This patent application claims priority of a Chinese Patent Application No. 202121091843.9, filed on May 20, 2021 and titled “RECEPTACLE CONNECTOR”, the entire content of which is incorporated herein by reference.
The present disclosure relates to a receptacle connector, which belongs to a field of electrical connectors.
With the rapid development of information technology, the application of electronic and information products has become more and more extensive. The advancement of computer systems and related peripheral industries is even more rapid. The proliferation of computers, coupled with the rapid development of network technology, enables people to quickly obtain the information they need through the network, and also allows people to access diversified information services. The development of computer networks provides a more convenient and comfortable living environment for human beings.
RJ45 plug connectors and RJ45 receptacle connectors are important mating components for network connection. The RJ45 plug connector is used to cooperate with the RJ45 receptacle connector for signal output. With the development of diversification and multi-function, the eight pins of the RJ45 plug connector and RJ45 receptacle connector on the market are all arranged side by side, so only a single direction can be plugged and unplugged. With the emergence of more and more multifunctional connectors and the increasing demand of consumers for convenience, connectors which can be inserted in either a forward direction or a reversed insertion are increasing in urgent need of development.
An object of the present disclosure is to provide a receptacle connector into which a corresponding mating plug connector can be inserted along either a forward direction or a reversed direction, thereby improving the convenience of use.
In order to achieve the above object, the present disclosure adopts the following technical solution: a receptacle connector, including: an insulating portion, the insulating portion defining a receiving space and a mating space in communication with the receiving space, the mating space extending through the insulating portion so as to form a mating port; a receptacle terminal module, the receptacle terminal module being mounted to the insulating portion, the receptacle terminal module including a first terminal module and a second terminal module, the first terminal module and the second terminal module having a same structure and being symmetrically arranged on opposite sides of the mating space along a first direction; a metal shell, the metal shell enclosing the insulating portion; and a receptacle circuit board, the first terminal module and the second terminal module being electrically connected to the receptacle circuit board.
In order to achieve the above object, the present disclosure adopts the following technical solution: a receptacle connector, including: an insulating portion, the insulating portion defining a receiving space and a mating space in communication with the receiving space, the mating space extending through the insulating portion so as to form a mating port; a receptacle terminal module, the receptacle terminal module being mounted to the insulating portion, the receptacle terminal module including a first terminal module and a second terminal module, the first terminal module and the second terminal module being arranged on opposite sides of the mating space, the first terminal module including a first terminal base and a plurality of first receptacle terminals fixed to the first terminal base, the second terminal module including a second terminal base and a plurality of second receptacle terminals fixed to the second terminal base; and a receptacle circuit board, the first receptacle terminals and the second receptacle terminals being electrically connected to the receptacle circuit board; wherein each first receptacle terminal includes a first mating portion protruding into the mating space, and each second receptacle terminal includes a second mating portion protruding into the mating space; and wherein the first mating portions of the first receptacle terminals and the second mating portions of the second receptacle terminals are symmetrically arranged on opposite sides of the mating space along a first direction.
The first terminal module and the second terminal module of the receptacle connector of the present disclosure have the same structure, and are symmetrically arranged on opposite sides of the mating space. As a result, when a corresponding mating plug connector is inserted into the receptacle connector of the present disclosure, there is no need to manually distinguish the insertion direction, thereby a blind insertion can be realized and the convenience in use is improved.
Exemplary embodiments will be described in detail here, examples of which are shown in drawings. When referring to the drawings below, unless otherwise indicated, same numerals in different drawings represent the same or similar elements. The examples described in the following exemplary embodiments do not represent all embodiments consistent with this application. Rather, they are merely examples of devices and methods consistent with some aspects of the application as detailed in the appended claims.
The terminology used in this application is only for the purpose of describing particular embodiments, and is not intended to limit this application. The singular forms “a”, “said”, and “the” used in this application and the appended claims are also intended to include plural forms unless the context clearly indicates other meanings.
