The present invention relates to a receiving apparatus selecting an appropriate reception mode trading off reception performance against operation power according to a reception environment.
In recent years, diversity reception method has been employed for small, mobile receiving terminals. That is, a small terminal usually has a low-gain antenna to reduce the size of its receiving antenna, and is used in an adverse reception environment, where the user performs reception while moving, for example. In response, diversity reception significantly improves reception sensitivity, where two antennas are used, and either one of the signals is selected or both signals are synthesized.
However, diversity reception method has two series of antennas and receivers, and thus an increase of power consumption becomes a problem with a battery-powered mobile terminal. Under the circumstances, a method is proposed that satisfies both of improving reception performance and reducing power consumption. That is, high sensitivity precedes with diversity reception in an adverse reception environment; low power consumption precedes with receiving with one-series receiver alone (referred to as single reception, hereinafter) in a favorable reception environment.
As prior art document information related to this patent application, patent literature 1 is known, for example. However, diversity reception has significantly favorable reception sensitivity compared to single reception, resulting in frequent switching between diversity reception and single reception when switching control is performed according to a reception environment, which may cause a reception error. More specifically, at an input level between that for a reception sensitivity in diversity reception and that in single reception, switching between diversity reception and single reception occurs frequently because an input level range exists in which reception cannot be performed by single reception but can be by diversity reception with a sufficient margin.
The present invention improves conventional disadvantages, eliminates switching between reception modes frequently, and prevents a reception error. A receiving apparatus of the present invention includes a receiver capable of switching between a high-sensitivity mode, a power-saving mode having a reception sensitivity lower than that in the high-sensitivity mode, and an intermediate reception mode having a reception sensitivity lower than that in the high-sensitivity mode and higher than that in the power-saving mode; and a reception environment acquiring unit acquiring a reception environment, connected to the output side of the receiver. The receiving apparatus further includes a controller that switches the receiver, if the receiver is in the high-sensitivity mode, to the intermediate reception mode when a reception environment acquired by the reception environment acquiring unit becomes better than the release threshold; and if the receiver is in the intermediate reception mode, to the power-saving mode when a reception environment acquired by the reception environment acquiring unit becomes better than the first threshold. With this configuration, the difference in sensitivity between the high-sensitivity mode and intermediate reception mode, and that between the intermediate reception mode and power-saving mode are smaller than that between the high-sensitivity mode and power-saving mode, thereby preventing frequent switching caused by a large difference in sensitivity between the reception modes at switching control. That is, state transition between the reception modes are performed while suppressing a reception error occurring.
Hereinafter, a description is made for a concrete exemplary embodiment according to the present invention. In
With the configuration, receiving apparatus 1 operates in the diversity reception mode, where diversity processing is performed with first receiver 2 and second receiver 3; and in the single reception mode, where only one of first receiver 2 and second receiver 3 is used and the other is powered off. In whichever reception mode, decoder 6 can restore a signal output from error corrector 5 to data for the transmission side, and display unit 7 can display the data restored.
In
However, the difference in reception sensitivity between the single reception mode and diversity reception mode is as large as approximately 3 dB, and thus switching occurs frequently at an intermediate input level between them. This phenomenon is described using
Furthermore, in a level range (level range B, hereinafter) lower than input level b (i.e. sensitivity level) at which the error limit is reached in the single reception mode and additionally higher than input level c at which the release threshold is reached in the diversity reception mode, switching occurs periodically, generating a reception error. That is to say, errors exceeding the BER limit occur during the single reception mode, and thus decoder 6 at the subsequent stage cannot restore transmission data normally. Here, level range A and level range B can be narrowed by setting a low value to the release threshold. However, to do so, the measurement accuracy for a BER needs to be raised. For this reason, the measurement time needs to be prolonged, which reduces the following capability to the change of the reception environment. In digital broadcasting (one-segment broadcasting) for mobile terminals as a concrete example, the data transmission speed of an MPEG transport stream (TS) is approximately 416 kbps, and thus to measure the BER to an accuracy of 1E-6, measurement needs to be made for approximately 2 seconds, which is not allowable in terms of following capability in adaptive control.
Under the circumstances, the present invention employs a third reception mode (referred to as intermediate reception mode, hereinafter) having a reception sensitivity lower than that in the diversity reception mode and higher than that in the single reception mode. An intermediate reception mode can be created by deteriorating the sensitivity in the diversity reception mode any way.
As an example of creating an intermediate reception mode, there is a method that lowers the gain of an RFGCA (radio frequency gain control amplifier) contained in the receiver, which is described using
S=KTB+F+C/N (1)
Here, a description is made that the reception sensitivity can be deteriorated by lowering the gain of RFGCA 13. Assuming that the gain of the RFGCA is G1, the noise figure is F1, and the noise figure subsequent to mixer 14 (included) is F2, then noise figure F of the entire receiver is expressed by expression (2) below.
