Recessed lighting assembly

Information

  • Patent Grant
  • 10551044
  • Patent Number
    10,551,044
  • Date Filed
    Monday, November 16, 2015
    9 years ago
  • Date Issued
    Tuesday, February 4, 2020
    4 years ago
Abstract
A fire-resistant, recessed lighting unit that obviates the need for a separate junction box and a separate incandescent “can”. Other embodiments are also described and claimed.
Description
FIELD

An embodiment of the invention relates to a recessed lighting assembly that has a fire resistant casing, a light source module that is held inside the casing, and a trim attached to the casing. Other embodiments are also described.


BACKGROUND

Recessed lighting units are typically installed or mounted into an opening in a ceiling or a wall. Modern recessed lighting units generally consist of a trim, a light source module, a driver circuit, a legacy incandescent “can” in which the light source module and driver circuit are housed, a junction box, and a set of hangar bars to which a horizontally oriented frame or platform is directly attached. The can and junction box are attached to the horizontally oriented platform. The combination of the can and junction box attached to the horizontal platform is bulky and expensive to manufacture.


SUMMARY

An embodiment of the invention is a recessed lighting unit that advantageously obviates the need for a separate junction box that is dedicated to the recessed lighting unit, because the building electrical power network wires, that supply power to another nearby recessed lighting unit or that come from a nearby shared wire enclosure or junction box, are routed directly into the casing of the recessed lighting unit (for supplying power to a light source module inside the casing.) A further advantageous aspect is that the light source module (to which a trim has been attached, e.g., via a twist and lock mechanism) is positioned deeper inside a casing of the recessed lighting unit, thereby yielding improvements in the illumination provided by the module. The casing has a closed top end, and a side wall having a top edge which joins the closed top end, wherein the side wall extends downward from the closed top end and is curved so as to completely surround a cavity that is between the closed top end and an open bottom end of the casing that is defined by a bottom edge of the sidewall. The trim may be composed of a crown that has a frusto-conical shape, wherein the crown has a base with a base opening formed therein, and a top with a top opening formed therein. Light to be emitted from the module is to pass through the crown by passing through the top opening and then through the base opening before illuminating a room. A frustum extends from the base of the crown to its top. The trim also has a brim that is attached to the base and encircles the base opening. The brim will sit flush against a ceiling or wall behind which the casing is installed, e.g., attached to structural beam member of the building. To attach the trim to the light source module, a means is used for attaching the top of the crown to the light source module. The module is held in its deeper position inside the casing, by a means that is anchored to the frustum of the crown and that is for attaching to the sidewall of the casing. The crown is dimensioned to be tall enough such that when the light source module is attached to the top of the crown, the light source module is held entirely within the cavity of the casing (when the means anchored to the frustum of the crown is attached to the sidewall of the casing.)


In one embodiment, a holding bracket is provided that can slide vertically within the cavity of the casing. The bracket has two or more arms that extend upward from a frame, where each arm has a slot formed lengthwise in it and through which an attaching member extends; the attaching member is fixed to the sidewall of the casing, so that the arms can slide up and down while being guided by the attaching member through the slot. The light source module is attached to the frame of the bracket. The light source module receives electrical power from the building electrical system through high voltage wires that go into the casing and connect to the module; the bracket prevents the light source module from hanging only by these high voltage wires, in the event that the mechanism for attaching the trim to the sidewall of the casing becomes accidentally overloaded (thereby causing the trim and the attached light source module to fall out of the casing, where the casing is mounted behind a ceiling, under the pull of gravity). Also, the bracket may be designed to be short enough, e.g., its arms are short enough, to ensure that in its lowest position, the attached light source module does not hang so far below the casing as to freely give a user access to the high voltage wires inside the casing; with the bracket in its lowest position, the user should have to first detach the light source module from the bracket before being able to disconnect or connect the high voltage wires.


The bracket may be free to slide vertically downward, until a stop is reached which prevents the bracket from falling out of the casing (under the pull of gravity). The bracket may also be free to slide vertically upward; this enables the light source module, which is attached to the bracket, to be vertically moved upward into any desired recessed position inside the casing, e.g., by a user grasping and pushing the trim (to which the light source module is also attached) upward in the vertical direction, until the upper surface of the brim (of the trim) abuts a lower surface of the ceiling (a stop is reached.) In this manner, the holding bracket also allows trims of different depth (height) to be attached to the same light source module, while still being able to be positioned all the way up and flush against the ceiling.