It should be understood that the terms “first”, “second” and similar words used in the specification and claims of this application do not represent any order, quantity or importance, but are only used to distinguish different components. Similarly, “an” or “a” and other similar words do not mean a quantity limit, but mean that there is at least one; “multiple” or “a plurality of” means two or more than two. Unless otherwise noted, “front”, “rear”, “lower” and/or “upper” and similar words are for ease of description only and are not limited to one location or one spatial orientation. Similar words such as “include” or “comprise” mean that elements or objects appear before “include” or “comprise” cover elements or objects listed after “include” or “comprise” and their equivalents, and do not exclude other elements or objects. The term “a plurality of” mentioned in the present disclosure includes two or more.
Hereinafter, some embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the case of no conflict, the following embodiments and features in the embodiments can be combined with each other.
Referring to
Referring to
For better understanding the present disclosure, all the descriptions concerning directions of the plug connector 100 in the present disclosure refer to
Referring to
As shown in
The flat portion 132 covers a top surface of the first horizontal portion 111. Each of the receiving portion 131 and the accommodating portion 133 has a hollow cuboid shape, and includes a first channel 1311 and a second channel 1331 extending in the front-back direction. A cross section of the first channel 1311 is smaller than a cross section of the second channel 1331. The second horizontal portion 112 of the insulating body 11 is accommodated in the first channel 1311.
Referring to
Specifically, the second horizontal portion 112 of the insulating body 11 includes a top wall 1121, a second side wall 1124, and a first guide member 1125 extending downwardly from the top wall 1121. The first side wall 1123 and the second side wall 1124 extend downwardly from left and right sides of the top wall 1121, respectively. The first guide member 1125 is located between the first side wall 1123 and the second side wall 1124. Correspondingly, the positioning portion 141 of the retaining body 14 includes a bottom wall 1411 and a second guide member 1412 extending upwardly from the bottom wall 1411. The second guide member 1412 is adapted to mate with the first guide member 1125 of the second horizontal portion 112.
In the illustrated embodiment of the present disclosure, the first guide member 1125 includes a first protruding rib 1126 extending downwardly from the top wall 1121, a plurality of first guide grooves 1127 recessed upwardly from a bottom surface of the first protruding rib 1126, and a plurality of first guide rails 1128 protruding downwardly from the top wall 1121. The first guide grooves 1127 are located in a middle of the first guide rails 1128. The second guide member 1412 includes a plurality of second guide rails 1415 extending upwardly from the bottom wall 1411, a plurality of second protruding ribs 1416 extending upwardly from the bottom wall 1411, and a plurality of second guide grooves 1417. Each second guide groove 1417 is recessed downwardly from a top surface of the second protruding rib 1416. The second guide rails 1415 are located between the second guide grooves 1417. The first guide grooves 1127, the first guide rails 1128, the second guide grooves 1417, and the second guide rails 1415 all extend in the front-back direction. The second guide grooves 1417 are adapted to receive the first guide rails 1128, and the second guide rails 1415 are adapted to be received in the first guide grooves 1127, thereby ensuring that the retaining body 14 can be accurately assembled to the insulating body 11.
In the illustrated embodiment of the present disclosure, the number of each of the first guide grooves 1127, the first guide rails 1128, the second guide grooves 1417, and the second guide rails 1415 is two. The first guide rails 1128 are located on opposite sides of the first guide grooves 1127. The second guide grooves 1417 are located on opposite sides of the second guide rails 1415. The two second guide rails 1415 are mated with the two first guide grooves 1127, respectively. The two second guide grooves 1417 are mated with the two first guide rails 1128, respectively. In other embodiments, the positions and number of the guide rails and the guide grooves can be set according to actual usage requirements, as long as the guide rails and the guide grooves can mate with each other to accurately assemble the retaining body 14 to the insulating body 11.
The plug circuit board 15 is assembled to a rear end surface of the retaining body 14. In order to facilitate the installation and prevent the wrong installation direction, the rear end surface of the limiting portion 142 of the retaining body 14 is provided with a foolproof protrusion 1421. The plug circuit board 15 is provided with a fool-proof notch 151 which is mated with the fool-proof protrusion 1421.
Referring to
The first locking member 171 includes a first fixing portion 1711 fixedly connected to the insulating body 11 and a first locking portion 1712 extending backwardly and obliquely downward from the first fixing portion 1711. Furthermore, the first fixing portion 1711 is fixedly connected to a front end surface and a lower end surface of the first horizontal portion 111 of the insulating body 11. The first locking portion 1712 is located below the first horizontal portion 111.
