This invention is directed generally to recessed lighting systems, and, more particularly, to a unitary die-cast cap for a recessed LED downlight.
In comparison to other types of light fixtures, e.g., incandescent and fluorescent light fixtures, light-emitting diodes (“LEDs”) provide numerous advantages. For example, LED-based lighting fixtures (i) dramatically reduce energy consumption based on relatively low wattage, (ii) have a relatively longer life (e.g., 50,000 hours vs. 2,000-5,000 hours for incandescent light fixtures), (iii) provide cool operation (e.g., reduce energy costs by reducing air conditioning loads), (iv) contain no lead or mercury (e.g., eliminate special recycling requirements), and (v) do not have ultraviolet emissions.
However, current LED-based lighting fixtures, such as LED downlights, are plagued by many problems. One problem associated with some current LED downlights is that they lack a heat sink that is integral with the can housing such that the entire LED downlight assembly becomes a heat sink for dissipating heat away from the LEDs. Another problem associated with some current LED downlights is that they fail to provide a removable LED PC board that can be mounted directly to the heat sink for improved thermal management. Yet another problem associated with some current LED downlights is that they fail to provide an integral mounting configuration that can receive a reflector/lens assembly or a trim.
What is needed, therefore, is a cap for a downlight can that addresses the above-stated and other problems.
In an implementation of the present invention, a unitary die-cast cap for a downlight can includes a base section and a plurality of heat-sink fins. The base section includes an interior base-surface, an exterior base-surface, and an exterior wall-surface. The exterior base-surface, which is an opposite surface of the interior base-surface, is configured to form an exterior top-surface of a downlight can. The exterior wall-surface is configured to be positioned in direct attachment to an interior wall-surface of the downlight can. The plurality of heat-sink fins extend from the interior base-surface and form a substantially cylindrical exterior heat-sink wall touching or in close proximity to the interior wall-surface of the downlight can.
In an alternative implementation of the present invention, a downlight assembly includes a downlight can, a unitary die-cast cap, a LED array, a reflector and lens assembly, and a finishing trim. The downlight can has a tubular can wall. The unitary die-cast cap is mounted inside the downlight can and includes a base section, a plurality of heat-sink fins, and an interior plate. The base section has an exterior base-surface forming an exterior top-surface of the downlight can and an exterior-wall for direct contact attachment to the tubular can wall. The plurality of heat-sink fins extend from the base section and form a substantially cylindrical exterior heat-sink wall touching or in close proximity to the tubular can wall. The heat-sink fins include at least one tall heat-sink fin and at least one short heat-sink fin. The interior plate is surrounded by the plurality of heat-sink fins and is offset from and generally parallel to the base section A plurality of spring retainers are mounted to the interior plate of the die-cast cap. The LED array and the reflector and lens assembly are each mounted on the interior plate of the die-cast cap. The finishing trim is mounted to the spring retainers via a plurality of coil springs.
Additional aspects of the invention will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments, which is made with reference to the drawings, a brief description of which is provided below.
The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings.
Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to include all alternatives, modifications and equivalent arrangements as may be included within the spirit and scope of the invention as defined by the appended claims.
Referring to
The downlight assembly 100 is advantageous at least because it is suitable for use in both insulated and non-insulated ceilings. The downlight assembly 100 is also advantageous because it provides a component approach in which components of the downlight assembly 100 can be replaced on an individual basis. For example, the downlight assembly 100 provides easy changing of optics, such as a diffuser, reflector, finishing trim, etc. In contrast, typical current downlight assemblies provide an all-in-one approach in which replacing a specific component requires replacing numerous components, if not the entire downlight assembly.
Two coil spring receivers (a.k.a., trim hanger loops) 112 are attached to an interior-space surface (e.g., interior-space surface 320 illustrated in
Also mounted on the interior-space surface of the cap 106 is a LED array 116, which includes a printed circuit (PC) board. Mounting the LED light array 116 directly to the cap 106 provides greatly enhanced thermal dissipation. The PC board of the LED light array 116 is mounted to the interior-space surface of the cap 106 such that the LED light array 116 can be easily replaced. Alternatively to mounting the LED light array 116 using screws similar to the cutout screws 110 and/or receiver screw 114, the LED light array 116 can be fastened via surface mount push-in connectors that can facilitate easy and quick removal/installation of the PC board.
According to one exemplary embodiment, the LED light array 116 incorporates latest generation of Nichia high lumen 1-watt LEDs. For example, the total luminaire wattage can be 14 Watts, wherein the ranges are between 13.4 Watts and 14.2 Watts based on forward voltage binning. The LED light array 116 can include color temperatures for a variety of residential and commercial applications, e.g., 3000K, 3500K, 4100K.
