The present disclosure relates generally to turbine blade dampers, and more specifically to a turbine blade damper that recesses into a pocket under a turbine blade platform.
Gas turbine engines are used to power aircraft, watercraft, power generators, and the like. Gas turbine engines include a compressor section, a combustor section, and a turbine section. The turbine section typically includes a series of turbine blades disposed circumferentially about and extending radially from a wheel to form a turbine rotor. Each turbine blade included in a rotor typically has a platform, a root extending radially inwardly from the platform to the wheel for engagement with the wheel, and an airfoil extending radially outwardly from the platform toward a surrounding shroud covering the turbine rotor. A gap is often provided between adjacent platforms to accommodate manufacturing and assembly of the turbine rotor.
Sometimes a damper is provided between pairs of adjacent turbine blade to fill at least a portion of the gap formed between platforms of the adjacent turbine blades. The damper typically is configured to provide some amount of sealing between adjacent platforms and to dampen vibrations of the corresponding turbine blades.
The present invention may comprise one or more of the following features and combinations thereof.
A turbine blade damping system may include a platform defining a pocket and a damper recessable within the pocket. The damper may be extended from the pocket into engagement with a sealing surface of an adjacent platform.
In some embodiments, the platform may have a leading end, a trailing end, a first circumferential side, a second circumferential side, a radially-outward side, and a radially-inward side. The radially-inward side may define the pocket, which may extend circumferentially inwardly from the first circumferential side. The pocket may have a ceiling portion, a first wall portion extending radially inward from the ceiling portion proximate the leading end, a second wall portion extending radially inward from the ceiling portion proximate the trailing end, a first floor portion extending from the first wall portion toward the second wall portion, and a second floor portion extending from the second wall portion toward the first wall portion. The ceiling portion may define a pocket beveled surface extending circumferentially inwardly from the first circumferential side. The second circumferential side may define a platform sealing surface.
In some embodiments, the damper may have a leading end, a trailing end, a first circumferential side, a second circumferential side, a body portion, a radially-outward side, a first leg portion extending radially inwardly from the leading end of the body portion, and a second leg portion extending radially inwardly from the trailing end of the body portion, the first circumferential side defining a damper sealing surface. The radially-outward side of the damper may define a damper beveled surface. The damper beveled surface may be slidingly engaged with the pocket beveled surface, and the damper may be movable with respect to the platform between a first position wherein at least a portion of the damper is recessed within the pocket and a second position wherein a lesser portion of the damper is recessed with the pocket and the damper sealing surface is engaged with a platform sealing surface of an adjacent platform.
In some embodiments, the first and second leg portions of the damper define respective outer surfaces, wherein the respective outer surfaces are in sliding engagement the first and second wall portions of the pocket.
In some embodiments, the first and second leg portions of the damper may define respective feet, the respective feet engaged with the first and second floor portions when the damper is in the first position.
In some embodiments, the platform and an adjacent platform may be attached to a wheel.
In some embodiments, the turbine blade damping system may include additional platforms and additional dampers associated with adjacent pairs of platforms.
These and other features of the disclosure will become more apparent from the following description of the illustrative embodiments.
For the purpose of promoting an understanding of the principles of the disclosure, reference will now be made to one or more illustrative embodiments illustrated in the drawings, and specific language will be used to describe the same.
The drawings illustrate a gas turbine engine including a wheel 12, a first turbine blade 14A connected to wheel 12, and a second turbine blade 14B connected to wheel 12 as shown in
Each turbine blade 14A-n includes a platform 18 having a leading end 26, a trailing end 28, a first circumferential side 48, a second circumferential side 50, a radially-inward side 32, and a radially-outward side 40 as shown in
Radially-inward side 32 of platform 18 defines a pocket 38 extending inwardly from first circumferential side 48 of platform 18 as shown in
Assembly of turbine blades 14A-n to wheel 12 may be facilitated with damper 36 in the first, recessed position. When the turbine engine spools up, centrifugal force acting upon damper 36 causes damper 36 to be moved to and maintained in the second, extended position. When in the second, extended position, for example, as shown in
More specifically, each platform 18 of the illustrated embodiment (which is merely illustrative of the invention as claimed and not to be construed as limiting it) includes a body portion 20, a first leg 22, and a second leg 24. First leg 22 extends radially inwardly from body portion 20 proximate leading end 26, and second leg 24 extends radially inwardly from body portion 20 proximate trailing end 28. Body portion 20, first leg 22 and second leg 24 cooperate to define pocket 38.