The second locking member 172 includes a second fixing portion 1721 fixedly connected to the insulating housing 13, a second locking portion 1722 obliquely extending backwardly and obliquely upward from the second fixing portion 1721, and an abutting portion 1723 extending backwardly from the second fixing portion 1721. Furthermore, the second fixing portion 1721 is fixedly connected to an upper end surface and a front end surface of the flat plate portion 132 of the insulating housing 13. The second locking portion 1722 is located above the flat portion 132. The abutting portion 1723 is located below the flat portion 132. The flat portion 132 is sandwiched between the second fixing portion 1721 and the abutting portion 1723. Correspondingly, the first horizontal portion 111 of the insulating body 11 has an abutting groove 1112 which extends upwardly and forwardly through the first horizontal portion 111. The abutting portion 1723 cooperates with the abutting groove 1112 to prevent the insulating housing 13 from moving backwardly relative to the insulating body 11.
In the illustrated embodiment of the present disclosure, the first locking member 171 and the insulating body 11 are integrally formed, and the second locking portion 1722 and the insulating housing 13 are integrally formed. It is understandable to those of ordinary skill in the art that in other embodiments, the first locking member 171 may be formed separately from the insulating body 11 and then fixed to the insulating body 11 through a connection method such as a locking or an interference fit. The second locking member 172 may be formed separately from the insulating housing 13 and then fixed to the insulating housing 13 through a connection method such as a locking or an interference fit.
Referring to
Furthermore, each first plug terminal 121 includes a first mating portion 1211, a first mounting portion 1213 extending horizontally and backwardly from the first mating portion 1211, and a first soldering portion 1214 extending horizontally and backwardly from the first mounting portion 1213. Each second plug terminal 122 includes a second mating portion 1221, a second mounting portion 1223 extending horizontally and backwardly from the second mating portion 1221, and a second soldering portion 1224 extending horizontally and backwardly from the second mounting portion 1223.
Correspondingly, left and right sides of the first horizontal portion 111 of the insulating body 11 are provided with a plurality of first terminal grooves 1113 and a plurality of second terminal grooves 1114, respectively. The first terminal grooves 1113 and the second terminal grooves 1114 extend horizontally in the front-back direction. The insulating housing 13 includes left and right inner side walls on opposite sides of the first channel 1311. The left and right inner side walls of the insulating housing 13 are provided with a plurality of first installation grooves 1312 and a plurality of second installation grooves 1314, respectively. The limiting portion 142 of the retaining body 14 is provided with a plurality of first through holes 1423 and a plurality of second through holes 1424 for the first mounting portions 1213 and the second mounting portions 1223 to pass through, respectively. The plug circuit board 15 is provided with a first soldering area 153 and a second soldering area 154 for soldering the first soldering portions 1214 and the second soldering portions 1224, respectively. The first mating portions 1211 and the second mating portions 1221 are accommodated in the first terminal grooves 1113 and the second terminal grooves 1114, respectively. The first mating portions 1211 and the second mating portions 1221 are exposed to an outside of the plug connector 100. The first mounting portions 1213 and the second mounting portions 1223 are received in the first installation grooves 1312 and the second installation grooves 1314, respectively. The first soldering portions 1214 and the second soldering portions 1224 extend backwardly beyond the limiting portion 142 and are soldered to the plug circuit board 15.
The first plug terminals 121 and the second plug terminals 122 extend horizontally in the front-back direction as a whole. Corresponding to the structure of the first plug terminals 121 and the second plug terminals 122, the first terminal grooves 1113, the first installation grooves 1312, the first through holes 1423, and the first soldering area 153 are aligned with each other in the front-back direction; and the second terminal grooves 1114, the second installation grooves 1314, the second through holes 1424, and the second soldering area 154 are aligned with each other in the front-back direction.
