | May 2013 | A1 |
20130116971 | Retkowski et al. | May 2013 | A1 |
20130241761 | Cooper et al. | Sep 2013 | A1 |
20130293867 | Hsu | Nov 2013 | A1 |
20130293946 | Fermann | Nov 2013 | A1 |
20130329279 | Nati et al. | Dec 2013 | A1 |
20130342822 | Shiraishi | Dec 2013 | A1 |
20140078514 | Zhu | Mar 2014 | A1 |
20140104594 | Gammenthaler | Apr 2014 | A1 |
20140168631 | Haslim | Jun 2014 | A1 |
20140226140 | Chuang et al. | Aug 2014 | A1 |
20140347650 | Bosch | Nov 2014 | A1 |
20140350836 | Stettner et al. | Nov 2014 | A1 |
20150078123 | Batcheller | Mar 2015 | A1 |
20150084805 | Dawber | Mar 2015 | A1 |
20150109603 | Kim et al. | Apr 2015 | A1 |
20150116692 | Zuk | Apr 2015 | A1 |
20150139259 | Robinson | May 2015 | A1 |
20150158489 | Oh et al. | Jun 2015 | A1 |
20150338270 | Williams et al. | Nov 2015 | A1 |
20150355327 | Goodwin | Dec 2015 | A1 |
20160003946 | Gilliland | Jan 2016 | A1 |
20160047896 | Dussan | Feb 2016 | A1 |
20160047900 | Dussan | Feb 2016 | A1 |
20160061655 | Nozawa | Mar 2016 | A1 |
20160061935 | Mccloskey et al. | Mar 2016 | A1 |
20160100521 | Halloran | Apr 2016 | A1 |
20160117048 | Frame | Apr 2016 | A1 |
20160172819 | Ogaki | Jun 2016 | A1 |
20160178736 | Chung | Jun 2016 | A1 |
20160226210 | Zayhowski et al. | Aug 2016 | A1 |
20160245902 | Watnik | Aug 2016 | A1 |
20160273034 | Lundquist et al. | Sep 2016 | A1 |
20160291134 | Droz | Oct 2016 | A1 |
20160313445 | Bailey | Oct 2016 | A1 |
20160327646 | Scheim | Nov 2016 | A1 |
20170003116 | Yee et al. | Jan 2017 | A1 |
20170153319 | Villeneuve et al. | Jun 2017 | A1 |
20170242104 | Dussan | Aug 2017 | A1 |
20170299721 | Eichenholz | Oct 2017 | A1 |
20170307738 | Schwarz et al. | Oct 2017 | A1 |
20170365105 | Rao et al. | Dec 2017 | A1 |
20180031678 | Singer et al. | Feb 2018 | A1 |
20180040171 | Kundu et al. | Feb 2018 | A1 |
20180050704 | Tascione et al. | Feb 2018 | A1 |
20180069367 | Villeneuve et al. | Mar 2018 | A1 |
20180152691 | Pacala et al. | May 2018 | A1 |
20180158471 | Vaughn | Jun 2018 | A1 |
20180164439 | Droz et al. | Jun 2018 | A1 |
20180156896 | O'Keeffe | Jul 2018 | A1 |
20180188355 | Bao et al. | Jul 2018 | A1 |
20180188357 | Li | Jul 2018 | A1 |
20180188358 | Li | Jul 2018 | A1 |
20180188371 | Bao | Jul 2018 | A1 |
20180210084 | Zwölfer et al. | Jul 2018 | A1 |
20180275274 | Bao | Sep 2018 | A1 |
20180284241 | Campbell et al. | Oct 2018 | A1 |
20180284242 | Campbell | Oct 2018 | A1 |
20180284286 | Eichenholz et al. | Oct 2018 | A1 |
20180329060 | Pacala et al. | Nov 2018 | A1 |
20180359460 | Pacala et al. | Dec 2018 | A1 |
20190025428 | Li | Jan 2019 | A1 |
20190107607 | Danziger | Apr 2019 | A1 |
20190107623 | Campbell et al. | Apr 2019 | A1 |
20190120942 | Zhang | Apr 2019 | A1 |
20190120962 | Gimpel et al. | Apr 2019 | A1 |
20190154804 | Eichenholz | May 2019 | A1 |
20190154807 | Steinkogler et al. | May 2019 | A1 |
20190212416 | Li et al. | Jul 2019 | A1 |
20190250254 | Campbell et al. | Aug 2019 | A1 |
20190257924 | Li et al. | Aug 2019 | A1 |
20190265334 | Zhang | Aug 2019 | A1 |
20190265336 | Zhang | Aug 2019 | A1 |