The design of the recessed lighting unit can also easily accommodate irregularity in the thickness of the ceiling of a building, where some portions have greater thickness than others. The light source module is attached to the trim, but is other wise free to be pushed deeper into the casing as needed to accommodate a thicker ceiling condition. The mechanism for attaching the trim to the sidewall of the casing may include friction clips that are anchored to the crown portion of the trim; the friction clips are sufficiently strong to stay fixed in position against the sidewall of the casing despite the added weight of the light source module. By also providing a fire resistant casing, the recessed lighting unit eliminates the added bulk and size of traditional recessed lighting units that have a separate outer enclosure or fire box around the incandescent can.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment of the invention in this disclosure are not necessarily to the same embodiment, and they mean at least one. Also, in the interest of conciseness and reducing the total number of figures, a given figure may be used to illustrate the features of more than one embodiment of the invention, and not all elements in the figure may be required for a given embodiment. In other words, there may be elements shown in a given figure that are optional, or unnecessary, for certain embodiments.



FIG. 1A shows a perspective view of a recessed lighting unit according to one embodiment.



FIG. 1B depicts part an illumination network in which several of the recessed light units are connected directly without the use of dedicated junction boxes.



FIG. 2 shows a side cross section view of the embodiment of FIG. 1A along the cut A-A′.



FIG. 3 shows a front cross section view of the embodiment of FIG. 1A along the cut B-B′.



FIG. 4 shows a perspective view of a light source module.



FIG. 5 shows a perspective looking into the cavity of the casing, through the opening.



FIG. 6 shows a perspective view of a holding bracket.





DETAILED DESCRIPTION

Several embodiments of the invention with reference to the appended drawings are now explained. Whenever the shapes, relative positions and other aspects of the parts described in the embodiments are not explicitly defined, the scope of the invention is not limited only to the parts shown, which are meant merely for the purpose of illustration. Also, while numerous details are set forth, it is understood that some embodiments of the invention may be practiced without these details. In other instances, well-known circuits, structures, and techniques have not been shown in detail so as not to obscure the understanding of this description.



FIG. 1A shows a perspective view of an embodiment of a recessed lighting unit 1, which may be installed within a wall or a ceiling. The recessed lighting unit 1 may include a casing 2, a holding bracket 3 (which may also be referred as a yoke) inside the casing 2, a light source module 4 inside the casing 2, a trim 5, hangar bars 6, and casing holders 7. The recessed lighting unit 1 is positioned behind a ceiling or a wall so that the casing 2 is aligned with a hole in the ceiling or wall (not shown) through which the room is illuminated by the module 4. The light source module 4 as will be described below in more detail is contained inside the casing 2. The trim 5 serves the primary purpose of covering the exposed edge of the ceiling or wall where the recessed lighting unit 1 resides and where the hole is formed, while still allowing light from the light source module 4 to be emitted into a room through a trim opening 8. The trim 5 may also serve to hide the bottom edge of the casing 2 from view. In doing so, the trim 5 helps the recessed lighting unit 1 appear seamlessly integrated into the ceiling or wall. The trim 5 is attached to the light source module 4 (e.g., via a twist and lock mechanism, for example, or a snap fit mechanism), and also directly to the casing 2 (e.g. via friction clips, tension clips (tension grips), or magnets). The section views of the recessed lighting unit in FIG. 2 and FIG. 3 show the assembly with the trim 5 attached to the light source module 4, where a top of the crown 38 of the trim 5 is abutting the front surface of a lens 45, where the latter has been fitted into position covering the bottom opening of the housing of the module 4.


The casing 2 of the present invention is advantageous in that it is compact, cost-effective, and fire resistant. The casing 2 obviates the need for a traditional junction box attached to an incandescent “can,” which may be bulky and expensive. The casing 2 may be made of galvanized steel, injection molded plastic, or ceramic, which is also advantageous over the traditional, non-fire resistant incandescent can. The casing 2 may be fire-resistant in that it has a fire rating of up to two hours without any need for modification, where the fire rating is described in the National Electrical Code (NEC) and by the Underwriters Laboratories (UL) such as specified in UL 263 Standard for Fire Tests of Building Construction and Materials. The fixture may also be designed to attenuate airborne sound by the building partition (ceiling) in which it is installed; in one embodiment, the casing 2 can maintain a minimum Sound Transmission Class (STC) rating of 50; this alleviates the need for enclosing the casing 2 with any additional element in order to maintain a minimum 50 STC rating.


