The present disclosure relates to low noise amplifiers, and more particularly, the disclosure relates to multi-stage low noise amplifier that optimizes the receiver performance, e.g., either noise figure or linearity, or both.
Digital video broadcasting (DVB) is becoming more popular as technology improves for digital television. DVB uses multiple ways of distributing data, such as, satellite, cable, terrestrial television, digital terrestrial television for handhelds, and microwave signals. Many DVB systems use receivers and rely on the performance of the receivers to operate at a satisfactory level. One of the common components in the receivers is a low noise amplifier, the design of which can be improved to obtain better noise figure and linearity of the receiver.
A receiver having multi-stage low noise amplifier is provided. In this regard, a representative receiver, among others, includes at least one antenna and a filter that receives and filters signals from the at least one antenna. The filtered signals include a first frequency band signal and a second frequency band signal. The receiver further includes a multi-stage low noise amplifier that receives the filtered signals from the filter. The multi-stage low noise amplifier includes a first stage low noise amplifier that receives and performs impedance matching for the first frequency band signal and second frequency band signal. The multi-stage low noise amplifier further includes a second stage low noise amplifier that receives the first frequency band signal and second frequency band signal. The second stage low noise amplifier includes load resistors that switch off for the first frequency band signal and switch on for the second frequency band signal based on receiving either the first frequency band signal or second frequency band signal.
The present invention can also be viewed as providing methods for providing a receiver having multi-stage low noise amplifier. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: connecting at least one antenna to a filter that receives and filters signals from the at least one antenna, the filtered signals including a first frequency band signal and a second frequency band signal; connecting the filter to a multi-stage low noise amplifier that receives the filtered signals from the filter; performing impedance matching for the first frequency band signal and second frequency band signal by a first stage low noise amplifier of the multi-stage low noise amplifier; sending the first frequency band signal and second frequency band signal to a second stage low noise amplifier, the second stage low noise amplifier including load resistors that switch off for the first frequency band signal and switch on for the second frequency band signal; and switching on or off the load resistors based on receiving either the first frequency band signal or second frequency band signal.
Other systems, methods, features, and advantages of the present invention will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Exemplary systems are first discussed with reference to the figures. Although these systems are described in detail, they are provided for purposes of illustration only and various modifications are feasible.
The phase shifters 133 send the phase shifted signals to the mixers 125. Each mixer 125 combines the respective phased shifted signals into one composite output signal and sends the respective combined signals to respective intermediate frequency (IF) amplifiers 135, each of which amplifies the respective combined signals and sends them to low pass filters 140. Such low pass filters 140 pass low-frequency signals from the respective combined signals to respective programmable gain amplifier 145; but attenuate signals with frequencies higher than a cutoff frequency. The programmable gain amplifiers 145 amplify the respective filtered low-frequency signals and send the signals to analog-to-digital converters 150.
Cs1240 and Cs2250 are inter-stage alternating current coupling capacitors. The single-ended to differential-ended conversion can be performed from the first stage low noise amplifier 202 to second stage low noise amplifier 204. The first stage low noise amplifier 202 can reuse the current from the second stage low noise amplifier 120 based on whether interferers are detected (preferably zero or little interference). If interferers are detected, the first stage and second stage low noise amplifiers 202, 204 can use separate power supply; thus achieving higher linearity. The second stage low noise amplifier 204 receives and detects the first frequency band signal and second frequency band signal. The load resistors Rs 215, 220 can switch off for L-band signal path and switch on for UHF/VHF signal path based on receiving either the L-band signal or UHF/VHF signal, respectively. The second stage low noise amplifier 204 outputs L-band signal path and UHF/VHF signal path at RFoutn and RFoutp, respectively.
In
This description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiments discussed, however, were chosen to illustrate the principles of the disclosure, and its practical application. The disclosure is thus intended to enable one of ordinary skill in the art to use the disclosure, in various embodiments and with various modifications, as is suited to the particular use contemplated. All such modifications and variations are within the scope of this disclosure, as determined by the appended claims when interpreted in accordance with the breadth to which they are fairly and legally entitled.
Number | Name | Date | Kind |
---|---|---|---|
5012244 | Wellard et al. | Apr 1991 | A |
5289420 | Neu | Feb 1994 | A |
6111606 | Ikeda | Aug 2000 | A |
6316997 | Tammone, Jr. | Nov 2001 | B1 |
6411892 | Van Diggelen | Jun 2002 | B1 |
6417801 | Van Diggelen | Jul 2002 | B1 |
6429814 | Van Diggelen et al. | Aug 2002 | B1 |
6453237 | Fuchs et al. | Sep 2002 | B1 |
6484097 | Fuchs et al. | Nov 2002 | B2 |
6487499 | Fuchs et al. | Nov 2002 | B1 |
6510387 | Van Diggelen | Jan 2003 | B2 |
6542820 | LaMance et al. | Apr 2003 | B2 |
6560534 | Abraham et al. | May 2003 | B2 |
6583661 | Tanji et al. | Jun 2003 | B1 |
6606346 | Abraham et al. | Aug 2003 | B2 |
6677735 | Xi | Jan 2004 | B2 |
6704651 | Van Diggelen | Mar 2004 | B2 |
7075374 | Revanna | Jul 2006 | B2 |
7084707 | Razavi et al. | Aug 2006 | B2 |
7173460 | Jaussi et al. | Feb 2007 | B2 |
7474158 | Yim et al. | Jan 2009 | B1 |
7486135 | Mu | Feb 2009 | B2 |
7782136 | Kocaman et al. | Aug 2010 | B2 |
7839218 | Shimamoto et al. | Nov 2010 | B2 |
7860454 | Moloudi et al. | Dec 2010 | B2 |
7983637 | Kayano | Jul 2011 | B2 |
7986927 | Nakajima et al. | Jul 2011 | B2 |
7994878 | Isobe et al. | Aug 2011 | B2 |
7995977 | Kim et al. | Aug 2011 | B2 |
Number | Date | Country | |
---|---|---|---|
20100141341 A1 | Jun 2010 | US |