20190265337 | Zhang | Aug 2019 | A1 |
20190265339 | Zhang | Aug 2019 | A1 |
20190273385 | Zediker et al. | Sep 2019 | A1 |
20190277952 | Beuschel et al. | Sep 2019 | A1 |
20190310368 | LaChapelle | Oct 2019 | A1 |
20190369215 | Wang et al. | Dec 2019 | A1 |
20190369258 | Hall et al. | Dec 2019 | A1 |
20190383915 | Li et al. | Dec 2019 | A1 |
20200142070 | Hall et al. | May 2020 | A1 |
20200256964 | Campbell et al. | Aug 2020 | A1 |
20200284906 | Eichenholz et al. | Sep 2020 | A1 |
20200319310 | Hall et al. | Oct 2020 | A1 |
20200341124 | Yu et al. | Oct 2020 | A1 |
20200400798 | Rezk et al. | Dec 2020 | A1 |
20210088630 | Zhang | Mar 2021 | A9 |
Number | Date | Country |
---|---|---|
204216401 | Mar 2015 | CN |
204758260 | Nov 2015 | CN |
204885804 | Dec 2015 | CN |
107664763 | Feb 2018 | CN |
108132472 | Jun 2018 | CN |
207457508 | Jun 2018 | CN |
207557465 | Jun 2018 | CN |
208314210 | Jan 2019 | CN |
208421228 | Jan 2019 | CN |
208705506 | Apr 2019 | CN |
106597471 | May 2019 | CN |
209280923 | Aug 2019 | CN |
108445468 | Nov 2019 | CN |
110031823 | Mar 2020 | CN |
108089201 | Apr 2020 | CN |
109116331 | Apr 2020 | CN |
109917408 | Apr 2020 | CN |
109116366 | May 2020 | CN |
109116367 | May 2020 | CN |
110031822 | May 2020 | CN |
211655309 | Oct 2020 | CN |
109188397 | Nov 2020 | CN |
109814086 | Nov 2020 | CN |
109917348 | Nov 2020 | CN |
110492856 | Nov 2020 | CN |
110736975 | Nov 2020 | CN |
109725320 | Dec 2020 | CN |
110780284 | Dec 2020 | CN |
110780283 8 | Jan 2021 | CN |
110784220 | Feb 2021 | CN |
212623082 | Feb 2021 | CN |
110492349 | Mar 2021 | CN |
109950784 | May 2021 | CN |
213182011 | May 2021 | CN |
213750313 | Jul 2021 | CN |
214151038 | Sep 2021 | CN |
109814082 | Oct 2021 | CN |
113491043 | Oct 2021 | CN |
214795200 | Nov 2021 | CN |
214795206 0 | Nov 2021 | CN |
214895784 | Nov 2021 | CN |
214895810 | Nov 2021 | CN |
215641806 | Jan 2022 | CN |
112639527 | Feb 2022 | CN |
215932142 | Mar 2022 | CN |
112578396 | Apr 2022 | CN |
0 757 257 | May 2002 | EP |
1 923 721 | May 2008 | EP |
2 157 445 | Feb 2010 | EP |
2 395 368 | Dec 2011 | EP |
2 889 642 | Jul 2015 | EP |
1 427 164 | Mar 1976 | GB |
2000411 | Jan 1979 | GB |
2007144667 | Jun 2007 | JP |
2010035385 | Feb 2010 | JP |
2012-26921 | Feb 2012 | JP |
2017-003347 | Jan 2017 | JP |
2017-138301 | Aug 2017 | JP |
10-2012-0013515 | Feb 2012 | KR |
10-2013-0068224 | Jun 2013 | KR |
10-2018-0107673 | Oct 2018 | KR |
2017110417 | Jun 2017 | WO |
2018125725 | Jul 2018 | WO |
2018129410 | Jul 2018 | WO |
2018129408 | Jul 2018 | WO |
2018129409 | Jul 2018 | WO |
2018175990 | Sep 2018 | WO |
2018182812 | Oct 2018 | WO |
2019079642 | Apr 2019 | WO |
WO2019165095 | Aug 2019 | WO |
WO2019165289 | Aug 2019 | WO |
WO2019165294 | Aug 2019 | WO |
2020013890 | Jan 2020 | WO |
Entry |
---|
Laser damage threshold—Galvo Mirror vs Polygon mirror (Year: 2021). |
Parabolic Mirror: How It Works & Types (w/ Examples (Year: 2021). |
Mirror (Year: 2021). |
Chen, X, et al. (Feb. 2010). “Polarization Coupling of Light and Optoelectronics Devices Based on Periodically Poled Lithium Niobate,” Shanghai Jiao Tong University, China, Frontiers in Guided Wave Optics and Optoelectronics, 24 pages. |