In one embodiment, as shown in the section view of FIG. 2, the casing 2 may have a closed top end 9, and a side wall 10 that surrounds a cavity 11 and defines a bottom end opening 12. The closed top end 9 and the sidewall 10 may have one or more knockouts 13. A knockout 13 may be punched through and removed to leave an opening in the closed top end 9 or the side wall 10, for building electrical power wires (e.g. non-metallic sheathed cable, or to receive metal flexible conduit) to be inserted through the opening. A knockout 13 may also have a smaller opening in it (e.g., a slit, slot, etc., that is smaller than the opening that results when the knockout 13 has been removed from the closed top end 9 or the side wall 10) that may allow the installer to pry-out the knockout with a flathead screwdriver. The knockout 13 may be more than ½ inch in its smallest diameter (as its shape may be elliptical as shown, having a minor diameter and a major diameter). The casing 2 may have a horizontal cross section that is shaped as a polygon. For example, the horizontal cross section of the casing 2 may be square, rectangle, pentagon, hexagon, heptagon, octagon, nonagon, or decagon. The casing 2 may be made from a flat sheet of metal that is folded into a polygonal cylinder to form the sidewall 10. The casing 2 may also be ellipsoid, frusto-conical, or otherwise curved.


Held inside the light source cavity 11 is the light source module 4, which has a housing in which a light source 31 and a driver 32 are installed. The building electrical power wires that are routed into the casing 2 are connected to a set of driver wires that merge from the module 4, within the cavity 11. These electrical wires may be connected together through the use of interlocking connectors that may be contained within the cavity 11 of the casing 2. In other embodiments, the electrical wires may be coupled to each other through the use of electrical caps or other devices (inside the cavity 11 of the casing 2). When the wires are connected, electricity may pass from the building electrical power wiring network to the driver 32 to enable the driver 32 to power the light source 31 (and thereby illuminate the room). In one embodiment, where there is a network of such recessed lighting units 1 installed within a building, as depicted in FIG. 1B, the electrical wires that come into the casing 2 (through the knockout 13 for example) can be routed directly from their “adjacent” connection at another recessed lighting unit 2 (that may be installed behind the same ceiling or wall, or a nearby one in the same building.) In other words, the building electrical wires coming into the casing 2 (to supply power to operate the light source module) can be directly routed from the inside of another, nearby recessed lighting unit or from a shared junction box as shown in FIG. 1B. In other words, the casing 2 has two or more driver wires 33 that emerge from the light source module 4 (see FIG. 4) and that are electrically connected to the two or more building electrical power wires, respectively, inside the cavity 11 of the casing 2. This obviates the need to add a separate junction box to make such a connection, in part because the casing 2 is also fire-rated to be a protective housing for the connection between i) the driver wires that emerge from or terminate in the driver 32 and ii) the building wires that come into the casing 2 and that are directly connected to power another recessed lighting unit in the same building.


The driver 32 is an electronic circuit or device that supplies and/or regulates electrical energy to the light source 31 and thus powers the light source 31 to emit light. The driver 32 may be any type of power supply circuit, including one that delivers an alternating current (AC) or a direct current (DC) voltage to the light source 31. Upon receiving electricity, the driver 32 may regulate current or voltage to supply a stable voltage or current within the operating parameters of the light source 31. The driver 32 receives an input current from the building electrical power wiring network of the building or structure in which the recessed lighting unit 1 is installed, and may drop the voltage of the input current to an acceptable level for the light source 31 (e.g., from 120V-277V to 36V-48V).


The light source 31 may be any electro-optical device or combination of devices for emitting light. For example, the light source 31 may have one or more light emitting diodes (LEDs), organic light-emitting diode (OLEDs), or polymer light-emitting diode (PLEDs). The light source 31 receives electricity from the driver 32, as described above, such that the light source 31 can emit a controlled beam of light into a room or surrounding area of the recessed lighting unit 1 (as installed behind a ceiling or wall).


In one embodiment, the light source module 4 may also include a lens 45. The lens 45 may be formed to converge or diverge, or simply filter, the light emitted by the light source 31. The lens 45 may be a simple lens comprised of a single optical element or a compound lens comprised of an array of simple lenses (elements) with a common axis. In one embodiment, the lens 45 also provides a protective barrier for the light source 31 and shields the light source 31 from moisture or inclement weather. The lens 45 may be made of any at least partially transparent material, including glass and hard plastics, and may be sized and shaped to be snap fitted into position covering the main opening at the bottom of the module 4 as shown. In one embodiment, the lens 45, the light source 31, and the driver 32 are contained in a single indivisible unit, the light source module 4, to work in conjunction to focus and adjust light emitted by the light source 31.


