This application claims the benefit of European Patent Application Serial No. EP 15181573.5, filed Aug. 19, 2015, and titled “Receiver Unit With Enhanced Frequency Response,” which is incorporated herein by reference in its entirety.
The present invention relates to a receiver unit having an enhanced frequency response. In particular, the present invention relates to a balanced armature type receiver unit having a membrane arrangement comprising a plurality of membranes in order to enhance the frequency response in selected frequency ranges. The enhanced frequency response is provided since each membrane has its own and unique frequency response that adds to the total output signal of the receiver unit.
The frequency response of miniature receiver units is often limited. This applies in principle for all frequency responses, including both the high- and low-frequency response.
As an example, it is well-known that due to the limited membrane area as well as the limited stroke length the low-frequency response from miniature receiver units in open fittings is often rather weak. In order to improve and thereby increase this low-frequency response either the membrane area or the stroke length, or preferably both, must be increased.
Hearing aid receiver units are however often used in hearing aid instruments where the available space is very limited. An example of such a hearing aid instrument is the one being denoted receiver-in-canal (RIC) where the hearing aid receiver is positioned inside the ear canal of the user of the hearing aid instrument. Obviously, by positioning the hearing aid receiver inside the ear canal of the user puts high demands on the allowable outer dimensions of the receiver.
It may be seen as an object of embodiments of the present invention to provide a receiver unit having an enhanced frequency response.
It may be seen as a further object of embodiments of the present invention to provide a receiver unit having an enhanced low-frequency response without increasing the outer dimensions of the receiver unit significantly.
It may be seen as an even further object of embodiments of the present invention to provide an armature type receiver unit having an enhanced low-frequency response without increasing the outer dimensions of the receiver unit significantly.
The above-mentioned objects are complied with by providing, in a first aspect, a receiver unit comprising (a) a plurality of moveable membranes, (b) a motor assembly being adapted to drive a first moveable membrane and one or more successive moveable membranes in accordance with an incoming electrical drive signal, and wherein the first and at least one of the successive moveable membranes have different frequency responses.
Thus, the present invention relates to a receiver unit being able to generate audio sound in response to an incoming electrical signal.
In the following a receiver unit comprising a first movable membrane and a single successive membrane will be discloses. It should be noted, however, that a plurality of successive moveable membranes may be provided instead.
The first moveable membrane in combination with the successive moveable membrane provides that an enhanced frequency response may be achieved. In the present context the term “enhanced frequency response” is here to be understood as a modified frequency response compared to a single membrane receiver unit. An enhanced frequency response may, for example, be provided by modifying the high- and/or low-frequency response of the receiver unit. One way to provide this modified frequency response may involve that the first and the successive membranes are different, such as different in sizes, different displacement, different materials etc.
The receiver unit of the present invention is of particular relevance in connection with applications where only a limited amount of space is available. Such applications may include RIC type hearing aid instruments.
The motor assembly may in principle be any kind of suitable motor assembly. Preferably, the motor assembly comprises a moving armature type motor, such as a balanced moving armature type motor.
In order to drive and thereby move the first and the successive membranes, the moving armature of the motor assembly may be mechanically connected to the first and the successive moveable membranes. Thus, a movement or displacement of the moving armature causes a movement of the first and the successive membranes.
In an embodiment of the present invention the moving armature may be mechanically connected to the first moveable membrane via a substantially stiff connection. Such mechanically stiff connection may involve a stiff metal drive pin or rod. The first moveable membrane may in this embodiment comprise a resonating element to which the mechanically stiff connection is secured.
In addition, the moving armature may be mechanically connected to the successive moveable membrane via another resonating element comprised within the mechanical connection between the moving armature and the successive moveable membrane.
Resonating elements may involve a string element, such as an extension spring.
The respective mechanical connections from the first and successive membranes may be secured to the moving armature at a distal end thereof. Here, the distal end of the moving armature should be understood as the free end of the moving armature, i.e. opposite to the end at which the moving armature is hinged or by other means fixated. The moving armature may take the shape of a substantially linear structure which may be hinged at one end and free to more at the other end. Alternatively, the moving armature may be formed as a U-shaped armature structure where one end of one of the legs may be free to move.
In order to adapt the frequency response the successive moveable membrane may be adapted to resonate at another frequency compared to the first moveable membrane. The mass of the successive movable membrane itself as well as the compliance and resistance of the suspension member of the successive movable membrane may ensure that such different resonance frequency is provided. Also, the resonating element positioned in the mechanical connection between the moving armature and the successive movable membrane may course that a different resonance frequency is provided.
In the following, the terms back volume and front volume are defined as follows: (i) a back volume is located on that side of a membrane where the driving force is applied, i.e. typically on that side of the membrane where the motor assembly is positioned, and (ii) a front volume is located on the free side of a membrane, i.e. the side where the driving force is not applied.
Both front and back volumes, as well as combinations thereof, may have one or more acoustical openings thereby forming open front/back volumes. In the present context, an acoustical opening is an opening to the outside of the receiver.
