1. Field of the Invention
This invention relates in general to drop balls, plugs, or darts used to operate running well tool functions and, in particular, to a bypass sleeve with a dart landing shoulder to variably allow fluid flow past the drop member following tool operation.
2. Brief Description of Related Art
Darts, drop balls, or plugs are often used to actuate hydraulic devices within a wellhead or wellbore during well drilling and completion. Typically, a running tool is run to a predetermined location in a wellhead. A drop ball is then dropped into the running string supporting the running tool and pumped down to land at a shoulder within or axially below the running tool. Fluid pressure behind the drop ball is then increased until the fluid pressure reaches a level sufficient to actuate the hydraulic functionality of the running tool. The running tool may then be retrieved from the wellbore. This may be accomplished in a wet retrieval process. In a wet retrieval process, the running tool is pulled without first removing the column of fluid resting on the drop ball. This requires a tremendous expenditure of energy, and due to the significant weight of water being pulled, it is incredibly time consuming. In addition, the amount of water introduced into the deck level of the drilling rig can cause a significant safety problem to operators and workers located on the working deck.
Some devices may be pulled in a dry retrieval process. These devices include fluid ports that allow communication from the central passageway of the running tool to the wellbore. The fluid ports remain open during the operation of the running tool; thus, the fluid ports must be small enough to allow fluid pressure to build up behind the ball or dart despite the open fluid communication between the central passage of the running tool and the wellbore. When the device is retrieved, the fluid behind the dart will flow through the fluid ports into the wellbore. This eliminates the safety risk of the wet retrieval process by allowing the column of fluid blocked by the dart to drain past the dart during retrieval. However, this dry retrieval process is still incredibly time consuming as the process must be conducted slowly enough to allow the fluid to drain through the fluid ports without needlessly introducing fluid onto the platform deck.
One attempt to overcome this problem has been to include a burst disc in the dart to allow for faster draining of the drill string. However, because the burst disc must fit within the dart, it is, by necessity, smaller than the diameter of the fluid column above it. Therefore, while it does provide a faster drainage process than the previously described fluid ports, the burst disc still restricts flow and cannot maintain a large enough flowrate to drain as fast as the drill string can be pulled. Thus, there is a need for an apparatus to allow for a dry retrieval process that will decrease the time to retrieve the running tool, thereby decreasing the rig time needed and the cost associated with operation of the rig.
These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by preferred embodiments of the present invention that provide a receptacle sub, and a method for using the same.
In accordance with an embodiment of the present invention, a well tool is disclosed. The well tool includes a tubular body adapted to be connected to and lowered on a running tool string into a well conduit. The tubular body defines a central bore having an axis. The well tool also includes a sleeve in the central bore that is selectively moveable from an upper position to a lower position. The sleeve has at least one bypass port extending from an exterior to an interior of the sleeve. At least one retainer secures the sleeve in the upper position relative to the tubular body. The well tool includes a seal on the sleeve that seals the exterior of the sleeve to the bore while the sleeve is in the upper position, and a bypass passage in the body having an upper inlet portion and a lower outlet portion in fluid communication with the bypass ports. The well tool includes a drop member adapted to be lowered through the running tool string and to land on the sleeve. The drop member is adapted to be lowered through the running tool string and land on the sleeve. When the drop member is located in the sleeve, and the sleeve is in the upper position, the inlet portion of the bypass passage is blocked from fluid communication with the central bore. The retainer is adapted to selectively release the sleeve so that the sleeve moves downward to the lower position. When the sleeve is in the lower position, the bypass passage is in fluid communication with the bore and allows fluid communication from above the central bore through the bypass passage via the bypass ports of the sleeve.
In accordance with another embodiment of the present invention, a well tool assembly is disclosed. The well tool assembly includes a running tool adapted to be coupled to a running string and having at least one hydraulically actuated function. The assembly further includes a receptacle sub coupled to a lower end of the running tool so that when a drop member is landed in the receptacle sub, fluid flow through the receptacle sub is blocked and the hydraulically actuated function will actuate. The receptacle sub has a bypass passage that is opened in response to increased fluid pressure after the function is performed, the bypass passage extends below the drop member and has a cross-sectional flow area that is at least equal to a flow area cross section through a central passage of the running tool.
In accordance with yet another embodiment of the present invention, a method for operating a running tool is disclosed. The method begins by providing a well tool assembly. The well tool assembly includes a running tool adapted to be coupled to a running string and having at least one hydraulically actuated function, and a receptacle sub coupled to a lower end of the running tool. The method continues by dropping a drop member in the running string to land in the receptacle sub in an upper position, thereby blocking fluid flow through the receptacle sub. The method continues by supplying fluid pressure to the running tool at a first pressure to actuate the running tool to perform a function. Then, the method supplies fluid pressure to the running tool at a second pressure, greater than the first pressure, to drive the receptacle sub to a lower position, thereby opening a fluid flow bypass around the drop member.
