Recess on tip of hybrid scroll compressor wrap to compensate for uneven thermal expansion

Information

  • Patent Grant
  • 6709249
  • Patent Number
    6,709,249
  • Date Filed
    Thursday, January 16, 2003
    21 years ago
  • Date Issued
    Tuesday, March 23, 2004
    20 years ago
Abstract
A scroll compressor is provided with a hybrid having thicker wrap portions and thinner wrap portions. The problem of uneven thermal expansion is addressed by providing a recess in the thicker portion. The recess communicates with the inner higher pressure and higher temperature compression chambers to communicate the higher temperature refrigerant along the face of the thicker portion. The recess blocks flow of this refrigerant to the radially outer end of the thicker portion which communicates with a lower pressure/lower temperature chamber. The use of the recess compensates for uneven thermal expansion by bringing the thicker portion to a more even temperature across its width.
Description




BACKGROUND OF THE INVENTION




This invention relates to the provision of a shallow recess communicating discharge pressure and temperatures back across the width of a thicker portion of a hybrid wrap in a scroll compressor to compensate for the uneven thermal expansion that can occur in hybrid scroll wraps.




Scroll compressors are becoming widely utilized in refrigerant compression applications. In a scroll compressor, a first scroll member has a base with a generally spiral wrap extending from the base. A second scroll member has its own base and spiral wrap. The two wraps interfit to define compression chambers. One of the two scroll members is caused to orbit relative to the other, and as the relative orbital movement occurs, the wraps move reducing the size of the compression chambers, thus compressing an entrapped refrigerant.




Scroll compressors are becoming widely utilized due to their efficiency, and other beneficial characteristics. Also, a good deal of engineering development is occurring with scroll compressors. As one major advancement, the shape of the wraps has deviated from a spiral. Originally, the scroll wraps were formed generally along an involute of a circle. However, more recently, more complex shapes to the wraps have been developed. While the wraps are still “generally spiral,” they do deviate from an involute of a circle. Various combinations of curves, involutes, etc. are utilized to form a so-called “hybrid” wrap. In a hybrid wrap, the width of the wrap varies along its circumferential dimension. Generally, in a non-hybrid wrap, the width of the wrap is uniform.




While hybrid wraps provide a number of benefits, they also raise a few challenges. One challenge is shown in prior art

FIGS. 1 and 2

. As shown in

FIG. 1

, a scroll compressor


20


has an orbiting scroll member


22


with a base


24


and a hybrid wrap


26


. The non-orbiting scroll


28


has its own base


32


and wrap


33


. As shown, the wrap


33


has thinner portions


30


and thicker portions


34


. The reasons for, and configuration of, the hybrid wrap are known in the art. However, a problem associated with the wraps having thicker and thinner portions is illustrated in

FIGS. 1 and 2

. As shown, there is a relatively low pressure and low temperature suction chamber


38


on one side of the thicker wrap portion


34


, and a higher pressure and temperature chamber


40


on the other. The chambers on each side of the thinner portion


30


would also be at distinct pressures and distinct temperatures, however, as explained below, the problem that is to be solved by this invention would not be as pronounced at the thinner portion


30


, simply because it is thinner.




As shown in

FIG. 1

schematically, there may be thermal expansion such as shown in outline at


36


at the thicker portion


34


due to the temperature imbalance between chambers


38


and


40


.




As can be seen in

FIG. 2

, the higher pressure and higher temperature on the inner side of the thicker portion


34


causes a heat gradient across the width of the thicker portion


34


. The same would be generally true at the thinner portions, however, since the thinner portions are in fact thinner, it is more likely that the temperature gradient will be not as pronounced, and heat would transfer freely across the width of the wrap. At the thicker portion, there is greater heat resistance, and thus a greater likelihood that the heat would not transfer across the entirety of the width


34


, but would instead result in localized thermal expansion. This is the thermal expansion shown schematically and in dotted line at


36


in FIG.


1


. When this type of expansion occurs, undesirable effects such as surface wear or galling between the end of the thicker portion


34


and the opposed base


24


of the orbiting scroll


22


can occur. This is, of course, undesirable.




SUMMARY OF THE INVENTION




In the disclosed embodiment of this invention, a recess is formed into the face of the thicker portion of the wrap such that localized thermal expansion is partially compensated, but not to the extreme edge such that this refrigerant in the recess is still separated from the suction chamber. In addition, discharge temperature and pressure refrigerant is communicated along the width of the thicker portion. Thus, the recess communicates the higher pressure and temperature refrigerant along the width of the thicker portion such that the heat gradient is only over a thin portion of the wrap, thus reducing the thermal expansion imbalance.




In a preferred embodiment, this recess is very shallow, and on the order of 0.0005 inch. Moreover, the recess extends between two circumferential edges, and to an inner edge. The recess preferably communicates with the discharge pressure chamber along the entirety of its circumferential width, to maximize the resistance to a heat transfer gradient.




These and other features of the present invention may be best understood from the following specification and drawings, the following of which is a brief description.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a cross-section through a prior art scroll compressor.





FIG. 2

is an end view of one portion of a prior art scroll compressor.





FIG. 3

is an end view of an inventive scroll compressor component.





FIG. 4

is a cross-sectional view to the inventive scroll compressor component shown in FIG.


