Embodiments relate to electrical receptacles.
Nightlights or guide lights may be manually turned on and off, or controlled by a photocell, or photosensor. When controlled by a photosensor, the guide light may be on when light is below a threshold, regardless if a user is present, which may be an energy waste.
Thus, one embodiment provides a receptacle including a housing having a front cover, an outlet located on the front cover, and a light configured to project light through the front cover. The receptacle further including a photo sensor, a motion detector, and a controller. The photosensor is configured to detect light and output a light signal corresponding to the detected light. The motion detector is configured to detect motion and output a motion signal corresponding to the detected motion. The controller includes a memory and an electronic processor. The controller is configured to receive the light signal, receive the motion signal, compare the light signal to a light signal threshold, compare the motion signal to a motion signal threshold, and activate at least one selected from a group consisting of the light and the outlet, when the light signal crosses the light signal threshold and the motion crosses the motion signal threshold.
Another embodiment provides a method of controlling a receptacle. The method includes receiving, via a first sensor, a light signal, and receiving, via a second sensor, a motion signal. The method further includes comparing, via a controller, the light signal to a light signal threshold, and comparing, via the controller, the motion signal to a motion signal threshold. The method further includes activating at least one selected from a group consisting of a guide light of the receptacle and an outlet of the receptacle, when the light signal crosses the light signal threshold and the motion crosses the motion signal threshold.
Other aspects of the application will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the application are explained in detail, it is to be understood that the application is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The application is capable of other embodiments and of being practiced or of being carried out in various ways.
The receptacle 100 may include a front cover 105 having an outlet face 110. In the illustrated embodiments, the outlet face 110 is a duplex outlet face having a phase opening 115, a neutral opening 120, and a ground opening 125. In other embodiments, the outlet face 110 may be any NEMA standard outlet face, including but not limited to, a 5-15R outlet face, a 5-20R outlet face, 6-15R outlet face, and/or a 6-20R outlet face. In yet other embodiments, the outlet face 100 may be any non-NEMA standard outlet face. The front cover 105 may further include openings 130a, 130b, accommodating guide lights 135a, 135b, opening 140, accommodating a first lens 145, and opening 147, accommodating a second lens 150. In other embodiments, the front cover 105 may have more or less openings (for example, a single opening 130, accommodating a single guide light 135).
The receptacle 100 may further include a rear cover 155 secured to the front cover 105 by one or more fasteners. As illustrated, the rear cover 155 may include one or more terminals and terminal screws, such as but not limited to a line terminal 160 and line terminal screw 165, a neutral terminal and a neutral terminal screw, and a ground terminal 170 and a ground terminal screw 175. In the illustrated embodiment, the receptacle 100 further includes a ground yoke/bridge assembly including standard mounting ears 185 protruding from the end of the receptacle.
The controller 205 is electrically and/or communicatively connected to a variety of modules or components of the receptacle 100. For example, the controller 205 may be electrically and/or communicatively connected to the power input 210, guide lights 135, the motion sensor 215, the photosensor 220, and the one or more user-inputs 225.
In some embodiments, the controller 205 includes a plurality of electrical and electronic components that provide power, operational control, and protection to the components and modules within the controller 205 and/or the receptacle 100. For example, the controller 205 includes, among other things, an electronic processor (for example, a microprocessor or another suitable programmable device) and the memory. The memory includes, for example, a program storage area and a data storage area. The program storage area and the data storage area can include combinations of different types of memory, such as read-only memory (ROM), random access memory (RAM), (e.g., dynamic RAM [“DRAM”], synchronous DRAM [“SDRAM”], etc.), electrically erasable programmable read-only memory (“EEPROM”), flash memory, a hard disk, an SD card, or other suitable magnetic, optical, physical, or electronic memory devices. The electronic processor is communicatively coupled to the memory and executes software instructions that are stored in the memory, or stored on another non-transitory computer readable medium such as another memory or a disc. The software may include one or more applications, program data, filters, rules, one or more program modules, and other executable instructions.
The power input 210 is configured to receive power and provide a nominal power to the controller 205 and other components electrically connected to the PCB 200. In some embodiments, the power input 210 receives power via the line terminal 160. In such an embodiment, the power input 210 may include a power converter (for example, an AC-DC converter) configured to convert the alternating current (AC) power received from the line terminal 160 to a nominal direct current (DC) power. The nominal DC power may then be provided to the controller 205 and other components electrically connected to the PCB 200.
The guide lights 135a, 135b project light through openings 130a, 130b of the front cover 105. In some embodiments, the guide lights 135 are light-emitting diodes (LEDs). In some embodiments, the guide lights 135 may be adjusted directionally (for example, via a rotating lens). The motion sensor 215 is configured to detect motion. In some embodiments, the motion sensor 215 is an infrared (IR) motion sensor. In some embodiments, the motion sensor 215 has a 360° orientation having a 180° viewing angle. In the illustrated embodiment, the motion sensor 215 is located proximate the first lens 145 and is configured to detect motion through the first lens 145. The photosensor 220 is configured to detect light and/or other electromagnetic energy. In some embodiments, the photosensor 220 is a photodiode or a photo transistor. In the illustrated embodiment, the photosensor 220 is located proximate the second lens 150 and is configured to detect light and/or other electromagnetic energy through the second lens 150.
The one or more user-inputs 225 are configured to receive input from a user and output a signal to controller 205 based on the input. In some embodiments, the one or more user-inputs 225 may receive input corresponding to an on time of the guide lights 135, a brightness of the guide lights 135, a sensitivity of motion sensor 215, and/or a sensitivity of photosensor 220. Although illustrated as knobs, in other embodiments, the one or more user-inputs 225 may be one or more dials, switches, and/or buttons.
