The present invention relates to a receiver for receiving a spread spectrum modulated signal, comprising at least sampling means for forming samples of a received signal, at least one channel-specific reference code block for generating at least one reference code, and a correlation block. The invention also relates to an electronic device which comprises a receiver for receiving a spread spectrum modulated signal, comprising at least sampling means for forming samples of a received signal, at least one reference code block for generating at least one reference code, and a correlation block. The invention also relates to a system with a transmitting station for transmitting a spread spectrum modulated signal and a receiver for receiving a spread spectrum modulated signal, the receiver comprising at least sampling means for forming samples of a received signal, at least one reference code block for generating at least one reference code, and a correlation block. Furthermore, the invention relates to a module which is arranged to be used for receiving a spread spectrum modulated signal in a receiver, the module comprising at least sampling means for forming samples of a received signal, at least one reference code block for generating at least one reference code, and a correlation block. The invention also relates to a method for receiving a spread spectrum modulated signal, comprising the steps of forming samples of a received signal, generating at least one reference code, and perform ing correlation between said at least one reference code and the received signal. Moreover, the invention relates to a computer software product comprising machine executable commands for forming samples of a received spread spectrum modulated signal, for generating at least one reference code, and for performing correlation between said at least one reference code and the received signal.
Spread spectrum modulated signals (CDMA, Code Division Multiple Access) are used, for example, in global navigation satellite systems (GNSS), such as the GPS system, as well as in many third generation mobile communication systems, such as the UMTS. For generating a spread spectrum modulated signal, the modulation is performed in a transmitter by using an individual spreading code, wherein several transmitters can simultaneously transmit a signal at the same frequency, when each transmitter is allocated a unique spreading code. For example, in satellite positioning systems, each satellite uses a spreading code of its own. In the receiver, the corresponding reference code is generated or it is read from the memory of the receiver, and this reference code is used for searching the received signal for the signal of the transmitter which is to be received. For successful signal reception, the receiver must perform acquisition of the signal, typically by using several correlators and controlling the code phase and frequency of the reference code, wherein the signals generated by the correlators are used to determine the correct code phase and the frequency shift. After the acquisition has been completed, the tracking of the signal is continued so that the reception of the signal and the demodulation of the information transmitted therein would be possible. In this tracking step, the code phase and frequency of the reference code are to be kept locked with the code phase and frequency of the signal to be received.
The acquisition and the tracking of the signal are problematic particularly indoors where the strength of the signal to be received is poor, possibly even lower than background noise. Such a situation occurs particularly in satellite positioning systems, in which the signal to be received is very weak upon arrival on the earth, and indoors this signal can be further attenuated by the walls of buildings. To cure this problem, solutions of prior art are aimed at implementing the receiver by providing it with a large number of correlators and by using a long integration time. At present, receivers may comprise as many as about 16,000 correlators. For the sake of comparison, it should be mentioned that the first portable GPS receivers only comprised 12 or even fewer correlators. The increase in the number of correlators naturally also means that the circuit board area required for implementing the correlators is significantly increased as well. Furthermore, this increases the power consumption of the receiver. Because of the higher power consumption, the heating of the device may also be increased.
According to the present invention, a method has been invented for receiving a spread spectrum modulated signal, wherein it is possible to utilize the correlators more efficiently. The invention is based on the idea of computing the correlation over several samples at one time, and also in such a way that several correlations are computed in groups simultaneously. To put it more precisely, the receiver according to the present invention is primarily characterized in that said correlation block comprises:
The electronic device according to the invention is primarily characterized in that the correlation block comprises:
The system according to the invention is primarily characterized in that said correlation block comprises:
The module according to the invention is primarily characterized in that said correlation block comprises:
The method according to the invention is primarily characterized in that the method also comprises:
Finally, the computer software product according to the invention is primarily characterized in that the computer software product also comprises machine executable commands:
For example, the following advantages are achieved by the present invention: The circuit board area of the receiver is saved when compared with arrangements of prior art, because the same multiplication operations, code shifts and additions can be used in several different codes and code phases. Furthermore, the bandwidth of the signal after the correlator is relatively wide, typically covering the whole Doppler frequency range to be searched, when the receiver is applied in connection with satellite positioning systems. Thus, a division of the frequency range to be searched in smaller subbands and a search in the subbands will not be necessary. Furthermore, the number of ports and the circuit board area can be reduced by using time multiplexing, wherein some blocks of the receiver can be used for the acquisition of different signals. Such time multiplexing is possible in the receiver according to the invention, for example, for the reason that the processing rate required after the group correlator is relatively low. The correlator according to the invention can also be divided into various parts. Furthermore, the invention makes it possible to use the same blocks for both the acquisition and the tracking.