Pocket 38 includes a ceiling portion 42 that may be defined by a radially-inward surface of platform 18. A portion of ceiling portion 42 extending inwardly from first circumferential side 48 of platform 18 defines a platform beveled surface 52. Pocket 38 also includes first and second generally elongate wall portions 44, 46 that may be defined by inward surfaces of first and second legs 22, 24, respectively. Pocket 38 may further include a first flange 54 extending from first wall portion 44 toward second wall portion 46 at a first radial distance from ceiling portion 42, and a second flange 56 extending from second wall portion 46 toward first wall portion 44 at a second radial distance from ceiling portion 42. An inner surface of first flange 54 defines a first floor portion 55, and an inner surface of second flange 56 defines a second floor portion 57. A first lip 58 may extend from first flange 54 proximate a free end thereof, and a second lip 60 may extend from second flange 56 proximate a free end thereof. First wall portion 44, first floor portion 55 and first lip 58 correspond to define a first damper-retaining groove, and second wall portion 46, second floor portion 57 and second lip 60 correspond to define a second damper-retaining groove, as will be discussed further below.
In other embodiments, pocket 38 could be defined in other ways. For example, platform 18 could embody structure other than legs 22, 24 that cooperate with body portion 20 in order to define pocket 38.
Damper 36 of the illustrated embodiment includes a body portion 62, a first leg 64, a second leg 66, a first circumferential surface (or damper sealing surface) 82 and a second circumferential surface (unnumbered). First leg 64 extends radially inwardly from a leading end 68 of body portion 62 and terminates in a first free end (or foot) 78. Similarly, second leg 66 extends radially inwardly from a trailing end 70 of body portion 62 and terminates in a second free end (or foot) 80. A radially outward side of body portion 62 defines a damper beveled surface 72 complementary to pocket beveled surface 52.
Damper 36 is configured so that damper beveled surface 72 may slidingly engage with pocket beveled surface 52, and so that outer surfaces 74, 76 of first and second legs 64, 66, respectively may slidingly engage or be slightly spaced in an axial direction from first and second wall portions 44, 46 of platform 18, respectively. Also, damper 36 is configured so that one or both of free ends 78, 80 of damper 36 may rest on first and second floor portions 55, 57, respectively, when damper 36 is recessed within pocket 38. As such, no other structure, for example supporting tabs or like extending from the interior surface of pocket 38, is necessary for supporting damper 36 within pocket 38, for example, when damper 36 is recessed therein. First and second lips 58, 60 may, but need not, be sufficiently long to capture, respectively, first and second legs 64, 66 of damper 36 with damper 36 in the second position.
As discussed above, damper 36 may be placed recessed within pocket 38 prior to assembly of turbine blades 14n to wheel 12 in order to facilitate such assembly. When the turbine engine spools up, a centrifugal force acting upon damper 36 biases damper 36 in a radially outward direction relative to pocket 38, causing damper 36 to slide diagonally along the interface defined by pocket beveled surface 52 and damper beveled surface 72 to the second position where all or a portion of first circumferential surface 82 of damper 36 contacts a corresponding portion of a mating sealing surface 88 of second circumferential side 50 of platform 18 of an adjacent turbine blade 14n. In the second, extended position, body portion 62 of damper 36 engages with body portion 20 of the adjacent platform 18, and first and second legs 64, 66 of damper 36 engage with first end second legs 22, 24 of platform 18. In embodiments wherein platform 18 does not include first and second legs 22, 24, first and second legs 64, 66 of damper 36 engage with other structure of platform 18 directed radially inwardly from body portion 20. Also, as damper 36 moves from the first, recessed position to the second, extended position, free ends 78, 80 of first and second legs 64, 66 of damper 36 may depart from corresponding floor portions 55, 57 of corresponding platform 18.