Within the receiver unit of the present invention at least one back volume may be associated with each of the first and successive moveable membranes. Each of these back volumes may comprise an acoustical opening, said acoustical openings being acoustically connected to a sound outlet opening of the receiver unit. Thus, prior to leaving the receiver unit pressurized air from the two back volumes are mixed in a combined back volume which is acoustically connected to the sound outlet opening of the receiver unit. The motor assembly may be positioned within the combined back volume.
Similarly, the receiver unit of the present invention may comprise at least one front volume associated with each of the first and successive moveable membranes. Each of these front volumes may comprise an acoustical opening which is acoustically connected to the sound outlet opening of the receiver unit via a combined front volume.
The audio output signal from the receiver unit may enter an acoustical filter unit. In a second aspect the present invention relates to a hearing aid instrument comprising a receiver unit according to the first aspect. The hearing aid instrument may in principle be any kind of hearing aid, such as a RIC type hearing aid instrument.
The present invention will now be described in further details with reference to the accompanying figures, wherein
While the invention is susceptible to various modifications and alternative forms specific embodiments have been shown by way of examples in the drawings and will be described in details herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
In its broadest aspect the present invention relates to a receiver unit having an enhanced frequency response. The receiver unit of the present invention should be applicable for various types of hearing aid instruments, including the MC where the available space for the receiver unit is very limited.
Referring now to
As illustrated in
The mechanical connections 104 and 105 are both secured to a distal and moveable end of the motor drive pin 106. The movements of the drive pin 106 are indicated by the arrow. In case of a moving armature type motor, the drive pin 106 will be the moving armature that is hinged at an end being opposite to the distal and moveable end. A moving armature may take different shapes, such as a linear structure or for example a U-shaped armature structure.
The resonating element 105, in combination with the mass of the second membrane 102, causes the second membrane 102 to resonate at a different frequency compared to the first membrane 101. This different frequency may either lower or higher that the resonance frequency of the first membrane.
The drive pin 106 is brought into movements by applying an audio drive signal. The audio drive signal may be of various types, such as analog signals, pulse width modulated (PWM) signals etc.
The first and second membranes 101, 102 are suspended in suspension members 107, 108 and 109, 110 respectively. As depicted in
As previously stated back and front volumes are defined as follows. (1) A back volume is located on that side of a membrane where the driving force is applied, i.e. typically on that side of the membrane where the motor assembly is positioned. (2) A front volume is located on the free side of a membrane, i.e. the side where the driving force is not applied.
Still referring to
The resonating element 205, in combination with the mass of the second membrane 202, causes the second membrane 202 to resonate at a different frequency compared to the first membrane 201. This different frequency may either lower or higher that the resonance frequency of the first membrane.
The drive pin 206 is brought into movements by applying an audio drive signal. The audio drive signal may be of various types, such as analog signals, pulse width modulated (PWM) signals etc. The first and second membranes 201, 202 are suspended in suspension members 207, 208 and 209, 210, respectively, which are positioned in opposite ends of the respective membranes 201, 202.
The receiver unit 200 comprises a combined back volume 212 and front volumes 213, 214. Contrary to the receiver unit 100 depicted in
Number | Date | Country | Kind |
---|---|---|---|
15181573 | Aug 2015 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6788796 | Miles et al. | Sep 2004 | B1 |
6831577 | Furst | Dec 2004 | B1 |
6853290 | Jorgensen et al. | Feb 2005 | B2 |
6859542 | Johannsen et al. | Feb 2005 | B2 |
6888408 | Furst et al. | May 2005 | B2 |
6914992 | van Halteren et al. | Jul 2005 | B1 |
