The invention relates to a receiver and to a method for operating said receiver.
In order to reduce deployment costs of optical transmission systems it is important to design systems that are robust against transmission impairments.
One particular example of detrimental transmission impairment is chromatic dispersion. Various techniques are used commercially for chromatic dispersion compensation, e.g., in-line compensation of chromatic dispersion between fiber spans.
Another issue is residual dispersion compensation, e.g., a compensation at the receiver. Small residual dispersion implies extensive dispersion map design thereby increasing the overall system costs. In order to compensate residual dispersion either advanced modulation formats, optical tunable dispersion compensation (TDC) or electrical signal processing can be used.
For transmission systems providing 40 Gb/s to 100 Gb/s per wavelength channel, advanced optical modulation techniques are used. For 40 Gb/s applications transmission modulation formats such as Duobinary and, more recently, differential phase shift keying (DPSK) are used as well as optical TDC.
Electrical signal processing is currently not utilized at transmission rates in the order of 40 Gb/s because of the limited performance of the electrical components, most notably the required analog-to-digital converters.
Hence, for 40 Gb/s applications either an optical TDC or a dispersion tolerant modulation format is applied to increase the residual dispersion tolerance.
Transponders allowing a data rate of 10 Gb/s per wavelength channel still constitute the largest share of deployed systems. As 10 Gb/s transponders are engineered for cost-effectiveness, utilizing advanced modulation formats or optical TDC is hence deemed to be too expensive. For such 10 Gb/s systems, legacy on-off-keying (OOK), in some cases Duobinary modulation, are the mostly applied modulation techniques.
Improvements in the field of electrical signal processing allowed the use of cost-effective electronic distortion compensation, most notably a maximum likelihood sequence estimation (MLSE). MLSE estimates the received data by computing a probability that a certain sequence is received, instead of computing the probability of a single bit. This can significantly improve the dispersion tolerance when combined with on-off-keying. Duobinary modulation is an alternative to improve the dispersion tolerance as it can still be realized cost-effectively and has an inherently higher dispersion tolerance compared with on-off keying.
The reach of optical transmission systems is another key issue as the use of electrical regenerators is not desirable from a cost perspective. A large number of design parameters influence the reach of a transmission system, however two of the most important parameters are the optical signal-to-noise ratio (OSNR) requirement and nonlinear tolerance of the optical modulation format. An improvement in either the nonlinear tolerance or the OSNR tolerance is therefore required hence increasing the margins available for system design.
It is a major drawback of the Duobinary modulation that it requires a higher OSNR than on-off keying (by about a 3 dB), thereby limiting the transmission distance.
A promising modulation format to improve system reach is differential phase shift keying (DPSK). DPSK modulation encodes the information not in the amplitude but in the (differential) phase of the optical signal. A DPSK signal contains an optical pulse in each bit slot (see
In order to detect the information with a photodiode the information is converted from the phase to the amplitude domain using a Mach-Zehnder delay interferometer (MZDI), as shown in
The choice of modulation format depends on a large number of requirements, with the allowable system reach and robustness against chromatic dispersion being two important parameters.
For low-cost transmission systems it has been difficult to find a modulation format that fulfils both requirements at the same time. On-off keying modulation combined with an MLSE-enabled receiver is therefore still a good choice for a low-cost 10 Gb/s transponder. To further increase the chromatic dispersion tolerance Duobinary modulation with MLSE has been used. Increasing the system reach has however been difficult so far as MLSE detection does not increase the system reach and Duobinary modulation actually decreases it. Currently, DPSK modulation seems to be the only feasible alternative to OOK/Duobinary from a complexity/cost point-of-view. But the chromatic dispersion tolerance of DPSK (with and without MLSE) is significantly lower than the chromatic dispersion tolerance of either Duobinary or OOK+MLSE which makes it a less attractive choice.
The problem to be solved is to overcome the disadvantages as stated before and in particular to provide an approach that allows an efficient as well as cost-effective solution regarding a system reach and robustness against chromatic dispersion.
This problem is solved according to the features of the independent claims. Further embodiments result from the depending claims.
In order to overcome this problem, a receiver is provided comprising
In particular, the delay of the phase demodulator amounting to less than 1 bit results in a better robustness against chromatic dispersion.
It is noted that this concept can be implemented with differential quadrature phase shift keying (DQPSK).
In an embodiment, the phase demodulator comprises a Mach-Zehnder delay interferometer (MIDI).
In another embodiment, the electronic dispersion compensation (EDC) comprises a digital or an analog signal processing unit.
In a further embodiment, the electronic dispersion compensation comprises a maximum likelihood sequence estimation (MLSE).
In a next embodiment, the electronic dispersion compensation comprises at least one digital or analog filter structure. Preferably, the at least one filter structure comprises at least one linear finite impulse response (FIR)-Filter and/or at least one nonlinear FIR-Filter.
It is also an embodiment that the receiver comprises a unit for converting optical signals to electrical signals. Further, the unit for converting optical signals to electrical signals may comprise a differential input stage. In particular, this unit may comprise one optical converter or two optical converters, wherein each the optical converter may comprise at least one photo diode.
Pursuant to another embodiment, the receiver can be utilized in an optical network. Said receiver can be in particular located as a separate optical component or it may be located within an optical component.
According to another embodiment, the delay of the phase demodulator is adjustable.
In particular, the delay of the MZDI can be adjustable.
According to a further embodiment, the receiver is arranged to determine a residual dispersion and to utilize such residual dispersion for adjusting the delay of the phase demodulator.
According to yet an embodiment, the residual dispersion is determined based on histograms that are in particular processed by a maximum likelihood sequence estimation.