The light source module 4 may, or may not, be attached to a trim 5. The trim 5 has a crown 38 (as seen in FIG. 2 and FIG. 3), also referred to here as an annular region, whose central opening 8 allows light from the light source module 4 to pass through and illuminate the room or environment beyond the wall or ceiling. A brim 41 may surround the base of the crown 38, serving to hide or cover an edge of the wall or ceiling in which a hole for emitting light into the room is formed. Although not shown, that edge may surround the sidewall of the casing 2 (once the lighting unit 1 has been installed.) The crown 38 may be frusto-conical around the opening 8, and its height (crown height 39) may be in the range of 1 inch to 2.5 inches measured vertically from a top surface of the brim 41 (that may abut the ceiling or wall) to a top of the crown 38. This may define the height of the trim 5; as mentioned above, trims of different height that are designed to be attached to the same light source module 4 and to the casing 2 can be used (interchangeably).


In one embodiment, the crown 38 may be pushed deep into the casing 2 so that the brim 41 comes into contact with (abuts or is flush against) the edge of the sidewall that defines the bottom opening 12 of the casing 2. In another embodiment, where the edge of the casing 2 might not be aligned flush with the bottom surface of the wall or ceiling (e.g., where the bottom opening 12 of the casing 2 lies above or behind of the wall or ceiling), the crown 38 is pushed into the casing 2 but cannot be as deep, even though the brim 41 is still flush with the wall or ceiling.


In one embodiment, referring now to FIG. 4, the light source module 4 as shown therein may be rigidly attached to the trim 5 via a twist and lock mechanism. One half of the twist and lock mechanism being a bump or a hook that is formed at the top (of the crown 38) of the trim 5, while the other half is a tapered portion 37 that is formed on a lip 28 of the light source module 4; the user rotates the trim 5 and the module 4 relative to each other until the bump or hook of the trim 5 is aligned with the slot that is formed in the lip 28 next to the tapered portion 37 and then pushes the two parts towards each other while “twisting” so that the bump or hook and the tapered portion 37 engage each other until they are “locked” through friction. This provides a tool-free way to couple the trim 5 to the light source module 4. Other suitable means for attaching the top of the crown 38 to the light source module 4 may be possible, including a threaded fastener (e.g., screw, or a nut and bolt combination), a snap fit mechanism, a clip, an adhesive, and clamp that clamp the lip 28 to a flat top surface of the crown 38.


Returning to FIGS. 1A, 2, 3, once the trim 5 is attached to the light source module 4, and the electrical connection between the driver wires and the building wires inside the casing 2 has been made, the assembly of the light source module 4 and the trim 5 may be pushed upwards or inward into the cavity of the casing 2, through the hole in the ceiling or wall, until the brim 41 sits flush against the ceiling or wall. This may complete the installation of the recessed lighting unit 1.


Any suitable means for attaching the assembly of the light source module 4 and trim 5 to the sidewall of the casing can be used, in order to hold the trim 5 flush against the ceiling or wall. In one embodiment, as seen in the section view of FIG. 2, one or more friction clip 42 may be utilized to secure the assembly to the casing 2, which also allows the trim 5 to slide upward along the sidewall of the casing 2 as it is pushed by the user, to eventually lie flush against the ceiling or wall. As shown in the embodiment of FIG. 2, the friction clip 42 may be attached at its anchored end (via screw, bolt, resin, glue, or the like) to the crown 38 of the trim 5, while at their flexible or resilient end they will engage the sidewall of the housing 2. Alternatively, the friction clip 42 may be anchored to the light source module 4, or to a frame 18 of the holding bracket 3 as described below. As seen in the embodiment of FIG. 2, the friction clip 42 may be composed of a generally V-shaped piece (e.g., of metal) that is oriented upside down as shown, with one segment of the V being anchored to the top surface of the frustum of the crown 38 (the bottom surface of the crown serving to reflect the light emitted from the module 4 into the room) while the other segment of the V comes into direct frictional contact with the inner surface of the sidewall 10 of the casing 2. The stiffness (when squeezing the two segments of the V towards each other) of the clip 42 provides sufficient friction that overcomes the combined weight of the light source module 4 and the trim 5, thereby preventing the assembly from falling out of the casing 2 (e.g. under the force of gravity.) Other means for attaching the light source module-trim assembly to the casing 2 include the use of one or more magnets that may be fixed on the trim 5, or on the light source module 4, and that are attracted to the casing 2 through magnetic force to hold the assembly in the casing 2, while still allowing the assembly to be slid upwards by the user (until the trim lies flush against the ceiling.)


