In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
Various embodiments of the present invention are described below, including certain embodiments relating particularly to LED-based light sources. It should be appreciated, however, that the present invention is not limited to any particular manner of implementation, and that the various embodiments discussed explicitly herein are primarily for purposes of illustration. For example, the various concepts discussed herein may be suitably implemented in a variety of environments involving LED-based light sources, other types of light sources not including LEDs, environments that involve both LEDs and other types of light sources in combination, and environments that involve non-lighting-related devices alone or in combination with various types of light sources.
The present invention is directed generally to lighting apparatus configured to form a “light cove.” As discussed in more detail below, in various embodiments of the invention, one or more light sources are installed in a cut-out area or gap in an architectural surface, without requiring a bezel or a frame, such that, in operation, no features other than generated light are evident in the gap. The resulting visible effect appears as an essentially uniform and featureless “floating light,” wherein the void of the gap in the architectural surface is filled with light. In particular embodiments, no front plate, diffuser, translucent material or the like is used to cover the gap. Referring to
Referring to
Still referring to
In various embodiments, the cove member 240 is coupled to a wall 205, for example, and configured to fit into the gap 230 and be secured therein without the need for any additional fastening devices. The cove member may be flat, concave, or convex, and may be shaped as a semi-sphere having a first portion set back from the wall and an edge portion flush with a wall surface 210. In certain embodiments of the present invention mentioned above where the gap 230 is formed by removing a portion of one or more drywall sheets arranged on a standard stud-based construction frame 220, the cove member may extend into a space behind the wall up to 1″-4″ from the wall surface, for example, to a depth of about 3.5″.
In some embodiments of the present invention, the cove lighting apparatus 200 may also include at least one supporting member, for example, a flange 250, configured to support the apparatus in the gap and extending at least partially along the wall surface 210. The flange may be fastened to the wall via one or more of an adhesive, a clip, nail, screw, or other fastening device and then covered with a drywall compound 252 so as to conceal any fasteners used to fasten the flange to the wall. In various embodiments, the cove member 240 may be coupled perpendicularly to the flange, the cove member and flange may be made from one formed piece of material, or the cove member and flange may be separate pieces.
With continued reference to
In some embodiments of the invention, the cove lighting apparatus includes at least one blocking member 260 coupled to the channel portion 255 at an acute angle thereto. The channel portion and blocking member may form a beaded end for the application of drywall compound. In various versions of these embodiments, one or more lighting units described in more detail below are disposed over the interior channel surface of the channel portion proximate to the blocking member such that the lighting unit(s) are concealed from the observer in the designated viewing area by the blocking member and the channel portion 255.
In various embodiments, an observer's line of sight is taken into account in the particular placement of a gap in an architectural surface outfitted with the cove lighting apparatus of the present invention. For example, while a top portion of the apparatus may not be visible to an observer, as it may be above or flush with an upper contour of the gap in the surface, a bottom portion of the cove may be visible. Accordingly, referring to
Referring to
In various embodiments of the present invention, the lighting unit 400 may be used alone or together with other similar lighting units in a system of lighting units (e.g., as discussed further below in connection with
In some embodiments, the lighting unit 400 shown in
Referring to
In general, the intensity (radiant output power) of radiation generated by the one or more light sources is proportional to the average power delivered to the light source(s) over a given time period. Accordingly, one technique for varying the intensity of radiation generated by the one or more light sources involves modulating the power delivered to (i.e., the operating power of) the light source(s). For some types of light sources, including LED-based sources, this may be accomplished effectively using a pulse width modulation (PWM) technique.
In one exemplary implementation of a PWM control technique, for each channel of a lighting unit a fixed predetermined voltage Vsource is applied periodically across a given light source constituting the channel. The application of the voltage Vsource may be accomplished via one or more switches (not shown) controlled by the controller 405. While the voltage Vsource is applied across the light source, a predetermined fixed current Isource (e.g., determined by a current regulator) is allowed to flow through the light source. Again, recall that an LED-based light source may include one or more LEDs, such that the voltage Vsource may be applied to a group of LEDs constituting the source, and the current Isource may be drawn by the group of LEDs. The fixed voltage Vsource across the light source when energized, and the regulated current Isource drawn by the light source when energized, determines the amount of instantaneous operating power Psource of the light source (Psource=Vsource·Isource). As mentioned above, for LED-based light sources, using a regulated current mitigates potential undesirable or unpredictable variations in LED output that may arise if a variable LED drive current were employed.