In still another embodiment of the present invention, a system for setting an annular seal between a casing hanger and a wellhead is disclosed. The system includes a running tool and a receptacle sub. The running tool is adapted to be coupled to a running string and carries an annular seal for disposal between the casing hanger and the wellhead. The receptacle sub is coupled to a lower end of the running tool so that when a drop member is landed in the receptacle sub, fluid flow through the receptacle sub is blocked. The annular seal will energize in response to a resulting increased fluid pressure caused by the blocked receptacle sub, thereby sealing an annulus between the wellhead and the casing hanger. The receptacle sub includes a bypass passage that is opened in response to increased fluid pressure after the seal is energized. The bypass passage extends below the drop member and has a cross-sectional flow area that is at least equal to a flow area cross section through a central passage of the running tool so that the running tool may be pulled to the surface.
An advantage of a preferred embodiment is that it provides an apparatus for the actuation of a hydraulically actuated running tool with a dart or drop ball. The running tool may then drain the column of fluid blocked by the dart or drop ball at an increased rate to speed the process of running tool retrieval following tool actuation. This reduces the rig time needed to drill and complete the well.
So that the manner in which the features, advantages and objects of the invention, as well as others which will become apparent, are attained, and can be understood in more detail, more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof which are illustrated in the appended drawings that form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the invention and are therefore not to be considered limiting of its scope as the invention may admit to other equally effective embodiments.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and the prime notation, if used, indicates similar elements in alternative embodiments.
In the following discussion, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. Additionally, for the most part, details concerning drilling rig operation, casing hanger landing and setting, and the like have been omitted inasmuch as such details are not considered necessary to obtain a complete understanding of the present invention, and are considered to be within the skills of persons skilled in the relevant art.
Referring to
Central bore 15 further defines a bypass passage 27 and an upward facing shoulder 29. In the illustrated embodiment, bypass passage 27 may be an annular recess formed in central bore 15. A person skilled in the art will understand that bypass passage 27 may be any suitable fluid flow passage or passages and may comprise one or more separate passages. Bypass passage 27 is proximate to upper end 19 within central bore 15, and upward facing shoulder 29 is proximate to lower end 21 within central bore 15. Bypass passage 27 includes an upper inlet portion 26 and a lower inlet portion 28. Main body 23 includes a plurality of windows 31 extending from the exterior surface of main body 23 into central bore 15.
A bypass sleeve 33 is disposed within central bore 15. Bypass sleeve 33 has an exterior diameter slightly smaller than central bore 15 such that bypass sleeve 33 may move axially within central bore 15. Bypass sleeve 33 also defines a sleeve bore 34. Bypass sleeve 33 includes an annular downward facing shoulder 35 on an exterior diameter portion of bypass sleeve 33. Downward facing shoulder 35 extends from the exterior diameter surface of bypass sleeve 33 to a cylindrical protrusion 37. Cylindrical protrusion 37 extends axially downward from a lower portion of bypass sleeve 33 into close engagement with the lower portion of central bore 15. Bypass sleeve 33 includes upper and lower seals 36. Upper and lower seals 36 are located axially above and below windows 31 such that bypass sleeve 33 will seal central bore 15 to prevent flow of fluid through windows 31. As bypass sleeve 33 moves through central bore 15 from an upper position (
In the illustrated embodiment, bypass sleeve 33 includes a plurality of threaded bore holes 39. At least one threaded bore hole 39 corresponds with each window 31. A limiter screw 41, is threaded into each threaded bore hole 39 through window 31. When fully threaded into bore hole 39, a head of each limiter screw 41 will protrude into window 31. As bypass sleeve 33 moves axially within central bore 15, the heads of each limiter screw 41 will move through window 31, restraining movement of bypass sleeve 33 as the head of limiter screws 41 contact downward facing shoulder 43 of window 31 as shown in
A shown in
A plurality of retainers, such as shear pins 47, will extend through bores in the sidewall of main body 23 of tubular sub body 13. The retainers may comprise any device suitable for preventing movement of bypass sleeve 33 relative to tubular sub body 13 prior to actuation of a corresponding running tool. For example, retainers may be shear pins 47, shear screws, a split ring retainer, or the like. Shear pins 47 will protrude into corresponding bores in an exterior diameter surface of bypass sleeve 33, thereby preventing axial movement of bypass sleeve 33 relative to main body 23 prior to shearing of shear pins 47. In the illustrated embodiment, each shear pin 47 has a shear rating of 1,000 psi, and receptacle sub 11 may include one to twelve shear pins 47. In this manner, receptacle sub 11 may be configured to operate at relatively low pressures, as little as 1,000 psi, to relatively high pressures, as high as 12,000 psi. A person skilled in the art will understand that shear pins of different strength ratings and of different numbers may be used to adapt receptacle sub 11 to any desired pressure of operation.