Goldstein, R. (Apr. 1986) “Electro-Optic Devices in Review, The Linear Electro-Optic (Pockels) Effect Forms the Basis for a Family of Active Devices,” Laser & Applications, FastPulse Technology, Inc., six pages. |
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority, mailed Sep. 18, 2018, for PCT Application No. PCT/US2018/12116, filed Jan. 2, 2018, 11 pages. |
International Preliminary Report on Patentability, and Written Opinion dated Jul. 9, 2019, for PCT Application No. PCT/US2018/012703, filed Jan. 5, 2018, 10 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for PCT Application No. PCT/US2018/012704, filed Jan. 5, 2018, 7 pages. |
International Preliminary Report on Patentability, dated Jul. 9, 2019, for PCT Application No. PCT/US2018/012705, filed Jan. 5, 2018, 7 pages. |
International Search Report and Written Opinion, dated Jul. 9, 2019, for PCT Application No. PCT/US2019/18987, 17 pages. |
International Search Report and Written Opinion, dated May 3, 2019, for PCT Application No. PCT/US2019/19272, 16 pages. |
International Search Report and Written Opinion, dated May 6, 2019, for PCT Application No. PCT/US2019/19264, 15 pages. |
International Search Report and Written Opinion, mailed Jan. 3, 2019, for PCT Application No. PCT/US2018/056577, nine pages. |
International Search Report, mailed Jun. 7, 2018, for PCT Application No. PCT/US2018/24185, filed Mar. 23, 2018, 2 pages. |
International Search Report, mailed Mar. 19, 2018, for PCT Application No. PCT/US2018/012705, filed Jan. 5, 2018, 2 pages. |
International Search Report, mailed Mar. 20, 2018, for PCT Application No. PCT/US2018/012703, filed Jan. 5, 2018, 2 pages. |
International Search Report, mailed Mar. 23, 2018, for PCT Application No. PCT/US2018/012704, filed Jan. 5, 2018, 2 pages. |
International Search Report, mailed Sep. 18, 2018, for PCT Application No. PCT/US2018/12116, filed Jan. 2, 2018, 2 pages. |
Written Opinion of the International Searching Authority, mailed Jun. 7, 2018, for PCT Application No. PCT/US2018/24185, filed Mar. 23, 2018, 5 pages. |
Written Opinion of the International Searching Authority, mailed Mar. 19, 2018, for PCT Application No. PCT/US2018/012705, filed Jan. 5, 2018, 6 pages. |
Written Opinion of the International Searching Authority, mailed Mar. 20, 2018, for PCT Application No. PCT/US2018/012703, filed Jan. 5, 2018, 9 pages. |
Written Opinion of the International Searching Authority, mailed Mar. 23, 2018, for PCT Application No. PCT/US2018/012704, filed Jan. 5, 2018, 6 pages. |
EP2889642 Description translation, created Oct. 3, 2020 from application dated Nov. 11, 2014, 27 pp. (Year: 2020). |
European Search Report, dated Jul. 17, 2020, for EP Application No. 18776977.3, twelve pages. |
Extended European Search Report, dated Jul. 10, 2020, for EP Application No. 18736738.8, nine pages. |
Extended European Search Report, dated Jul. 22, 2020, for EP Application No. 18736685.1, ten pages. |
Final Office Action mailed Oct. 8, 2020, for U.S. Appl. No. 15/857,563, filed Dec. 28, 2017, thirteen pages. |