According to the PWM technique, by periodically applying the voltage Vsource to the light source and varying the time the voltage is applied during a given on-off cycle, the average power delivered to the light source over time (the average operating power) may be modulated. In particular, the controller 405 may be configured to apply the voltage Vsource to a given light source in a pulsed fashion (e.g., by outputting a control signal that operates one or more switches to apply the voltage to the light source), preferably at a frequency that is greater than that capable of being detected by the human eye (e.g., greater than approximately 100 Hz). In this manner, an observer of the light generated by the light source does not perceive the discrete on-off cycles (commonly referred to as a “flicker effect”), but instead the integrating function of the eye perceives essentially continuous light generation. By adjusting the pulse width (i.e. on-time, or “duty cycle”) of on-off cycles of the control signal, the controller varies the average amount of time the light source is energized in any given time period, and hence varies the average operating power of the light source. In this manner, the perceived brightness of the generated light from each channel in turn may be varied.
As discussed in greater detail below, the controller 405 may be configured to control each different light source channel of a multi-channel lighting unit at a predetermined average operating power to provide a corresponding radiant output power for the light generated by each channel. Alternatively, the controller may receive instructions (e.g., “lighting commands”) from a variety of origins, such as a user interface 418, a signal source 424, or one or more communication ports 420, that specify prescribed operating powers for one or more channels and, hence, corresponding radiant output powers for the light generated by the respective channels. By varying the prescribed operating powers for one or more channels (e.g., pursuant to different instructions or lighting commands), different perceived colors and brightness levels of light may be generated by the lighting unit.
In one embodiment of the lighting unit 400, as mentioned above, one or more of the light sources 404 may include a group of multiple LEDs or other types of light sources (e.g., various parallel and/or serial connections of LEDs or other types of light sources) that are controlled together by the controller. Additionally, it should be appreciated that one or more of the light sources may include one or more LEDs that are adapted to generate radiation having any of a variety of spectra (i.e., wavelengths or wavelength bands), including, but not limited to, various visible colors (including essentially white light), various color temperatures of white light, ultraviolet, or infrared. LEDs having a variety of spectral bandwidths (e.g., narrow band, broader band) may be employed in various implementations of the lighting unit 400.
In another aspect of the lighting unit 100 shown in
Thus, the lighting unit 400 may include a wide variety of colors of LEDs in various combinations, including two or more of red, green, and blue LEDs to produce a color mix, as well as one or more other LEDs to create varying colors and color temperatures of white light. For example, red, green and blue can be mixed with amber, white, UV, orange, IR or other colors of LEDs. Such combinations of differently colored LEDs in the lighting unit 100 can facilitate accurate reproduction of a host of desirable spectrums of lighting conditions, examples of which include, but are not limited to, a variety of outside daylight equivalents at different times of the day, various interior lighting conditions, lighting conditions to simulate a complex multicolored background, and the like. Other desirable lighting conditions can be created by removing particular pieces of spectrum that may be specifically absorbed, attenuated or reflected in certain environments.
As also shown in
The lighting unit 400 optionally may include one or more user interfaces 418, for example, the user interface 330 shown in
In some embodiments, the controller 405 of the lighting unit monitors the user interface 418 and controls one or more of the light sources 404 based at least in part on a user's operation of the interface. For example, the controller may be configured to respond to operation of the user interface by originating one or more control signals for controlling one or more of the light sources. Alternatively, the processor 402 may be configured to respond by selecting one or more pre-programmed control signals stored in memory, modifying control signals generated by executing a lighting program, selecting and executing a new lighting program from memory, or otherwise affecting the radiation generated by one or more of the light sources.