In the following, the invention will be described in more detail with reference to the appended drawings, in which
In the following, the invention will be described by using, as an example of the receiver, the receiver 1 of a satellite positioning system shown in
Furthermore, the correlation block 1.3 comprises N code shift registers 1.32 and code registers 1.33. Number N corresponds to the number of receiving blocks; for example, there are four code registers 1.33. For the sake of clarity, however, only two code shift registers 1.32 and code registers 1.33 are shown in
The correlation block 1.3 can also be implemented without the code shift registers 1.32. Thus, all the data entering the code register is received from the channel-specific reference code block 1.4 either in parallel during a single epoch, or serially by using a higher clock frequency than that used by the correlation block 1.3.
After the data of the code shift register 1.32 have been copied/transferred at least once (block 802) into the code register 1.33 (i.e., the code shift register 1.32 is full of samples), the multiplier 1.34 performs a bit-specific multiplication in a multiplexed manner with the samples of the sample shift register 1.31 and the bits of each code register 1.33. In this context, multiplexing means that the samples of the sample shift register 1.31 and one code register 1.33 are multiplied at one time in the multiplier 1.34, and the multiplication results (correlation part results) are combined in a combination block 1.35. These multiplications and combinations are repeated until all or a sufficient number of code registers have been scanned through (blocks 806, 807). The result is N correlation results. Consequently, the multiplication between each code register 1.33 and the sample shift register 1.31 can be performed for the same sample string by using only one multiplier 1.34 and only one combination block 1.35. After this, the multiplication is always performed after a new sample has been input in the sample shift register 1.31. Consequently, this is a series of multiplications, in which the value of the code register 1.33 is the same for GC samples, but the sample shift register 1.31 is shifted by one after every multiplication and a new sample is input in the first register. In this way, the correlation can be made between the samples and the codes (code register×sample shift register). Thus, in the receiver according to the invention, the content of the code register 1.33 is not changed after every sample but after every GC samples.
The output of the correlation block 1.3 comprises Nsamples, each of which corresponds to the integration for GC samples by one correlator. The output signal of the correlation block 1.3 thus corresponds to the output signals of correlators (GC correlators) in a receiver of prior art. However, one difference is, for example, that each sample of the correlation block 1.3 according to the invention corresponds to the integration of GC samples. The relatively short correlation in the correlation block 1.3 means that the post-correlation bandwidth is relatively broad. One non-restricting numerical example to be mentioned is the following application in the GPS system. The length of the sample shift register 1.31 is 66 samples, and 2 samples are taken of each signal chip (sampling rate about 2 MHz). This results in a bandwidth of about 31 kHz.
When the receiver 1 according to the invention is applied, for example, in satellite positioning systems, only one intermediate frequency removal block 1.2 is needed before the correlator, because the bandwidth after the correlation block 1.3 covers the whole Doppler frequency range searched for satellite signals (frequency shift caused by Doppler shift). Moreover, a single sample register 1.32 will be sufficient, because the contents of all the code shift registers 1.33 can be multiplied with the content of this sample register 1.32.
The signals formed in the correlation block 1.3 can then be input in the mixer block 1.5, of which one example is shown in
The mixer block 1.5 and the coherent integration block 1.6 are controlled by a digital signal processor 1.9 or a corresponding controller. In the acquisition function, fixed values (frequency and phase) for a given search are set in the Doppler tracking blocks 1.51 of the mixer block 1.5. In the tracking function, the Doppler frequency blocks 1.51 of the mixer block are controlled to keep the receiver locked with the signal to be received. This is achieved by controlling the frequency and the phase, if necessary. In the tracking function, the digital signal processor 1.9 can read the results of the coherent integration from the memory area used by the coherent integration block 1.6, when the signal to be received is sufficiently strong. During the reception of a weak signal, the acquisition and tracking functions may further include incoherent integration in an incoherent integration block 1.8, wherein prior to this, the signal components are combined in a combination block 1.7, for example, by squaring both components and summing up the squared values. In this situation, the digital signal processor 1.9 reads the results of the incoherent integration from the memory area used by the incoherent integration block 1.8 and uses these values to control the acquisition/tracking.
Furthermore,
It is obvious that even though the control block 1.9 is presented as a separate block in the above description of the invention and in the appended drawings, some of the blocks of the receiver 1 can be implemented, for example, as functions of a digital signal processor used as the control block 1.9.
Furthermore, the invention can be implemented as a module which is attached to e.g. a receiver. One alternative of such a module structure is to implement the correlation block as a separate module. In
Furthermore, it will be obvious that the present invention is not limited solely to the above-presented embodiments but it can be modified within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2004-5147 | Apr 2004 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI05/50128 | 4/21/2005 | WO | 7/23/2007 |