Also shown in FIGS. 1A and in the section view of FIG. 3 is another embodiment of the invention, where a holding bracket 3 is added inside the cavity of the casing 2. A perspective view of the holding bracket 3 is shown in FIG. 6. The holding bracket 3 may be a separate piece than the casing 2, and is coupled to an attaching member 15 that is fixed in position onto the sidewall 10. The bracket 3 may have one or more arms 17 that extend upward from a frame 18 that has a frame opening 19 therein. In a preferred embodiment, there are two arms 17 that extend upward from the frame 18, but additional arms 17 may be provided. The bracket 3 may be initially formed from a flat sheet of metal, with the frame 18 and the arms 17 formed on a same plane. Subsequently, the arms 17 may be cut out and then bent upward in the same direction. Each arm 17 may have a slot 20 running along its length through which a respective attaching member 15 may be fitted. The attaching member 15 may be a screw, bolt, pin, rivet or any other structure that is capable of coupling with the arm 17, by extending through the slot 20 and being fixed to the sidewall 10. While so engaged to the attaching member 15, the arm 17 of the bracket 3 is slidable within the cavity 11, relative to the attaching member 15 and along its slot 20. There may be some friction between the slot 20 and the attaching member 15 that may prevent the bracket 3 from freely sliding downward (under the force of gravity alone.) To maintain a desired, and optionally, adjustable, spacing between the arm 17 and the sidewall, the attaching member 15 may be threaded so as to receive a corresponding nut (not shown). In that condition, the arm 17 is held within a desired spacing between the nut and the sidewall 10 of the casing 2. In one instance, the nut is received on the end of the attaching member 15 that is located inside the casing 2.


The holding bracket 3 may also be described as having multiple arms extending upward from the frame 18, where the frame 18 has a border that encloses a frame opening 19 as shown. The slot 20 is elongated, and runs along a length dimension of its respective arm 17. The attaching member 15 extends from the sidewall 10 into the cavity 11 of the casing 2, while passing through the slot 20, and is sized so as to couple the arm 17 to the sidewall 10 constraining translation of the arm 17 in the lateral direction but allowing pivoting of the arm 17 about the attaching member 15. The arm 17 has a surface that is facing the sidewall 10 and that is flat from one end to another end that is joined to the border of the frame 18. The arm 17 is slidable along the sidewall 10 between its innermost position and its outermost position within the cavity, wherein the outermost position of the arm is reached when its sliding is stopped by the attaching member 15.


Note that use of the bracket 3 is optional. When the bracket 3 is used, its frame 18 may be attached to the light source module 4, before the trim 5 is attached to the module 4. The arms of the bracket 3 and the slots therein should be long enough to allow the bracket 3 to slide deeper into the cavity 11, as needed to raise the trim 5 so that the brim 41 can lie flush against the ceiling or wall.


In one embodiment, when the bracket 3 is at its innermost (or uppermost) position inside the cavity 11, the bottom of the frame 18 may be within the range of 1 inch to 2.5 inch above the bottom edge of the sidewall of the casing 2 (that defines the bottom end opening 12 of the casing 2.) In one embodiment, when the bracket 3 is at its outermost (or lowermost) position, the bottom of the frame 18 may be in the range of 0 inch to ½ inch below the bottom edge of the sidewall of the casing 2. Also, when the bracket 3 is at its outermost position, there may be some play allowing the bracket 3 to pivot laterally (when the attaching members 15 are up against the uppermost end of the slots 20.) The bracket 3 also functions to prevent the light source module 4 (and the attached trim 5) from falling out of the casing 2, when the bracket has reached its outermost position; the attaching member 15 in that condition acts as a stop against the sliding arm 17, by abutting an inner top end of the arm that is defined by the slot.


As seen in FIG. 6, the frame 18 of the holding bracket 3 may have an inner edge 21 that is circular, oval, polygonal or curved. The frame 18 may have an outer edge 22 that is circular, oval, polygonal or curved. The outer edge 22 and the inner edge 21 may have different contours. In the embodiment shown in FIG. 5 for example, the outer edge 22 is polygonal while the inner edge 21 is circular. In a preferred embodiment, the outer edge 22 has the same number of sides as the casing 2, and the outer edge 22 conforms to the shape of the sidewall 10 of the casing 2. It is not necessary to have the outer edge 22 of the frame 18 that precisely conforms to the shape of the sidewall 10 of the casing 2. In one embodiment, the outer edge 22 may be oval or circular as long as the frame 18 fits inside the cavity 11 of the casing 2.