In particular, in one implementation, the user interface 418 may constitute one or more switches (e.g., a standard wall switch) that interrupt power to the controller 405. In one aspect of this implementation, the controller is configured to monitor the power as controlled by the user interface, and in turn control one or more of the light sources based at least in part on duration of a power interruption caused by operation of the user interface. As discussed above, the controller may be particularly configured to respond to a predetermined duration of a power interruption by, for example, selecting one or more pre-programmed control signals stored in memory, modifying control signals generated by executing a lighting program, selecting and executing a new lighting program from memory, or otherwise affecting the radiation generated by one or more of the light sources.
Examples of the signal(s) 422 that may be received and processed by the controller include, but are not limited to, one or more audio signals, video signals, power signals, various types of data signals, signals representing information obtained from a network (e.g., the Internet), signals representing one or more detectable/sensed conditions, signals from lighting units, signals consisting of modulated light, etc. In various implementations, the signal source(s) 424 may be located remotely from the lighting unit, or included as a component of the lighting unit. In one embodiment, a signal from one lighting unit could be sent over a network to another lighting unit.
Some examples of a signal source 424 that may be employed in, or used in connection with, the lighting unit 400 include any of a variety of sensors or transducers that generate one or more signals 422 in response to some stimulus. Examples of such sensors include, but are not limited to, various types of environmental condition sensors, such as thermally sensitive (e.g., temperature, infrared) sensors, humidity sensors, motion sensors, photosensors/light sensors (e.g., photodiodes, sensors that are sensitive to one or more particular spectra of electromagnetic radiation such as spectroradiometers or spectrophotometers, etc.), various types of cameras, sound or vibration sensors or other pressure/force transducers (e.g., microphones, piezoelectric devices), and the like.
Additional examples of a signal source 424 include various metering/detection devices that monitor electrical signals or characteristics (e.g., voltage, current, power, resistance, capacitance, inductance, etc.) or chemical/biological characteristics (e.g., acidity, a presence of one or more particular chemical or biological agents, bacteria, etc.) and provide one or more signals 422 based on measured values of the signals or characteristics. Yet other examples of a signal source include various types of scanners, image recognition systems, voice or other sound recognition systems, artificial intelligence and robotics systems, and the like. A signal source could also be a lighting unit, another controller or processor, or any one of many available signal generating devices, such as media players, MP3 players, computers, DVD players, CD players, television signal sources, camera signal sources, microphones, speakers, telephones, cellular phones, instant messenger devices, SMS devices, wireless devices, personal organizer devices, and many others.
The lighting unit 400 may also include one or more optical elements 430 to optically process the radiation generated by the light sources 404. For example, one or more optical elements may be configured so as to change one or both of a spatial distribution and a propagation direction of the generated radiation. In particular, one or more optical elements may be configured to change a diffusion angle of the generated radiation. In one aspect of this embodiment, one or more optical elements may be particularly configured to variably change one or both of a spatial distribution and a propagation direction of the generated radiation (e.g., in response to some electrical and/or mechanical stimulus). Examples of optical elements that may be included in the lighting unit include, but are not limited to, reflective materials, refractive materials, translucent materials, filters, lenses, mirrors, and fiber optics. The optical element also may include a phosphorescent material, luminescent material, or other material capable of responding to or interacting with the generated radiation.
Further, still referring to
In particular, in a networked lighting system environment, as discussed in greater detail further below (e.g., in connection with
In one version of these embodiments, the processor of a given lighting unit, whether or not coupled to a network, may be configured to interpret lighting instructions/data that are received in a DMX protocol (as discussed, for example, in U.S. Pat. Nos. 6,016,038 and 6,211,626), which is a lighting command protocol conventionally employed in the lighting industry for some programmable lighting applications. For example, in one aspect, considering for the moment a lighting unit based on red, green and blue LEDs (i.e., an “R-G-B” lighting unit), a lighting command in DMX protocol may specify each of a red channel command, a green channel command, and a blue channel command as eight-bit data (i.e., a data byte) representing a value from 0 to 255. The maximum value of 255 for any one of the color channels instructs the processor to control the corresponding light source(s) to operate at maximum available power (i.e., 100%) for the channel, thereby generating the maximum available radiant power for that color (such a command structure for an R-G-B lighting unit commonly is referred to as 24-bit color control). Hence, a command of the format [R, G, B]=[255, 255, 255] would cause the lighting unit to generate maximum radiant power for each of red, green and blue light (thereby creating white light).