F=F1+(F2−1)÷G1 (2)
That is to say, reducing gain G1 of the RFGCA increases noise figure F of the entire receiving apparatus, which consequently increases the reception sensitivity S of the receiving apparatus in expression (1), causing the reception sensitivity to deteriorate. With the aid of this relationship, controller 9 forcibly sets a control value to RFAGC 16 controlling the gain of RFGCA 13 for the two series of receivers (i.e. first receiver 2, second receiver 3) in the diversity reception mode. As a result, an intermediate reception mode is created that has a reception sensitivity lower than that in the diversity reception mode and higher than that in the single reception mode.
Besides this method, the next means can be utilized as a means of creating an intermediate reception mode. That is, by restricting (reducing) a current value of each circuit in receiver 10 to restrict the amplification degree of the transistors, the gain and noise figure are deteriorated, which causes the reception sensitivity to deteriorate. In this case, less power is consumed during a period of the intermediate reception mode than the diversity reception mode, which is more effective to reduce power consumption. Alternatively, an intermediate reception mode can be created by decreasing the conversion accuracy of A/D conversion in ADC 19 to deteriorate the sensitivity. Although other methods of creating an intermediate reception mode exist, the present invention has curative properties against a reception error caused by periodic switching independently of a way an intermediate reception mode is created.
A description is made for the operation of switching with the aid of an intermediate reception mode using
In addition, to eliminate level range A as well, the following method can be used. That is, a fourth reception mode with its reception sensitivity lower than that in the intermediate reception mode and higher than that the single reception mode is newly created, and switching control is performed using the four reception modes in sequence. Further, five or more reception modes may exist.
A description is made for a concrete example of controlling with the configuration of this embodiment using
From the above-described description, when performing switching control of the reception modes trading off reception sensitivity against power consumption according to a reception environment, using the configuration of this embodiment suppresses a reception error occurring caused by periodical switching, thereby implementing smooth switching control.
Here, in this embodiment, the description is made for the example of switching between the diversity reception mode and single reception mode. However, the present invention is effective in a receiving apparatus with only one series of receiver (i.e. not structured for diversity). That is, in terms of the circuitry of the receiver, smooth switching control is possible in the same way with the aid of an intermediate reception mode when controlling so as to switch the reception modes between the high-sensitivity mode with high reception sensitivity with large power consumption and the power-saving mode with small power consumption with low reception sensitivity according to a reception environment.
In this case, the performance difference in mobile reception characteristics (Reilly characteristic) between the high-sensitivity mode and power-saving mode is generally small or zero. Consequently, adaptive switching between the reception modes is effective near the reception sensitivity level while being ineffective near the mobile reception sensitivity level, which is higher than the reception sensitivity level, resulting in characteristic degradation caused by switching in some cases. To avoid this phenomenon occurring, the adaptive switching control is stopped to enter the power-saving mode when the input level stays beyond a certain level (e.g. higher than the reception sensitivity level). Alternatively, other methods may be used. For example, the receiving apparatus is provided with a movement detector (not shown), and the adaptive switching control is stopped to enter the power-saving mode when the apparatus is moving at a given speed or faster.
Other than an adaptive control of reception modes trading off reception sensitivity against power consumption, when performing adaptive switching control between various types of reception modes (e.g. disturbance characteristic to power consumption, frequency characteristic to power consumption, temperature characteristic to power consumption), creating an intermediate reception mode for respective characteristics eliminates a reception error occurring. More specifically, a reception error is eliminated by setting the disturbance characteristic in the second reception mode (intermediate) so as to be lower than the disturbance characteristic in the first reception mode (high-sensitivity) and higher than that in the third reception mode (power-saving). In the same way, a reception error is eliminated by setting the frequency characteristic in the second reception mode (intermediate) so as to be lower than the frequency characteristic in the first reception mode (high-sensitivity) and higher than that in the third reception mode (power-saving). Further, a reception error is eliminated by setting the temperature characteristic in the second reception mode (intermediate) so as to be lower than the temperature characteristic in the first reception mode (high-sensitivity) and higher than that in the third reception mode (power-saving).
In a small, mobile receiving terminal, the present invention eliminates frequent switching occurring between the reception modes in diversity reception method where two antennas are used, and either one of the reception signals is selected or both signals are synthesized, to prevent occurrence of a reception error, which is industrially useful.
Number | Date | Country | Kind |
---|---|---|---|
2006-321484 | Nov 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/071969 | 11/13/2007 | WO | 00 | 1/27/2009 |