Referring to
As shown in
Central bore 34 defines a dart shoulder 53 proximate to the upper end of bypass sleeve 33. Dart shoulder 53 may be an upward facing shoulder axially above bypass sleeve ports 49, as shown. Preferably, a drop member (such as a dart 55 of
Referring now to
Referring to
High capacity running tool 57 has a body 73 that surrounds stem 59, as stem 59 extends axially through body 73. Body 73 has an upper body portion 75 and a lower body portion 77. Upper portion 75 of body 73 is a thin sleeve located between an outer sleeve 79 and stem 59. Outer sleeve 79 is rigidly attached to stem 59. A latch device (not shown) is housed in a slot 81 located within outer sleeve 79. Lower body portion 77 of body 73 has threads 83 along its inner surface that are engaged with threads 67 on the outer surface of stem 59. Body 73 has an upper; body port 85 and a lower body port 87 positioned in and extending therethrough that allow fluid communication between the exterior and interior of the stem body 73. Lower body portion 77 of body 73 houses an engaging element 89. In this particular embodiment, engaging element 89 is a set of dogs having a smooth inner surface and a contoured outer surface. The contoured outer surface is adapted to engage a complimentary contoured surface on the inner surface of a casing hanger 91 when engaging element 89 is engaged with casing hanger 91. Although not shown, a string of casing is attached to the lower end of casing hanger 91. The inner surface of engaging element 89 is initially in contact with threads 67 on the inner surface of stem 59.
A piston 93 surrounds stem 59 and substantial portions of body 73. Referring to
Receptacle sub 11 is connected to the lower end of stem 59. Receptacle sub 11 will operate as described above with respect to
Referring to
Referring to
Referring to
Referring to
Referring to
As described above with respect to
Referring to
Accordingly, the disclosed embodiments provide numerous advantages. For example, the disclosed embodiments provide an apparatus for the actuation of a hydraulically actuated running tool using a dart or drop ball. The apparatus then allows for a dry retrieval that drains the column of fluid blocked by the dart or ball at an increased rate to speed the process of running tool retrieval. This significantly reduces the rig time needed to pull the running tool following use of the running tool while maintaining or increasing safety at the rig deck.
It is understood that the present invention may take many forms and embodiments. Accordingly, several variations may be made in the foregoing without departing from the spirit or scope of the invention. Having thus described the present invention by reference to certain of its preferred embodiments, it is noted that the embodiments disclosed are illustrative rather than limiting in nature and that a wide range of variations, modifications, changes, and substitutions are contemplated in the foregoing disclosure and, in some instances, some features of the present invention may be employed without a corresponding use of the other features. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
3616850 | Scott | Nov 1971 | A |
3771603 | Crowe | Nov 1973 | A |
4574894 | Jadwin | Mar 1986 | A |
4915175 | Mashaw, Jr. | Apr 1990 | A |
6253861 | Carmichael et al. | Jul 2001 | B1 |
7628213 | Telfer | Dec 2009 | B2 |
7909107 | Gette | Mar 2011 | B2 |
8550176 | Knobloch et al. | Oct 2013 | B2 |
20100270030 | Ashy et al. | Oct 2010 | A1 |
20110203809 | Knobloch et al. | Aug 2011 | A1 |
20130025877 | Robinson-Brown et al. | Jan 2013 | A1 |
20130098635 | Gette | Apr 2013 | A1 |
20130168099 | Themig | Jul 2013 | A1 |
Number | Date | Country |
---|---|---|
2367844 | Apr 2002 | GB |
Entry |
---|
“Dart”, http://www.glossary.oilfield.slb.com/en/Terms/d/dart.aspx, 2014. |
Search Report dated Dec. 19, 2012 from corresponding Application No. GB 1218717.5. |
Layout/SSWE A610716-192, Sep. 30, 2008. |
SSWE/Assembly A953380-1, May 30, 2001. |
Assembly/SSWE A953380-2, Jan. 26, 2009. |
Number | Date | Country | |
---|---|---|---|
20130098635 A1 | Apr 2013 | US |