It should be appreciated, however, that lighting units suitable for purposes of the present disclosure are not limited to a DMX command format, as lighting units according to various embodiments may be configured to be responsive to other types of communication protocols/lighting command formats so as to control their respective light sources. In general, the processor 102 may be configured to respond to lighting commands in a variety of formats that express prescribed operating powers for each different channel of a multi-channel lighting unit according to some scale representing zero to maximum available operating power for each channel.
The lighting unit 400 may include and/or be coupled to one or more power sources 408. In various aspects, examples of power source(s) include, but are not limited to, AC power sources, DC power sources, batteries, solar-based power sources, thermoelectric or mechanical-based power sources and the like. Additionally, in one aspect, the power source(s) may include or be associated with one or more power conversion devices that convert power received by an external power source to a form suitable for operation of the lighting unit, for example, as described in U.S. Patent Application Publication No. 20050213353, incorporated herein by reference.
The lighting unit 400 may be implemented in any one of several different structural configurations according to various embodiments of the present disclosure. Examples of such configurations include, but are not limited to, an essentially linear or curvilinear configuration, a circular configuration, an oval configuration, a rectangular configuration, combinations of the foregoing, various other geometrically shaped configurations, various two or three dimensional configurations, and the like. A given lighting unit also may have any one of a variety of mounting arrangements for the light source(s), enclosure/housing arrangements and shapes to partially or fully enclose the light sources, and/or electrical and mechanical connection configurations. In particular, in some implementations, a lighting unit may be configured as a replacement or “retrofit” to engage electrically and mechanically in a conventional socket or fixture arrangement (e.g., an Edison-type screw socket, a halogen fixture arrangement, a fluorescent fixture arrangement, etc.). Additionally, one or more optical elements as discussed above may be partially or fully integrated with an enclosure/housing arrangement for the lighting unit. Furthermore, the various components of the lighting unit discussed above (e.g., processor, memory, power, user interface, etc.), as well as other components that may be associated with the lighting unit in different implementations (e.g., sensors/transducers, other components to facilitate communication to and from the unit, etc.) may be packaged in a variety of ways; for example, in one aspect, any subset or all of the various lighting unit components, as well as other components that may be associated with the lighting unit, may be packaged together. In another aspect, packaged subsets of components may be coupled together electrically and/or mechanically in a variety of manners.
Additionally, while not shown explicitly in
Referring to
Each LUC in turn may be coupled to a central controller 502 that is configured to communicate with one or more LUCs. Although
For example, according to one embodiment of the present invention, the central controller 502 shown in
More specifically, in some versions of this embodiment, the LUCs 508A, 508B, and 508C shown in
From the foregoing, it may be appreciated that one or more lighting units as discussed above are capable of generating highly controllable variable color light over a wide range of colors, as well as variable color temperature white light over a wide range of color temperatures. Thus, one or more light cove apparatus according to the present invention, comprising one or more lighting units as discussed above, may provide a wide variety of intriguing lighting effects in architectural spaces.
Having thus described several illustrative embodiments, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the claimed invention. While some examples presented herein involve specific combinations of functions or structural elements, it should be understood that those functions and elements may be combined in other ways according to the present invention to accomplish the same or different objectives. In particular, acts, elements, and features discussed in connection with one embodiment are not intended to be excluded from similar or other roles in other embodiments. Accordingly, the foregoing description and attached drawings are by way of example only, and are not intended to be limiting.
This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 60/747,110 filed on May 12, 2006, incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60747110 | May 2006 | US |