The present disclosure generally relates to a receiver with antenna switching capability.
Controlling power usage is becoming increasingly important especially in vehicle applications. As such, radio frequency receivers have been developed that can enter a sleep mode and autonomously wake-up and poll to RF signals. However, these systems do not address antennas that require power when receiving signals.
A system and method for receiving signals using a receiver with antenna switching capability is provided. The receiver is configured to poll each antenna of a plurality of antennas and process the signals from each antenna. In addition, the receiver coordinates providing power to each antenna with the polling.
In order that the disclosure may be well understood, there will now be described various implementations thereof, given by way of example, reference being made to the accompanying drawings, in which:
Now referring to
In one example, a first antenna 122, a second antenna 124, and a third antenna 126 are connected to the receiver 112. However, it is understood that multiple additional antennas or fewer antennas may be connected to the receiver 112 and processed in the same manner as antennas 122, 124 and 126. As stated above, the receiver 112 may be a self-polling receiver that accepts part of its configuration from the micro-processor 110. The receiver 112 may also be configured to toggle a power output for each external antenna to activate or deactivate the antenna. These parameters may be communicated to the receiver 112 along with other configuration data through a serial communication interface over the serial digital input line 114.
As RF systems become more complex, the use of multiple antennas to receive different signals is becoming more attractive. For example, three different antennas might be required to optimize the reception of remote keyless entry, remote start, and tire pressure monitoring signals. It may also be required to coordinate powering these antennas when the particular signal is being polled. Although current self polling receivers have the capability to autonomously wake up the definitive receiver to self poll for particular RF signals, they are unable to perform switching and/or powering of multiple antennas. As a result, a main micro-processor may be used for this type of switching to reduce or eliminate the reduction in processor load and power consumption of the self-polling receiver.
Now referring to
The processor circuit 212 may be in communication with external devices such as a telematics controller or other controller which may, for example, include a main processor as illustrated by reference number 110 in
The power input 220 of the receiver 200 may be connected to a power supply 218 of the power switching circuit 216. Similarly, a ground input 221 may be provided to the receive 200 and connected to the power circuit 216, and/or other circuits as appropriate. The power supply 218 may provide a power signal, which may power one or more of the plurality of antennas 250, 254, 258. The power signal from the power supply 218 is selectively provided to each of the plurality of antennas through the plurality of switches 230, 234, 238.
More specifically, the power signal may be provided to antenna 250 through switch 230. The processor circuit 212 may selectively connect the power supply 218 to the antenna 250 based on the switch input 232 connected to the processor circuit 212. In addition, the receiver 214 may have an antenna input 270 that is connected to the antenna 250 at node 233. Additionally, the power signal may be provided to antenna 254 through switch 234. The processor circuit 212 may selectively connect the power supply 218 to the antenna 254 based on the switch input 236 connected to the processor circuit 212. In addition, the receiver 214 may have an antenna input 272 that is connected to the antenna 254 at node 235.
The power signal may also be provided to antenna 258 through switch 238. The processor circuit 212 may selectively connect the power supply 218 to the antenna 258 based on the switch input 240 connected to the processor circuit 212. In addition, the receiver 214 may have an antenna input 274 that is connected to the antenna 258 at node 239.
When the receiver 200 is configured to poll the antenna inputs of the integrated circuit housing 210, the corresponding switch is closed which may provide power to only that corresponding external antenna. In addition, the switches may be controlled automatically by the processor circuit 212 based on a receiver configuration which may be stored in a memory of the processor circuit 212 and/or provided to the processor circuit 212 over an input such as the serial digital input 266.
In one implementation, the receiver 200 may receive a packet which may, for example, include a byte where each bit of the byte corresponds to a respective antenna configuration. If the bit corresponding to an antenna is a 1, then the antenna may be powered by the power switching circuit 216. Alternatively, if the bit corresponding to the antenna is a 0, the power switching circuit will not power the antenna. In this scenario, the configuration may be changed based on an operating mode of the system. For example in a vehicle application, the receiver configuration may be set to disable powering of certain antennas based on certain use conditions. For example, certain antennas may have less need to poll a signal if the vehicle has not been in use for a long period of time. In some implementations, certain antennas, such as the tire pressure sensor antennas may be polled with significantly less frequency if the vehicle has not been in used in a predefined time period, such as more than a month. However, the polling frequency can be again modified when the vehicle is started by changing the configuration stored in the intelligent receiver, for example over the serial digital input.