According to an embodiment, the residual dispersion is determined during card design and/or during card calibration, such residual dispersion being in particular stored in at least one lookup-table.
The problem stated above is also solved by a method for operating said receiver.
The problem mentioned above may in particular be solved by a method for adjusting a delay of or in a phase demodulator, wherein the phase demodulator in particular being a MZDI. Said adjustment or configuration may in particular be based on an assessment of a residual dispersion. Such residual dispersion may be determined based on histograms that are in particular processed by a maximum likelihood sequence estimation. In addition or as an alternative, the residual dispersion may be determined during card design and/or during card calibration, such residual dispersion being in particular stored in at least one lookup-table.
It is further noted that by dynamically changing the delay the sensitivity can be enhanced in particular by setting a delay value that allows for a trade-off between a loss in sensitivity and a CD tolerance (depending, e.g., on the amount of cumulated CD).
Embodiments of the invention are shown and illustrated in the following figures:
In order to achieve a combination of long reach and high chromatic dispersion tolerance this approach in particular combines DPSK with MLSE and optimizes a Mach-Zehnder delay interferometer (MZDI) phase demodulation at the receiver such that the phase demodulator comprises a delay that is less than 1 bit.
Using a MZDI with a bit-delay of less than 1 bit the narrow-band filtering tolerance can be significantly improved.
This is in particular important for 40 Gb/s DPSK applications as the penalties arising from narrowband filtering can be dominant in that case.
The approach presented advantageously shows that the performance improvement may be significantly larger for the combination of both technologies in comparison to using each of them separately. DPSK with a MLSE receiver and optimized phase demodulator can therefore be a feasible alternative for robust 10 Gb/s transponders as it combines a long reach with a favorable dispersion tolerance.
According to
In typical receiver designs for DPSK signals, the delay of the MZDI equals approximately a duration of 1 bit. This parameter value may provide an optimum performance at vanishing dispersion (back-to-back performance), hence the required OSNR is at a minimum. However, a back-to-back performance may deteriorate if the delay is reduced. The differences with respect to the required OSNR decrease if the residual dispersion increases up to a value of, e.g., 1200 ps/nm. The situation changes if the residual dispersion exceeds this value. Then, an improved performance is achieved at smaller delays and the differences for various designs increase with an increasing dispersion.
Such results are in particular applicable for hard decision, but the general behavior may not change if soft decision is used. The only effect of MLSE is that the dispersion tolerance is further increased for delays smaller than 1 bit.
In summary, best performance may be achieved with a delay of 1 bit for small dispersion values, whereas reducing the delay of the MZDI helps to improve the performance at larger dispersion values. Hence, the receiver is preferably arranged in a way or equipped with a MZDI allowing for an adjustable delay.
Such delay may in particular be continuously adjustable. Preferably, two different delays may suffice: A large delay for small dispersion values and a smaller one for larger dispersion.
Hence, logistics can be simplified as only one single part number is required. The easiest possibility for setting the delay is utilizing information provided by a planning or network management tool.
However, in cases without any dispersion information being available or with inaccurate dispersion information a predefined delay may not achieve adequate results.
Thus, a significantly improved performance can be achieved if the receiver is able to automatically detect a residual dispersion and adjust said delay accordingly. The information required may be derived from histograms that are internally calculated by the MLSE.
At vanishing dispersion, two classes of bit patterns may be distinguished: Bit patterns of a first class lead to large probabilities for bins with small numbers, whereas a second class comprises zero probabilities for the first bins and larger probabilities for bins with larger numbers. In contrast, the probability patterns are different for all bit patterns considered in case of a dispersion of 2000 ps/nm.
Comparing the probabilities for different bit patterns allows estimating the residual dispersion. It is thus suggested determining the patterns for different values of the dispersion during card design (typical values) or during card calibration (card specific values) and storing them in a lookup table.
The residual dispersion may be determined, e.g., by calculating correlation coefficients of the actual patterns with the stored pattern and by choosing the dispersion value that provides the best correlation for most bit patterns. Another way for determining the dispersion value is by means of interpolation.
The combination of DPSK modulation with optimized phase demodulation and a MLSE receiver provides both an excellent reach (e.g., nonlinear tolerance and OSNR sensitivity) and chromatic dispersion tolerance.
This technology can help to increase the robustness of trans-mission systems in particular in the range of 10 Gb/s while keeping transponder complexity at an acceptable and cost-efficient level.
The approach provided can be used to increase the maximum transmission distance of WDM systems or to allow for a significant reduction of costs. An improvement can be achieved if the residual dispersion is different for various WDM receivers. This applies, e.g., in systems using dispersion shifted fibers without dispersion compensation or if dispersion compensation modules are used that are not optimized for a dispersion slope of the transmission fiber.
The aim of a pre-emphasis algorithm implemented in WDM systems is to adjust the powers of the transmitters in such a way that the receivers reach the substantially same OSNR. This, however, does not lead to identical bit error rates for different residual dispersion values. Identical bit error rates can be achieved by increasing the transmitter powers of channels suffering from dispersion at the expense of other channels. As a result, channels with higher dispersion get higher OSNR and the others obtain lower OSNR.
The above described allows determining reliable information on the residual dispersion for the transmission system, said information being utilized for such an algorithm used for setting the delay of the MZDI.
CD chromatic dispersion
DPSK differential phase shift keying
DQPSK differential quadrature phase shift keying
MLSE maximum likelihood sequence estimation
MZDI Mach-Zehnder delay interferometer
OOK on-off-keying
OSNR optical signal-to-noise ratio
TDC tunable dispersion compensation
Number | Date | Country | Kind |
---|---|---|---|
07017416.4 | Sep 2007 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/61244 | 8/27/2008 | WO | 00 | 3/25/2010 |