An assembly process of the plug connector 100 of the present disclosure is as follows. Firstly, the plug terminal module 12 is assembled to the insulating body 11. Secondly, the insulating housing 13 is sleeved forwardly on the periphery of the insulating housing 11 so as to form the plug head 10. The first locking portion 1712 and the second locking portion 1722 are symmetrically arranged on the upper and lower sides of the plug head 10. The front end surface of the receiving portion 131 of the insulating housing 13 abuts the rear end surface of the first horizontal portion 111 of the insulating body 11. The abutting portion 1723 of the second locking member 172 is received in the abutting groove 1112 of the insulating body 11. As a result, the mutual movement between the insulating housing 13 and the insulating body 11 is prevented. Thirdly, the retaining body 14 is assembled forwardly to the second horizontal portion 112 of the insulating body 11. The front end surface of the limiting portion 142 of the retaining body 14 abuts against the rear end surface of the receiving portion 131 of the insulating housing 13 so as to prevent the retaining body 14 from continuing to move forward. Then, the plug terminal module 12 and the plug circuit board 15 are soldered together. Finally, the stress relief portion 16 is assembled to the plug circuit board 15.
In the illustrated embodiment of the present disclosure, the insulating housing 13 is sleeved around the insulating body 11 so as to form the plug head 10. In other embodiments, the insulating body 11 and the insulating housing 13 may be integrally formed. The first locking member 171 and the second locking member 172 are symmetrically arranged on the upper and lower sides of the plug head 10. The first plug terminals 121 and the second plug terminals 122 are symmetrically arranged on the left and right sides of the plug head 10.
Referring to
For better understanding the present disclosure, all the descriptions concerning directions of the receptacle connector 200 in the present disclosure refer to
Referring to
Referring to
The first terminal module 231 includes a first terminal base 2312 and a plurality of first receptacle terminals 2313 fixed to the first terminal base 2312. The second terminal module 232 includes a second terminal base 2321 and a plurality of second receptacle terminals 2324 fixed to the second terminal base 2321.
The insulating portion 21 further includes a partition wall 218 and two mounting slots 2181. The partition wall 218 is located between the receiving space 212 and the mating space 213. The partition wall 218 is, for example, but not limited to, integrally formed inside the insulating portion 21. The two mounting slots 2181 are symmetrically arranged on opposite sides of the partition wall 218. The first terminal base 2312 and the second terminal base 2321 are disposed in the two mounting slots 2181, respectively.
Each first receptacle terminal 2313 includes an arc-shaped first mating portion 2315, a first connecting portion (not shown) extending backwardly from the first mating portion 2315, and a first soldering portion 2317 extending backwardly from the first connecting portion. Each second receptacle terminal 2324 includes an arc-shaped second mating portion 2325, a second connecting portion (not shown) extending backwardly from the second mating portion 2325, and a second soldering portion 2327 extending backwardly from the second connecting portion. The first mating portions 2315 and the second mating portions 2325 are located in the mating space 213. The first connecting portions and the second connecting portions are insert-molded with the first terminal base 2312 and the second terminal base 2321, respectively. The first soldering portions 2317 and the second soldering portions 2327 are soldered to a soldering area of the receptacle circuit board 25. The first mating portions 2315 and the second mating portions 2325 extend beyond the first terminal base 2312 and the second terminal base 2321, respectively. The first mating portions 2315 and the second mating portions 2325 are bent toward each other.
In the embodiment disclosed in the present disclosure, the first receptacle terminals 2313 are insert-molded with the first terminal base 2312. The second receptacle terminals 2324 are insert-molded with the second terminal base 2321. In other embodiments, the first receptacle terminals 2313 and the first terminal base 2312 can be formed separately and then assembled together; the second receptacle terminals 2324 and the second terminal base 2321 can be formed separately and then assembled together.
The adapter module 26 includes an adapter body 261 and a plurality of output terminals 262 fixed to the adapter body 261. One end of each output terminal 262 is soldered to the receptacle circuit board 25, and another end of each output terminal 262 extends downwardly beyond the adapter body 261. The output terminals 262 are electrically connected to the first receptacle terminals 2313 and the second receptacle terminals 2324 through the receptacle circuit board 25.
Referring to
Furthermore, left and right inner side walls on opposite sides of the mating space 213 are respectively provided with a first protrusion 2131 and a second protrusion 2132 protruding toward a middle of the mating space 213. After the receptacle terminal module 23 is installed in place, the first terminal base 2312 and the second terminal base 2321 abut against the first protrusion 2131 and the second protrusion 2132, respectively, thereby preventing the receptacle terminal module 23 from moving further forward.