In some embodiments, the controller 205 may include, or be electrically coupled to, an input/output (I/O) module. In such an embodiment, the I/O module is configured to provide communication between the receptacle 100 (and controller 205) and outside devices (for example, other receptacles, electrical devices, external computers, smart phones, tablets, etc.). In such an embodiment, the receptacle 100 may communicate with the one or more outside devices through a network. The network is, for example, a wide area network (WAN) (e.g., the Internet, a TCP/IP based network, a cellular network, such as, for example, a Global System for Mobile Communications [GSM] network, a General Packet Radio Service [GPRS] network, a Code Division Multiple Access [CDMA] network, an Evolution-Data Optimized [EV-DO] network, an Enhanced Data Rates for GSM Evolution [EDGE] network, a 3GSM network, a 4GSM network, a Digital Enhanced Cordless Telecommunications [DECT] network, a Digital AMPS [IS-136/TDMA] network, or an Integrated Digital Enhanced Network [iDEN] network, etc.). In other embodiments, the network is, for example, a local area network (LAN), a neighborhood area network (NAN), a home area network (HAN), or personal area network (PAN) employing any of a variety of communications protocols, such as Wi-Fi, Bluetooth, ZigBee, etc. In yet another embodiment, the network includes one or more of a wide area network (WAN), a local area network (LAN), a neighborhood area network (NAN), a home area network (HAN), or personal area network (PAN). In such an embodiment, the controller 205 may receive the one or more user inputs via an outside device.
In one embodiment of operation, controller 205 receives a motion signal from the motion sensor 215 and a light signal from the photosensor 220. The controller 205 compares the motion signal to a motion threshold and the light signal to a light threshold. When the motions signal crosses the motion threshold and the light signal crosses the light threshold, the controller 205 turns on the guide lights 135. In some embodiments, the controller 205 may turn on the guide lights 135 when at least one selected from the group consisting of the motion threshold and the light threshold crosses the respective threshold. In some embodiments, the guide lights 135 remain on for a predetermined time period (for example, thirty second, one minute, two minutes, etc.) since motion is last detected.
In another embodiment of operation, controller 205 receives a motion signal from the motion sensor 215 and a light signal from the photosensor 220. The controller 205 compares the motion signal to a motion threshold and the light signal to a light threshold. When the motions signal crosses the motion threshold and the light signal crosses the light threshold, the controller 205 allows power to be provided to one or more outlet faces 110 of the receptacle 100. In some embodiments, the controller 205 may allow power to one or more outlet faces 110 when at least one selected from the group consisting of the motion threshold and the light threshold crosses the respective threshold. In some embodiments, the power is provided to one or more outlet faces 110 for a predetermined time period (for example, thirty second, one minute, two minutes, etc.) since motion is last detected. Such an embodiment may allow for a lamp, or other electrical device, to receive power from the receptacle 100 when light and/or motion are detected.
If the motion and light signals cross the motion and light thresholds, controller 205 turns on guide lights 135 and/or provides power to one or more outlet faces 110 (block 325). Controller 205 maintains the guide lights 135 on, and/or maintains providing power to one or more outlet faces 110, for a predetermined time (block 330). Operation 300 then cycles back to block 305.
Thus, embodiments provide, among other things, a receptacle having a motion activated guide light. Various features and advantages of the application are set forth in the following claims.
This application claims priority to U.S. patent application Ser. No. 16/195,017, filed Nov. 19, 2018, which claims priority to U.S. Provisional Patent Application No. 62/589,765, filed on Nov. 22, 2017, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4309681 | Draper et al. | Jan 1982 | A |
5673022 | Patel | Sep 1997 | A |
6888323 | Null et al. | May 2005 | B1 |
6894434 | Kosoff | May 2005 | B1 |
7045975 | Evans | May 2006 | B2 |
7339471 | Chan et al. | Mar 2008 | B1 |
9892630 | Strods | Feb 2018 | B1 |
10041639 | Thompson et al. | Aug 2018 | B1 |
11437764 | Mozdzer | Sep 2022 | B2 |
20020135476 | McKinney et al. | Sep 2002 | A1 |
20070040676 | Bandringa | Feb 2007 | A1 |
20080191630 | Peng | Aug 2008 | A1 |
20110301776 | Goyal et al. | Dec 2011 | A1 |
20110316355 | Gruber | Dec 2011 | A1 |
20120080944 | Recker et al. | Apr 2012 | A1 |
20140085922 | Padro et al. | Mar 2014 | A1 |
20140132084 | Pham | May 2014 | A1 |
20140217898 | Richards et al. | Aug 2014 | A1 |
20140268881 | Ku et al. | Sep 2014 | A1 |
20150249337 | Raneri et al. | Sep 2015 | A1 |
20150255932 | Dicks et al. | Sep 2015 | A1 |
20150382436 | Kelly | Dec 2015 | A1 |
20160111837 | Misener | Apr 2016 | A1 |
20160153650 | Chien | Jun 2016 | A1 |
20160323489 | Tang et al. | Nov 2016 | A1 |
20160358719 | Finnegan et al. | Dec 2016 | A1 |
20160377276 | Furry | Dec 2016 | A1 |
20170070090 | Miller | Mar 2017 | A1 |
20180308436 | Krattiger | Oct 2018 | A1 |
20180337495 | Martinez | Nov 2018 | A1 |
Entry |
---|
PCT/US2018/061791 International Search Report and Written Opinion dated Feb. 7, 2019 (16 pages). |
Chinese Patent Application No. 201890001408.2 First Office Action Issued by the China National Intellectual Property Administration dated Nov. 3, 2020, and translation. |
Number | Date | Country | |
---|---|---|---|
20220416482 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
62589765 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16195017 | Nov 2018 | US |
Child | 17902530 | US |