6919519 | Ravnkilde et al. | Jul 2005 | B2 |
6930259 | Jorgensen et al. | Aug 2005 | B1 |
6943308 | Ravnkilde et al. | Sep 2005 | B2 |
6974921 | Jorgensen et al. | Dec 2005 | B2 |
7008271 | Jorgensen | Mar 2006 | B2 |
7012200 | Moller | Mar 2006 | B2 |
7062058 | Steeman et al. | Jun 2006 | B2 |
7062063 | Hansen et al. | Jun 2006 | B2 |
7072482 | Van Doorn et al. | Jul 2006 | B2 |
7088839 | Geschiere et al. | Aug 2006 | B2 |
7110560 | Stenberg | Sep 2006 | B2 |
7136496 | van Halteren et al. | Nov 2006 | B2 |
7142682 | Mullenborn et al. | Nov 2006 | B2 |
7181035 | van Halteren et al. | Feb 2007 | B2 |
7190803 | van Halteren | Mar 2007 | B2 |
7206428 | Geschiere et al. | Apr 2007 | B2 |
7221767 | Mullenborn et al. | May 2007 | B2 |
7221769 | Jorgensen | May 2007 | B1 |
7227968 | van Heltren et al. | Jun 2007 | B2 |
7239714 | de Blok et al. | Jul 2007 | B2 |
7245734 | Niederdraenk | Jul 2007 | B2 |
7254248 | Johannsen et al. | Aug 2007 | B2 |
7286680 | Steeman et al. | Oct 2007 | B2 |
7292700 | Engbert et al. | Nov 2007 | B1 |
7292876 | Bosh et al. | Nov 2007 | B2 |
7336794 | Furst et al. | Feb 2008 | B2 |
7376240 | Hansen et al. | May 2008 | B2 |
7403630 | Jorgensen et al. | Jul 2008 | B2 |
7415121 | Mögelin et al. | Aug 2008 | B2 |
7425196 | Jorgensen et al. | Sep 2008 | B2 |
7460681 | Geschiere et al. | Dec 2008 | B2 |
7466835 | Stenberg et al. | Dec 2008 | B2 |
7492919 | Engbert et al. | Feb 2009 | B2 |
7548626 | Stenberg et al. | Jun 2009 | B2 |
7657048 | van Halteren et al. | Feb 2010 | B2 |
7684575 | van Halteren et al. | Mar 2010 | B2 |
7706561 | Wilmink et al. | Apr 2010 | B2 |
7715583 | Van Halteren et al. | May 2010 | B2 |
7728237 | Pedersen et al. | Jun 2010 | B2 |
7809151 | Van Halteren et al. | Oct 2010 | B2 |
7822218 | Van Halteren | Oct 2010 | B2 |
7899203 | Van Halteren et al. | Mar 2011 | B2 |
7912240 | Madaffari et al. | Mar 2011 | B2 |
7946890 | Bondo et al. | May 2011 | B1 |
7953241 | Jorgensen et al. | May 2011 | B2 |
7961899 | Van Halteren et al. | Jun 2011 | B2 |
7970161 | van Halteren | Jun 2011 | B2 |
8098854 | van Halteren et al. | Jan 2012 | B2 |
8101876 | Andreasen et al. | Jan 2012 | B2 |
8103039 | van Halteren et al. | Jan 2012 | B2 |
8160290 | Jorgensen et al. | Apr 2012 | B2 |
8170249 | Halteren | May 2012 | B2 |
8189804 | Hruza | May 2012 | B2 |
8189820 | Wang | May 2012 | B2 |
8189841 | Litovsky | May 2012 | B2 |
8223996 | Beekman et al. | Jul 2012 | B2 |
8233652 | Jorgensen et al. | Jul 2012 | B2 |
8259963 | Stenberg et al. | Sep 2012 | B2 |
8259976 | van Halteren | Sep 2012 | B2 |
8259977 | Jorgensen et al. | Sep 2012 | B2 |
8280082 | van Halteren et al. | Oct 2012 | B2 |
8284966 | Wilk et al. | Oct 2012 | B2 |
8313336 | Bondo et al. | Nov 2012 | B2 |
8315422 | van Halteren et al. | Nov 2012 | B2 |
8331595 | van Halteren | Dec 2012 | B2 |
8369552 | Engbert et al. | Feb 2013 | B2 |
8379899 | van Halteren et al. | Feb 2013 | B2 |
8509468 | van Halteren et al. | Aug 2013 | B2 |
8526651 | Lafort et al. | Sep 2013 | B2 |
8526652 | Ambrose et al. | Sep 2013 | B2 |
20010012375 | Miller | Aug 2001 | A1 |
20050111673 | Rosen | May 2005 | A1 |
20060153418 | Van Halteren | Jul 2006 | A1 |
20080267431 | Leidl | Oct 2008 | A1 |
20090310807 | van Halteren | Dec 2009 | A1 |
20100080406 | Yang | Apr 2010 | A1 |
20110182453 | van Hal et al. | Jul 2011 | A1 |
20110189880 | Bondo et al. | Aug 2011 | A1 |
20110299708 | Bondo et al. | Dec 2011 | A1 |
20110299712 | Bondo et al. | Dec 2011 | A1 |
20110311069 | Ambrose et al. | Dec 2011 | A1 |
20120014548 | van Halteren | Jan 2012 | A1 |
20120027245 | van Halteren et al. | Feb 2012 | A1 |
20120140966 | Mocking et al. | Jun 2012 | A1 |
20120155683 | van Halteren | Jun 2012 | A1 |
20120155694 | Reeuwijk et al. | Jun 2012 | A1 |
20120255805 | van Halteren et al. | Oct 2012 | A1 |
20130028451 | de Roo | Jan 2013 | A1 |
20130136284 | van Hal et al. | May 2013 | A1 |
20130142370 | Engbert et al. | Jun 2013 | A1 |
20130163799 | Van Halteren | Jun 2013 | A1 |
20130195295 | van Halteren et al. | Aug 2013 | A1 |
20140140551 | Ramstein | May 2014 | A1 |
20150036868 | Unruh | Feb 2015 | A1 |
20150245141 | van Halteren | Aug 2015 | A1 |
20160255433 | Grinker | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
1895811 | Mar 2008 | EP |
2744222 | Jun 2014 | EP |
WO 2004103019 | Nov 2004 | WO |
WO 2013023414 | Feb 2013 | WO |
Entry |
---|
Partial European Search Report for Application No. EP 15 18 1573, date of completion Feb. 1, 2016 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20170055086 A1 | Feb 2017 | US |