The frame 18 is attached to the light source module 4. As also seen in FIG. 3, the frame 18 may have an opening 23 that is configured to receive a corresponding attaching member 24, such as a screw, bolt, pin, or any other fastener piece that is capable of attaching the light source module 4 to the frame 18. As seen in FIG. 4, the light source module 4 may have a lip 28 that extends laterally outward from a base of the housing of the module 4, surrounding the base where the lens 45 is fitted (and from which light produced by the light source 31 emerges to illuminate the room below). One or more openings 29 may be formed on the lip 28 that correspond to and align with the openings 23 of the frame 18, when the housing of the module 4 has been inserted through the frame opening 19 of the frame 18, as depicted in FIG. 2. Once the bottom surface of the frame 18 abuts the top surface of the lip 28, a fastener (e.g., the attaching member 24 depicted in FIG. 1A), can be inserted through both openings and then can be fastened so as to secure the module 4 to the frame 18. In the embodiment shown in FIG. 6, there are two openings 23 formed in the frame 18 which correspond and align with to the two openings 29 that are formed in the lip 28 of the light source module 4 as seen in FIG. 4; the attachment of course can also be achieved at more than locations (with more than two fasteners).


In one embodiment, the recessed lighting unit 1 may include a set of hangar bars 6 as shown in FIG. 1 from which the casing 2 can be hung. The hangar bars 6 may be rigid, elongated members that are connected between adjacent joists and/or beams that are behind the walls or ceilings of the building (there may be two, positioned on opposite sides of the casing 2 as shown). In one embodiment, each of the hangar bars 6 may be telescoping such that the hangar bar 6 can be extended or retracted to meet the gap between the joists and/or beams.


In one embodiment, each of the hangar bars 6 may include mounting blocks 46 at its ends, which are the points at which the hangar bars 6 are attached to the joists and/or beams. For example, as shown in FIG. 1A, the mounting blocks 46 may include holes for receiving screws and/or nails or other fasteners that enable the hangar bars 6 to be securely attached to a building structure. Although shown in FIG. 1A and described above in relation to holes and screws, in other embodiments, other mechanisms of attachment may be used in conjunction with the mounting blocks 46, including resins, clips, or clamps to attached the bars 6 to the building structure. In one embodiment, a mounting block 46 may be integrated in one indivisible structure along with the hangar bar 6, while in other embodiments, as shown in FIG. 1A, the mounting blocks 46 may be coupled to the hangar bars 6 through the use of one or more attachment mechanisms (e.g., screws, bolts, resins, clips, or clamps). Using the telescoping and mounting features described above, the recessed lighting unit 1 may be installed in almost all of the typical 2″×2″ through 2″×18″ wood joist constructions, metal stud constructions, and t-bar ceiling constructions.


Still referring to FIG. 1A, in one embodiment, the recessed lighting unit 1 may have a mechanism for mounting the casing 2 to the hangar bars 6, that includes a set of casing holders 7 that couple the casing 2 to the hangar bars 6. As also seen in FIG. 2, the casing holder 7 may have a plate portion that conforms to the polygonal shape of the sidewall and is secured to the sidewall 10 of the casing 2 by a nut and bolt/screw combination 49; if a slot is also formed in the sidewall 10 through which bolt/screw of the combination 49 passes, then the height of the casing 2 becomes adjustable relative to the hangar bars 6. Alternatively, the casing holder 7 may be attached to the sidewall via a clip, a clamp, a weld, or an adhesive resin. The casing holder 7 may have another portion that is configured to wrap around but slide (or otherwise move) along the length of its corresponding, elongated hangar bar 6 (between the ends of the hangar bar 6.) The casing 2 may thus be moved along the hangar bars 6 to a desired location (e.g., at which the lens 45 of the light source module 4 will be directly above the opening in the ceiling or wall), and then it may be affixed to the hangar bars 6 once at the desired location, so that the casing holder 7 can no longer be moved relative to the hangar bars 6.


While certain embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that the invention is not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those of ordinary skill in the art. For example, as mentioned above, the light source module 4 need not be attached to the trim 5 (such as by a twist and lock mechanism or other attachment mechanism), if the module 4 is attached to the holding bracket 3; in that case, the module 4 can simply be pushed up into the casing 2, by the user gripping the trim 5 and aligning it so that the top of the crown 38 abuts the lip 28 of the module 4, and then pushing upward (until the brim 41 of the trim 5 abuts the ceiling or wall or other building partition, at which point the friction clips 42 should have been squeezed between the crown 38 and the sidewall 10 (thereby securing the trim 5 to the casing 2.) The description is thus to be regarded as illustrative instead of limiting.