3


.











DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT





FIG. 3

shows a non-orbiting scroll member


50


incorporating the present invention. As shown, a thicker portion


52


of the wrap is provided with a recess


56


. The thinner portion


54


, and other thinner portions do not receive such a recess. While a single recess is shown, a worker in this art would recognize that more than one recess could be utilized spaced throughout the thicker portions.




An inner circumferential extent


58


defines the recess


56


along with an outer circumferential extent


62


. A back wall


64


seals the recess


56


from the suction chamber


38


. The front end


60


of the recess


56


allows flow of refrigerant from chamber


40


throughout the recess


56


. This higher temperature refrigerant will thus serve to reduce any thermal gradient along the thicker width of the thicker portion


52


. The recess itself will partially compensate the thermal expansion at


36


in FIG.


1


.




As can be appreciated from

FIGS. 3 and 4

, the recess is formed in a portion of the wrap


52


which is spaced from a radially inner wrap portion along a line X extending from a discharge port


100


, and through the recess. That is, the recess does not communicate with the discharge port, but instead is spaced radially outwardly of the discharge port when the wraps are engaged. Also as can be seen, line X passes through a thinner wrap portion


102


before reaching recess


56


.




While a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in the art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.



Claims
  • 1. A scroll compressor comprising:a first scroll member having a base and a generally spiral wrap extending from said base, said generally spiral wrap being a “hybrid” type such that the thickness of the wrap throughout a circumferential length varies, with said wrap having a generally thicker portion and a generally thinner portion; a second scroll member having a base and a generally spiral wrap extending from said base, said generally spiral wrap being a “hybrid” type having a thicker and thinner portion; said second scroll member having its wrap interfit with said wrap of said first scroll member to define compression chambers, and said second scroll member being driven to orbit relatively to said first scroll member to cause said compression chambers to be reduced in volume, thereby compressing an entrapped refrigerant; and a recess formed into said thicker portion of said wrap of at least one of said first and second scroll members, said recess communicating with a radial inward face of said thicker portion of said wrap to communicate to a higher pressure compression chamber, and said recess being closed to block flow of refrigerant throughout the length of said thicker portion, such that said recess does not extend to a radially outer face of said thicker portion which would communicate with a lower pressure compression chamber, and there being a discharge port extending through said first scroll member, said recess not communicating with said discharge port when said wraps of said first and second scroll member interfit.
  • 2. A scroll compressor as recited in claim 1, wherein said first scroll member receives said recess.
  • 3. A scroll compressor as recited in claim 1, wherein said recess is relatively shallow.
  • 4. A scroll compressor as recited in claim 1, wherein said recess is less than 0.01 inch.
  • 5. A scroll compressor as recited in claim 1, wherein said recess extends between two circumferential edges, with a curve connecting said two circumferential edges, and defining a back wall for blocking flow of refrigerant to said lower pressure chamber.
  • 6. A scroll compressor as set forth in claim 1, wherein said recess is formed in a thicker portion of said wrap, with a radially inner wrap portion being spaced radially inwardly of said wrap, and on the same radial side of said discharge port as said thicker portion.
  • 7. A scroll compressor as set forth in claim 1, wherein a line drawn from a center of said discharge port, through said recess, passes through a thinner portion of said wrap before reaching said recess.
  • 8. A scroll compressor comprising:a first scroll member having a base and a generally spiral wrap extending from said base, said generally spiral wrap being a “hybrid” type such that the thickness of the wrap throughout a circumferential length varies, with said wrap having a generally thicker portion at a radially outer location than at least a generally thinner portion spaced more radially inwardly; a second scroll member having a base and a generally spiral wrap extending from said base, said generally spiral wrap being a “hybrid” type; said second scroll member having its wrap interfit with said wrap of said first scroll member to define compression chambers, and said second scroll member being driven to orbit relatively to said first scroll member to cause said compression chambers to be reduced in volume, thereby compressing an entrapped refrigerant; and a recess formed into said thicker portion of said wrap of said first scroll member, said recess communicating with a radial inward face of said thicker portion of said wrap to communicate to a higher pressure chamber, and said recess being closed to block flow of refrigerant throughout the length of said thicker portion, such that said recess does not extend to a radially outer face of said thicker portion which would communicate with a lower pressure chamber, said recess extends between two circumferential edges, with a curve connecting said two circumferential edges, and defining a back wall for blocking flow of refrigerant to said lower pressure chamber.
  • 9. A scroll compressor as set forth in claim 8, wherein said recess is formed in a thicker portion of said wrap, with a radially inner wrap portion being spaced radially inwardly of said wrap, and on the same radial side of said discharge port as said thicker portion.
  • 10. A scroll compressor as set forth in claim 8, wherein a line drawn from a center of said discharge port, through said recess, passes through a thinner portion of said wrap before reaching said recess.
  • 11. A scroll compressor as recited in claim 8, wherein said recess is relatively shallow.
  • 12. A scroll compressor as recited in claim 11, wherein said recess is less than 0.01 inch.
US Referenced Citations (3)
Number Name Date Kind
5318424 Bush et al. Jun 1994 A
5421707 Daniels Jun 1995 A
5458471 Ni Oct 1995 A