1. Field of the Invention
The present invention relates to a backplane connector, and more particularly to a receptacle backplane connector having a universal passageway capable of mating with plug connector with different interfaces.
2. Description of Related Art
U.S. Pat. No. 7,118,391, issued to Minich et al on Oct. 10, 2006, discloses an electrical connector having a lead frame housing, a first electrical contact fixed in the lead frame housing, a second electrical contact fixed adjacent to the first electrical contact in the lead frame housing, and a third electrical contact fixed adjacent to the second electrical contact in the lead frame housing. Each of the first and second electrical contacts may be selectively designated, while securely fixed in the lead frame housing, as either a ground contact or a signal contact such that, in a first designation, the first and second contacts form jointly configure a differential signal pair, and, in a second designation, the second contact is a single-ended signal conductor. The third electrical contact may be designated as a ground contact having a terminal end that extends beyond terminal ends of the first and second contacts.
U.S. Pat. No. 6,652,318, issued to Winings et al on Nov. 25, 2003, discloses a high speed electrical connector configured, theoretically and ideally, to reduce the incidence of cross-talk. The connector includes a connector housing and a plurality of columns of differential contact pairs and ground contacts. Each column of differential contact pairs and ground contacts is offset from an adjacent column, i.e. lower or higher than the adjacent column a small amount of distance from vertical direction, such that multi-active cross-talk is theoretically and ideally reduced with respect to each differential contact pair.
However, the Wingings connector can only mate with its own family, i.e. plug and receptacle connectors with offset arrangement. This offset arrangement inevitably prevents it from mating with a connector system without offset system. This will create a great deal of inconvenience. For example, if the existing system is a non-offset connector system, then the customer has to keep on using it, and vise versa.
Additionally, the Minch connector has a plurality of lead frame housings stacked together and accordingly a plurality columns of contacts arranged within the lead frame housings. The contacts in the lead frame housings have different contact designations and so the complementary mating connector has to have the lead frame assemblies with different configurations accordingly, which inevitably increases the manufacturing cost.
Accordingly, a connector system which can mate with either offset or non-offset system is highly desired for the market in view of cost-down trend.
Hence, an object of the present invention is to provide a high-speed electrical connector which can mate with either offset or non-offset system.
An electrical connector to be mounted on a PCB is provided. The electrical connector comprises a front housing and a plurality of stacked wafers assembled to the front housing. The front housing defines a front surface, an opposite back surface and a plurality of passageways extending from said back surface to said front surface, the passageways being arranged in an array comprising rows and columns. Each of the wafers comprises a lead frame and a plurality of conductive contacts molded in the lead frame. Each of the contacts further comprises a fastening portion molded in the lead frame, a mating portion extending from an end of the fastening portion for mating with a complementary mating connector and a terminal portion extending from an opposite end to be mounted in said PCB. The plurality of conductive contacts are arranged coplanarly. The mating portions of the contacts of a wafer are respectively inserted into a row of passageways. Adjacent rows of passageways are arranged with an offset, which will be detailedly described later. Corresponding adjacent wafers are arranged with the contacts of adjacent wafers aligned in a direction perpendicular to the coplanar surface. Therefore, the high-speed connector could be designed with contact wafers in a same configuration while kept matable to a mating connector having offset-contact array or non-offset-contact array.
According to another aspect of the present invention, another high-speed electrical connector is provided. The electrical connector comprises a front housing and a plurality of stacked wafers assembled to the front housing. The front housing defines a front surface, an opposite back surface and a plurality of passageways extending between the frond and rear surfaces, and arranged in an array. Each of the wafers comprises a lead frame and a plurality of conductive contacts molded in the lead frame. Each of the contacts further comprises a fastening portion molded in the lead frame, a mating portion extending from an end of the fastening portion for mating with a complementary mating connector and a terminal portion extending from an opposite end to be mounted in said PCB. The plurality of conductive contacts are arranged coplanarly. The mating portions of the contacts of a wafer are respectively inserted into a row of passageways. The lead frame of each wafer forms a front edge and a notch therein, the mating portions of two adjacent contacts of the wafer extending forwardly from the notch and the mating portions of the other contacts extending forwardly from the front edge of the lead frame. The wafers of high-speed electrical connector can be designed with a same configuration while kept matable to a complementary mating connector having different ground contact arrangements in adjacent lead frame assembly.
Other objects, advantages and novel features of the invention will become more apparent from the following detailed description of a preferred embodiment when taken in conjunction with the accompanying drawings.
Reference will now be made to the drawing figures to describe the present invention in detail.
Referring to
The electrical connector 100 comprises a front housing 20 and a plurality of wafers 40 stacked and assembled within the front housing 20. The front housing 20 defines a front surface 204, an opposite back surface 206 and a plurality of passageways 202, 203 extending from said back surface 206 to said front surface 204 and arranged in array comprising of rows and columns. Each of the wafers comprises a lead frame 34 and nine conductive contacts 41-49 molded in the lead frame 34. Each of the contacts 41-49 further comprises a fastening portion 404 molded in the lead frame 34, a mating portion 408 extending from an end of the fastening portion 404 for mating with complementary mating connectors 600, 600′ (shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring back to
The disclosure is illustrative only, changes may be made in detail, especially in matter of shape, size, and arrangement of parts within the principles of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200820303048 | Dec 2008 | CN | national |
200820303050 | Dec 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6652318 | Winings et al. | Nov 2003 | B1 |
6913490 | Whiteman et al. | Jul 2005 | B2 |
7118391 | Minich et al. | Oct 2006 | B2 |
Number | Date | Country | |
---|---|---|---|
20100136844 A1 | Jun 2010 | US |