Claims
  • 1. A recessed lighting unit comprising: a casing having a closed top end, a side wall having a top edge that joins the closed top end, wherein the side wall extends downward from the closed top end so as to completely surround a cavity that is between the closed top end and an open bottom end of the casing that is defined by a bottom edge of the sidewall;a light source module having a plurality of driver wires that are to be electrically connected to a plurality of building electrical power wires, respectively, inside the cavity of the casing;a holding bracket disposed inside the cavity of the casing, the holding bracket comprising: a frame having a border that encloses a frame opening, the frame opening being shaped such that a housing of the light source module is insertable through the frame opening; andan arm having a proximal end coupled to the frame and a distal end positioned above the frame, the arm including a slot that runs along a length of the arm between the proximal end and the distal end; andan attaching member, disposed on the sidewall of the casing, that extends into the cavity of the casing and passes through the slot of the arm thereby substantially constraining the arm to the sidewall such that the arm is slidably adjustable along the slot relative to the attaching member.
  • 2. The recessed lighting unit of claim 1 further comprising: a trim having a crown that has a frusto-conical shape, wherein the crown has a base with a base opening formed therein, a top with a top opening formed therein, wherein light to be emitted from the source module is to pass through the crown by passing through the top opening and then through the base opening before illuminating a room, and a frustum that extends from the base to the top, and a brim that is attached to the base and encircles the base opening.
  • 3. The recessed lighting unit of claim 2 further comprising a twist and lock mechanism formed on a lip of the light source module and on a top of the crown of the trim.
  • 4. The recessed lighting unit of claim 2 wherein the crown has a height, as measured vertically from a top flat surface of the brim to a top of the crown that abuts the light source module, that is in the range of 0.5 inch to 2 inches.
  • 5. The recessed lighting unit of claim 2 further comprising a plurality of friction clips anchored to the crown for attaching the trim to the sidewall of the casing.
  • 6. The recessed lighting unit of claim 1 wherein the closed top end or sidewall of the casing has a knockout that is to be opened to reveal a hole, through which the building electrical power wiring is routed into the casing.
  • 7. The recessed lighting unit of claim 1 wherein the sidewall of the casing has a horizontal cross section that is shaped as a polygon.
  • 8. The recessed lighting unit of claim 7 wherein the casing is folded into shape from a flat sheet of metal.
  • 9. The recessed lighting unit of claim 8, wherein the metal is galvanized steel.
  • 10. The recessed lighting unit of claim 1 wherein the casing has a plurality of knockouts formed therein any one of which is to be used for bringing building electrical power wires, that are directly connected to another recessed lighting unit in the building without passing through a junction box, into the casing, to power the light source module in the casing.
  • 11. The recessed lighting unit of claim 1 wherein a lip of the light source module is attached to the border of the frame of the holding bracket.
  • 12. A recessed lighting unit comprising: a casing having a side wall that surrounds a cavity and defines a bottom end opening;a holding bracket disposed inside the cavity, the holding bracket comprising: a frame having a frame opening; andan arm that extends upwards from the frame, the arm having a slot; andan attaching member positioned on the side wall of the casing, the attaching member extending into the cavity of the casing and passing through the slot of the arm to couple the arm to the side wall, wherein the holding bracket is slidable within the cavity along the slot of the arm.
  • 13. The recessed lighting unit of claim 12, wherein the casing has a horizontal cross section that is shaped as a polygon.
  • 14. The recessed lighting unit of claim 13, wherein the polygon is a pentagon, hexagon, heptagon, octagon, nonagon, or decagon.
  • 15. The recessed lighting unit of claim 14, wherein the frame has a polygonal outer edge that has the same number of sides as the horizontal cross section of the casing.
  • 16. The recessed lighting unit of claim 12, wherein the casing is folded into shape from a flat sheet of metal.
  • 17. The recessed lighting unit of claim 16, wherein the metal is galvanized steel.
