This invention relates to a radio receiver, and more particularly to a receiver for use in a wireless communications system. More particularly, the invention relates to a system and a method for canceling the effect of an interfering signal from a received signal, in an Ultra Wideband wireless communications system, or another wireless communications system which is subject to interference from interfering signals having much narrower bandwidths than the wanted signal.
The term Ultra Wideband is used to refer to a number of different wireless communications systems. In one form of Ultra Wideband (UWB) communications system, data is sent from a transmitter to a receiver. Another form of UWB system can be used for object location or positioning, by transmitting signals from a device, and detecting reflected signals in a receiver within the same device.
One of the features of UWB communications systems is that signals are transmitted using a wide bandwidth. One problem which can arise with UWB communications systems is that an interfering signal, from another source of radio frequency signals, can potentially make it impossible for a receiver to detect the transmitted signal accurately.
Within the receiver, therefore, it is advantageous to be able to detect and then compensate for such interfering signals. In the document ‘A Novel Approach to In-Band Interference Mitigation in Ultra Wide Band Radio Systems’, Baccarelli, et al., IEEE Conference on Ultra Wideband Systems and Technologies, 2002, one possible solution to this problem is presented.
Specifically, in this document, it is proposed that the received signal be sampled, and then analyzed in the frequency domain. It is then proposed that interfering signals be detected, by examining the slope of the received signal spectrum, to test for sharp changes in the slope.
Once one or more interfering signals has been detected by this technique, the prior art document proposes generating a cancellation signal, which is equal and opposite to the estimated interfering signal. The document then proposes that this cancellation signal be sampled and added to the samples of the received signal in the time domain, before the signal is further processed.
According to the present invention, an interfering signal is detected in the frequency domain and, moreover, the cancellation also takes place in the frequency domain. If further processing of the signal is to be carried out in the time domain, then the resulting signal can be converted back into the time domain.
This has the advantage that the cancellation in the frequency domain also provides a way of estimating the magnitude of the interfering signal, and hence also allows the wanted signal, at the frequency of the interfering signal, to be estimated.
In the drawings:
The quantized received signals are passed to a digital signal processor (DSP) 22.
As will be described in more detail below, the DSP 22 is able to detect and cancel narrowband interfering signals. In accordance with the invention, this detection and cancellation take place in the frequency domain. The DSP 22 is therefore adapted to perform a frequency transformation on the quantized samples. In this illustrated embodiment of the invention, the frequency transformation is a digital Fast Fourier Transform (FFT) function.
In this illustrated embodiment of the invention, the samples are passed to a buffer memory 24, and then to a windowing block 26, before being passed to the FFT block 28. The person skilled in the art will recognize that the buffer memory and windowing block, although advantageous, are not essential features. The frequency transformed signal is passed to an interferer identification block 30, in which any narrowband interfering signals can be detected. The frequency transformed signal is also passed to a spectrum modification block 32. On the basis of any interfering signal detected in the interferer identification block 30, the spectrum modification block 32 adjusts the frequency transformed signal, which was generated by the FFT block 28. It is this modified signal which is then optionally passed to an inverse FFT (IFFT) block 34, for conversion back to the time domain.
The resulting signal is then passed to a signal processing block 36, where conventional functions are performed, such as pulse detection and timing extraction. The signal processing block 36 then operates to control the timing generator 18, so that the sampler 16 operates with the correct timing. The signal processing block 36 also extracts the transmitted data from the received signal.
Where the further processing of the signal is to be performed in the frequency domain, the modified signal, produced by the spectrum modification block 32, can be supplied to a suitable signal processing block.
Specifically,
It can be seen from
This leads to the clear conclusion that this is the result not of the transmitted signal, but of a narrowband interfering signal at the frequency corresponding to bin N.
More generally, narrowband interfering signals can be detected in specific frequency bins by identifying bins in which the signal level exceeds a particular threshold value. This threshold value could for example be set with reference to the average value of the signal level over all of the frequency bins. That is, the threshold value could be set to exceed this average value by some amount, or by some percentage. Alternatively, the threshold value could be set at a predetermined value, for example set with reference to the maximum signal level, which can be handled by the system. Further, the threshold value could vary with frequency.
For example, in UWB communications systems, the shape of the frequency spectrum of the wanted signal is often known. In such cases, the threshold value can be set so that it follows the same shape.
In step 54, therefore, the effect of the interfering signal is cancelled. More specifically, the point in frequency bin N at power level S3, namely the black rectangle indicated in
However, other possibilities exist for the selection of the replacement point. For example, rather than setting the replacement point at a level which is the average of the signal levels in the two immediately adjacent frequency bins, it can be set by interpolation between the signal levels in any number of adjacent frequency bins.
Further, as discussed above, in UWB communications systems, the shape of the frequency spectrum of the wanted signal is often known. In such cases, the signal level of the replacement point can be set accurately to the correct level by examining the signal levels in adjacent frequency bins, for example using a Least Mean Square (LMS) algorithm.
Thus, this allows for cancellation of interfering signals.
In the bin select block 90, those bins corresponding to a first frequency band are passed to a first path 92, and frequency bins corresponding to other frequency bands are passed to other corresponding paths. In this case only one other path 94 is shown, although it will be appreciated by the person skilled in the art that, in a multiband UWB system the spectrum may be divided into any convenient number of frequency bands.
In each of the paths 92, 94, respective interferers are then detected and cancelled as described above. Thus, in the first path 92, the spectrum is passed to an interferer identification block 96, and to a spectrum modification block 98, in which any point which results from the presence of an interferer is replaced by a point corresponding to the expected signal level value in that bin. As before, the modified spectrum is then passed to an IFFT block 100, and then to a signal processing block 102, for further signal processing functions, such as pulse detection, to be performed.
Similarly, in the path 94, the spectrum is passed to an interferer identification block 104, and to a spectrum modification block 106, in which any point which results from the presence of an interferer is replaced by a point corresponding to the expected signal level value in that bin. As before, the modified spectrum is then passed to an IFFT block 108, and then to a signal processing block 110, for further signal processing functions, such as pulse detection, to be performed, in the case where such signal processing is to be performed in the time domain.
A further modification of this alternative embodiment of the invention is possible. Specifically, the receiver of
There is therefore proposed a receiver architecture which allows for cancellation of narrowband interfering signals, entirely in the frequency domain.
Number | Date | Country | Kind |
---|---|---|---|
04101810.2 | Apr 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/51343 | 4/25/2005 | WO | 10/25/2006 |