The material and surface treatments used for damper 36 and platform 18, including any bearing and sealing surfaces thereof, may be selected as desired to allow for adequate sliding of damper 36 relative to platform 18 and for adequate sealing and vibration dampening (or energy dissipation) between damper 36, its corresponding platform 18, and an adjacent platform 18.
The angle of damper beveled surface 72 relative to first circumferential surface 82 may be selected as desired for a particular application. The angle of pocket beveled surface 52 typically would be complementary to the foregoing angle. Also, the mass and mass distribution of damper 36 may be selected as desired for a particular application.
While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/919,973, filed 23 Dec. 2013, the disclosure of which is now expressly incorporated herein by reference.
The present invention was made using U.S. Government funding under U.S. Government contract no. FA8650-07-C-2803. The U.S. Government may have certain rights in the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2198784 | Mikina | Apr 1940 | A |
3295825 | Hall, Jr. | Jan 1967 | A |
3709631 | Karstensen | Jan 1973 | A |
3837761 | Brown | Sep 1974 | A |
4457668 | Hallinger | Jul 1984 | A |
4872812 | Hendley et al. | Oct 1989 | A |
4936749 | Arrao | Jun 1990 | A |
5156528 | Bobo | Oct 1992 | A |
5478207 | Stec | Dec 1995 | A |
5573375 | Barcza | Nov 1996 | A |
5599170 | Marchi et al. | Feb 1997 | A |
5746578 | Brassfield | May 1998 | A |
5785499 | Houston et al. | Jul 1998 | A |
5803710 | Dietrich et al. | Sep 1998 | A |
5827047 | Gonsor et al. | Oct 1998 | A |
5924699 | Airey | Jul 1999 | A |
6273683 | Zagar et al. | Aug 2001 | B1 |
6354803 | Grover | Mar 2002 | B1 |
6786696 | Herman | Sep 2004 | B2 |
6851932 | Lagrange et al. | Feb 2005 | B2 |
7534090 | Good et al. | May 2009 | B2 |
8011892 | Ramlogan et al. | Sep 2011 | B2 |
8393869 | Kim | Mar 2013 | B2 |
20010038793 | Brandl | Nov 2001 | A1 |
20020146322 | Yeo | Oct 2002 | A1 |
20050079062 | Surace | Apr 2005 | A1 |
20060013691 | Athans | Jan 2006 | A1 |
20060257262 | Itzel | Nov 2006 | A1 |
20070134099 | Lee | Jun 2007 | A1 |
20070286732 | Good | Dec 2007 | A1 |
20070286734 | Lagrange | Dec 2007 | A1 |
20080181779 | Decardenas | Jul 2008 | A1 |
20090004021 | Baumhauer | Jan 2009 | A1 |
20090263235 | Tibbott | Oct 2009 | A1 |
20100272568 | Roush | Oct 2010 | A1 |
20120121424 | Wassynger | May 2012 | A1 |
20130195665 | Snyder | Aug 2013 | A1 |
20140030100 | Joshi | Jan 2014 | A1 |
20140079529 | Kareff | Mar 2014 | A1 |
20140369844 | Hansom | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
EP 1600606 | Nov 2005 | DE |
0851097 | Jul 1998 | EP |
1477634 | Nov 2004 | EP |
1795703 | Jun 2007 | EP |
1867837 | Dec 2007 | EP |
2009247 | Dec 2008 | EP |
2472065 | Jul 2012 | EP |
Entry |
---|
Extended European Search Report issued in connection with European Application No. 14195463.6-1610 / 2957723, dated Nov. 16, 2015, 9 pages. |
European Examination Report issued in connection with European Application No. 141954616-1610, dated Sep. 16, 2016, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20150308287 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61919973 | Dec 2013 | US |