Furthermore, the side walls on the left and right sides of the receiving space 212 respectively have limiting grooves 2121 extending backwardly. Correspondingly, the left and right sides of the adapter body 261 are respectively provided with limiting blocks 2611. During the assembly process, the limit blocks 2611 cooperate with the limiting grooves 2121 to guide and limit the installation of the receptacle circuit board 25 and the adapter module 26.
The metal shell 24 is sleeved on a periphery of the insulating portion 21. The metal shell 24 has an accommodating space for accommodating the insulating portion 21 and an insertion port corresponding to the shape and size of the mating port. The specific structure of the metal shell 24 is a conventional structure, and the fixing method between the metal shell 24 and the insulating portion 21 is a conventional fixing method such as locking, which is not described in more detail here.
The assembly process of the receptacle connector 200 of the present disclosure is as follows. Firstly, the receptacle terminal modules 23 and the adapter module 26 are soldered to the receptacle circuit board 25 to form a terminal module. Secondly, the terminal module is installed to the insulating portion 21. Finally, the metal shell 24 is sleeved on the periphery of the insulating portion 21.
When the receptacle connector 200 is mated with the plug connector 100 in the present disclosure, the plug head 10 of the plug connector 100 is inserted into the mating space 213 of the receptacle connector 200. The first locking portion 1712 of the first locking member 171 and the second locking portion 1722 of the second locking member 172 of the plug connector 100 are locked with the first locking groove 2171 and the second locking groove 2172 of the receptacle connector 200, respectively. As a result, a stable connection between the receptacle connector 200 and the plug connector 100 is ensured.
In the illustrated embodiment of the present disclosure, the locking member 17 includes the first locking member 171 and the second locking member 172. Of course, in other embodiments, only one of the first locking member 171 and the second locking member 172 may be provided, but the locking grooves 217 still needs to be provided as two symmetrically arranged.
The first plug terminals 121 and the second plug terminals 122 of the plug connector 100 of the present disclosure have the same structure, and are symmetrically arranged on the opposite sides of the insulating body 11. Correspondingly, the first terminal module 231 and the second terminal module 232 of the receptacle connector 200 have the same structure, and are symmetrically arranged on the left and right sides of the insertion space 216. This allows the plug connector 100 to be inserted into the mating space 213 of the receptacle connector 200 in a forward direction or a reversed direction. There is no need to manually distinguish the insertion direction, thereby a blind insertion can be realized and the convenience in use is improved. In addition, the terminals are arranged scattered, which can increase the transmission speed. The first locking portion 1712 of the first locking member 171 and the second locking portion 1722 of the second locking member 172 of the plug connector 100 are symmetrically arranged on the upper and lower sides of the plug head 10. The first locking groove 2171 and the second locking groove 2172 in the mating space 213 of the receptacle connector 200 have the same structure, and are symmetrically arranged on the upper and lower sides of the insertion space 216. This makes it possible to lock the plug connector 100 and the receptacle connector 200 when the plug connector 100 is inserted into the receptacle connector 200 in either the forward direction or the reverse direction.
In the illustrated embodiment of the present disclosure, the plug connector 100 is an RJ45 plug connector 100, and the receptacle connector 200 is an RJ45 receptacle connector 200. The number of the first plug terminals 121 is four and the number of the second plug terminals 122 is four as well. The four first plug terminals 121 and the four second plug terminals 122 are symmetrically arranged on the left and right sides of the plug head 10. Accordingly, the number of the first receptacle terminals 2313 is four and the number of the second receptacle terminals 2324 is four as well. The four first receptacle terminals 2313 and the four second receptacle terminals 2324 are symmetrically arranged on the left and right sides of the insertion space 216.
The above embodiments are only used to illustrate the present disclosure and not to limit the technical solutions described in the present disclosure. The understanding of this specification should be based on those skilled in the art. Descriptions of directions, although they have been described in detail in the above-mentioned embodiments of the present disclosure, those skilled in the art should understand that modifications or equivalent substitutions can still be made to the application, and all technical solutions and improvements that do not depart from the spirit and scope of the application should be covered by the claims of the application.
Number | Date | Country | Kind |
---|---|---|---|
202121091843.9 | May 2021 | CN | national |