Gunzung, Kim, et al. (Mar. 2, 2016). “A hybrid 3D LIDAR imager based on pixel-by-pixel scanning and DS-OCDMA,” Proceedings of SPIE; [Proceedings of SPIE ISSN 0277-786X vol. 10524], SPIE, US, vol. 9751, pp. 975119-1-975119-8. |
International Preliminary Report on Patentability mailed Apr. 30, 2020, for PCT Application No. PCT/US2018/056577, eight pages. |
J. Gluckman. (May 13, 2016). “Design of the processing chain for a high-altitude, airborne, single-photon lidar mapping instrument,” Proceedings of SPIE; [Proceedings of SPIE ISSN 0277-786X vol. 10524], SPIE, US, vol. 9832, pp. 983203-983203. |
Non-Final Office Action mailed Apr. 1, 2020, for U.S. Appl. No. 15/857,566, filed Dec. 28, 2017, twenty one pages. |
Non-Final Office Action mailed Apr. 30, 2020, for U.S. Appl. No. 15/860,598, filed Jan. 2, 2018, thirteen pages. |
Non-Final Office Action mailed Jun. 2, 2020, for U.S. Appl. No. 15/934,807, filed Mar. 23, 2018, thirteen pages. |
Non-Final Office Action mailed Mar. 26, 2020, for U.S. Appl. No. 15/857,563, filed Dec. 28, 2017, twenty three pages. |
Non-Final Office Action mailed Mar. 30, 2020, for U.S. Appl. No. 15/863,695, filed Jan. 5, 2018, eight pages. |
International Search Report and Written Opinion, dated Jan. 17, 2020, for PCT Application No. PCT/US19/19276, 14 pages. |
Non-Final Office Action mailed Dec. 16, 2020, for U.S. Appl. No. 15/857,566, filed Dec. 28, 2017, eight pages. |
Notice of Allowance malled Dec. 2, 2020, for U.S. Appl. No. 15/863,695, filed Jan. 5, 2018, five pages. |
Notice of Allowance, (corrected) mailed Jan. 8, 2021, for U.S. Appl. No. 15/863,695, filed Jan. 5, 2018, two pages. |
Non-Final Office Action mailed Feb. 18, 2021, for U.S. Appl. No. 15/860,598, filed Jan. 2, 2018, thirteen pages. |
Notice of Allowance mailed Mar. 26, 2021, for U.S. Appl. No. 15/857,566, filed Dec. 28, 2017, ten pages. |
“Mirrors”, Physics LibreTexts, https://phys.libretexts.org/Bookshelves/Optics/Supplemental_Modules_(Components)/Mirrors, (2021), 2 pages. |
“Why Wavelengths Matter in Fiber Optics”, FirstLight, https://www.firstlight.net/why-wavelengths-matter-in-fiber-optics/, (2021), 5 pages. |
Johnson, Lee., “Parabolic Mirror: How It Works & Types (w/ Examples)”, https://sciencing.com/parabolic-mirror-how-it-works-types-w-examples-diagram-13722364.html, Dec. 28, 2020, 14 pages. |
Helser, George., “Laser damage threshold—Galvo Mirror vs Polygon mirror”, https://precisionlaserscanning.com/2016/03/laser-damage-threshold-galvo-mirror-vs-polygon-mirror/, Mar. 25, 2016, 4 pages. |
Office Action issued in Japanese Patent Application No. 2019-536925 dated Nov. 9, 2021, 8 pages. |
“Fiber laser,” Wikipedia, https://en.wikipedia.org/wiki/Fiber_laser, 6 pages. |
European Search Report, dated Jun. 17, 2021, for EP Application No. 18868896.4, 7 pages. |
Office Action Issued in Japanese Patent Application No. 2019-536019, dated Nov. 30, 2021, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20190257924 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62634084 | Feb 2018 | US |