Now referring to
During time period 316, the receiver may reconfigure to poll for the third RF signal. Thereafter, the receiver may poll for the third RF signal (e.g., a remote start signal) as denoted by time period 318. Further, the third antenna may be powered on, as denoted by period 358 of line 308 to correspond with the receiver polling 318. While the three polling periods 310, 314, 318 are shown for this implementation, it is understood that additional polling time periods may be provided for additional signals. In addition, it is understood that multiple signals could be polled using the same antenna or multiple antennas may be polled for a particular signal based on the stored configuration data. As such, various combinations of receiver polling for a particular antenna and antenna power on scenarios may be used together for various configurations.
After the RF signals are polled, a sleep mode may be entered by the polling receiver for a period of inactivity 322. The receiver may be powered down or configured such that a lower power usage is required during this time period by various components of the receiver (e.g., the processor circuit, the receiver circuit, or the power switching circuit). However, an activity period 330 may follow the inactivity period 322 creating alternating cycles of activity periods and inactivity periods. However, the time between the start of one activity period and the start of the next activity period (e.g., 320, 330) may be less than a predetermined amount of time, as denoted by arrow 340. For example, the time period between activity starts may be less than 50 milliseconds such that a remote keyless entry system may receive the RF signal from the remote keyless entry transmitter. In a typical remote keyless entry implementation, the transmitter will transmit a signal for a time period of approximately 50 milliseconds. As such, the receiver will receive the remote keyless entry signal at least once during the 50 millisecond time period. As described above, the receiver may autonomously supply power to the antenna used to receive the RF signal that is being polled.
In other embodiments, dedicated hardware implementations, such as application specific integrated circuits, programmable logic arrays and other hardware devices, can be constructed to implement one or more of the methods described herein. Applications that may include the apparatus and systems of various embodiments can broadly include a variety of electronic and computer systems. One or more embodiments described herein may implement functions using two or more specific interconnected hardware modules or devices with related control and data signals that can be communicated between and through the modules, or as portions of an application-specific integrated circuit. Accordingly, the present system encompasses software, firmware, and hardware implementations.
In accordance with various embodiments of the present disclosure, the methods described herein may be implemented by software programs executable by a computer system. Further, in an exemplary, non-limited embodiment, implementations can include distributed processing, component/object distributed processing, and parallel processing. Alternatively, virtual computer system processing can be constructed to implement one or more of the methods or functionality as described herein.
Further, the methods described herein may be embodied in a computer-readable medium. The term “computer-readable medium” includes a single medium or multiple media, such as a centralized or distributed database, and/or associated caches and servers that store one or more sets of instructions. The term “computer-readable medium” shall also include any medium that is capable of storing, encoding or carrying a set of instructions for execution by a processor or that cause a computer system to perform any one or more of the methods or operations disclosed herein.
As a person skilled in the art will readily appreciate, the above description is meant as an illustration of the principles of the invention. This description is not intended to limit the scope or application of the invention in that the invention is susceptible to modification, variation and change, without departing from spirit of the invention, as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4823398 | Hashimoto | Apr 1989 | A |
5566364 | Mizoguchi et al. | Oct 1996 | A |
5722089 | Murakami | Feb 1998 | A |
6622552 | Delaporte | Sep 2003 | B1 |
6861942 | Knapp et al. | Mar 2005 | B1 |
7026953 | Fujii | Apr 2006 | B2 |
7570209 | Shi et al. | Aug 2009 | B2 |
7574192 | Gudmundsson | Aug 2009 | B2 |
7659812 | Yegin et al. | Feb 2010 | B2 |
7734269 | Komulainen et al. | Jun 2010 | B2 |
8155712 | Gilb et al. | Apr 2012 | B2 |
8441913 | Li et al. | May 2013 | B2 |
20030156069 | Ooe et al. | Aug 2003 | A1 |
20040058690 | Ratzel et al. | Mar 2004 | A1 |
20040198229 | Hirata | Oct 2004 | A1 |
20040203550 | Xu | Oct 2004 | A1 |
20050197080 | Ulupinar et al. | Sep 2005 | A1 |
20060068854 | Sandhu | Mar 2006 | A1 |
20070111690 | Nagy | May 2007 | A1 |
20090042529 | Lindenmeier et al. | Feb 2009 | A1 |
20090075617 | Walker et al. | Mar 2009 | A1 |
20090207079 | Samukawa et al. | Aug 2009 | A1 |
20090243923 | Heraud et al. | Oct 2009 | A1 |
20100245039 | Tokunaga | Sep 2010 | A1 |
20110148578 | Aloi et al. | Jun 2011 | A1 |
20120214434 | Otaka et al. | Aug 2012 | A1 |
20120302191 | Farrell et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
101536357 | Sep 2009 | CN |
2006099079 | Sep 2006 | WO |
Entry |
---|
International Search Report and Written Opinion dated Aug. 14, 2012, from corresponding International Patent Application No. PCT/US2012/038650. |
Number | Date | Country | |
---|---|---|---|
20120302191 A1 | Nov 2012 | US |