The downlight assembly 100 further includes a reflector 118, to which a lens 120 is mounted, forming a reflector and lens assembly. The reflector 118 is mounted directly to the cap 106 via a bayonet-type surface of the reflector 118, and the finishing trim 122 is mounted directly to the can 102. The reflector 118 and the lens 120 are specifically designed to provide a desired light distribution while masking the individual LEDs and simulating the appearance from below the ceiling of familiar incandescent BR or PAR lamps with an attractive frosted lens. In one exemplary embodiment, the light distribution from the reflector and lens assembly replicates the performance of a 65 W BR30, one of the most popular incandescent lamps currently being used in recessed downlights. The finishing trim 122 can be selected from a plurality of standard trims, e.g., baffle trims, cone trims, lensed trims, and decorative trims, which are commonly available for use with both incandescent and compact fluorescent light (CFL) housings.
A conduit 124 couples a wiring box 126 to the can 102, and a LED driver 128 is mounted to the wiring box 126. Optionally, the conduit 124 can be a metal conduit or a non-metallic cable. The LED driver 128 is mounted separate from the LED array 116. Thus, the LED driver 128 and the PC board of the LED array 116 can be serviced independently, wherein each one can be individually replaced without having to replace the other one. In contrast, current LED fixtures require replacement of the entire LED light engine regardless of whether only the driver or only the PC board requires replacement. In other embodiments, the LED driver 128 or an auxiliary controller circuit can be installed into a cavity in a top compartment of the casting 106 (e.g., interior electrical access area 324 described below in reference to
According to one exemplary embodiment, the LED driver 128 receives constant current, is a universal voltage driver, and has input voltages from 120 Volts to 277 Volts (60 Hertz). The exemplary LED driver 128 is a high efficiency driver, having a power factor greater than 0.9 at 120 Volts. The LED driver 128 can also be dimmable using, for example, standard wall-box dimmers. The LED driver 128 is compliant for electromagnetic interference/radio frequency interference (EMI/RFI) with Part 15 of the Federal Communications Commission (FCC) rules and regulations (i.e., Class B at 120 Volts and Class A at 277 Volts).
Referring to
As illustrated more clearly in
As illustrated more clearly in
Referring to
The heat-sink fins 306, 312 include a first plurality of heat-sink fins 306 having a greater height (i.e., tall heat-sink fins) than a second plurality of heat-sink fins 312 (i.e., short heat-sink fins). The height is measured as the distance extending perpendicularly away from the interior base-surface 302 towards an interior space 316 in which the LED light array 116 is mounted.
The heat-sink fins 306, 312 are generally shaped such that they include a generally rectangular cross-sectional area 308 and a generally cylindrical cross-sectional area 310. The cylindrical cross-sectional area 310 is generally centrally located along the rectangular cross-sectional area 308.
The fins of the first plurality of heat-sink fins 306 are connected to each other via a substantially cylindrical interior heat-sink wall 314. The interior heat-sink wall 314 forms the interior space 316.
In addition to the interior heat-sink wall 314, the interior space 316 includes a plurality of reflector retainers 318 and is further defined by an interior-space surface 320, which is generally flush with an end surface of the second plurality of heat-sink fins 312. In other words, the interior-space surface 320 is generally flush with the highest point of the second plurality of heat-sink fins 312.
Two reflector retainers 318 are integral with the interior-space surface 320 of the cap 300. The reflector retainers 318 are generally L-shaped and have a raised portion extending away from the interior-space surface 320. In general, the reflector retainers are configured to receive an attachment surface of the reflector 118 for mounting the reflector and lens assembly 118, 120 to the cap 300. For example, the reflector 118 is mounted to the reflector retainers 318 by rotating ¼ turn clockwise such that the attachment surface of the reflector 118 is captured by the reflector retainers 318. To remove the reflector 118, the reflector 118 is rotated ¼ turn counter-clockwise to release the captured attachment surface from the reflector retainers 318. Furthermore, the reflector retainers 318 are centrally positioned between two short heat-sink fins 312, wherein the shorter height of the heat-sink fins 312 is designed to accommodate the reflector retainers 318 (and the spring receivers 112 shown in
As illustrated more clearly in
The cap 300 further includes an interior electrical access area 324, which is generally defined by a bottom access-surface 326 and an interior access wall 328. The interior access wall 328 is formed at an innermost edge of the heat-sink fins 306, 312 and connects all the heat-sink fins 306, 312. Alternatively, the interior access wall 328 connects only some of the heat-sink fins 306, 312.
The interior-space surface 320 (best illustrated in
While particular embodiments, aspects, and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations may be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.