  • 18. The recessed lighting unit of claim 12, wherein each of the attaching members comprises a threaded pin, the lighting unit further comprising: a plurality of nuts, each coupled to the threaded pin of a corresponding attaching member so that the arm of the holding bracket is held between the nut and a sidewall of the casing.
  • 19. The recessed lighting unit of claim 12, wherein the frame is positioned entirely inside of the casing when the holding bracket has been slid to an innermost position within the cavity.
  • 20. The recessed lighting unit of claim 19, wherein the frame is positioned entirely outside of the casing when the holding bracket has been slid to an outermost position, wherein the outermost position is when the attaching member abuts an inner top end of the arm that is defined by the slot.
  • 21. The recessed lighting unit of claim 12, further comprising: a light source module having a base opening from which light is emitted by the module to illuminate a room, a housing extending longitudinally rearward from the base opening, and a lip extending laterally outward from the base opening,wherein the light source module is coupled to a bottom surface of the frame along the lip, while a portion of the housing of the light source module fits through the frame opening of the frame.
  • 22. The recessed lighting unit of claim 21, further comprising: a trim having an annular region through a central opening of which light from the light source module is to pass through for illuminating the room;means for attaching the trim to the light source module; andmeans for attaching the annular region to the sidewall of the casing.
  • 23. The recessed lighting unit of claim 12, further comprising: a plurality of hangar bars positioned outside of the casing and coupled to the casing.
  • 24. A recessed lighting unit comprising: a casing having a sidewall that surrounds a cavity and defines an opening, the cavity having a cross section that is a polygon;a holding bracket, disposed inside the cavity, to couple a lighting module to the casing, the holding bracket including an arm with a slot; andan attaching member, coupled to the sidewall of the casing, that passes through the slot of the arm such that the holding bracket is slidably adjustable relative to the cavity along an axis defined by the slot.
  • 25. The recessed lighting unit of claim 24, wherein: the holding bracket comprises a frame having a frame opening, the frame opening being shaped such that a housing of the light source module is insertable through the frame opening; andthe arm has a proximal end coupled to the frame and a distal end, the proximal end and the distal end defining a longitudinal axis of the arm that is oriented orthogonal to a plane parallel to the opening of the casing.
  • 26. The recessed lighting unit of claim 25, wherein the frame includes a first opening that aligns with a second opening on a lip of the lighting module, the first opening being configured to receive at least one of a screw, bolt, or pin to couple the lighting module to the holding bracket.
US Referenced Citations (499)
Number Name Date Kind
2038784 Ghadiali Apr 1936 A
2197737 Appleton Apr 1940 A
2528989 Ammells Nov 1950 A
2642246 Larry Jun 1953 A
D180844 Poliakoff Aug 1957 S
3023920 Cook et al. Mar 1962 A
3422261 McGinty Jan 1969 A
3460299 Wilson Aug 1969 A
3650046 Skinner Mar 1972 A
3711053 Drake Jan 1973 A
D227989 Geisel Jul 1973 S
3812342 Mcnamara May 1974 A
D245905 Taylor Sep 1977 S
4088827 Kohaut May 1978 A
4154218 Hulet May 1979 A
4154219 Gupta et al. May 1979 A
4176758 Glick Dec 1979 A
4399497 Druffel Aug 1983 A
4520435 Baldwin May 1985 A
4601145 Wilcox Jul 1986 A
4723747 Karp et al. Feb 1988 A
4729080 Fremont et al. Mar 1988 A
4754377 Wenman Jun 1988 A
4930054 Krebs May 1990 A
5216203 Gower Jun 1993 A
5250269 Langer et al. Oct 1993 A
5266050 O'Neil et al. Nov 1993 A
5382752 Reyhan et al. Jan 1995 A
5444606 Barnes et al. Aug 1995 A
5465199 Bray et al. Nov 1995 A
5505419 Gabrius Apr 1996 A
5544870 Kelly et al. Aug 1996 A
5562343 Chan et al. Oct 1996 A
5571993 Jones et al. Nov 1996 A
5580158 Aubrey et al. Dec 1996 A
5588737 Kusmer Dec 1996 A
5603424 Bordwell et al. Feb 1997 A
5613338 Esposito Mar 1997 A
D381111 Lecluze Jul 1997 S
5662413 Akiyama Sep 1997 A
D386277 Lecluze Nov 1997 S
D387466 Lecluze Dec 1997 S
5738436 Cummings et al. Apr 1998 A
5836678 Wright et al. Nov 1998 A
5942726 Reiker Aug 1999 A
5944412 Janos et al. Sep 1999 A
6082878 Doubek et al. Jul 2000 A
6105334 Monson et al. Aug 2000 A
6161910 Reisenauer et al. Dec 2000 A
6170685 Currier Jan 2001 B1
6174076 Petrakis et al. Jan 2001 B1
6176599 Farzen Jan 2001 B1
6267491 Parrigin Jul 2001 B1
6332597 Korcz et al. Dec 2001 B1
6350043 Gloisten Feb 2002 B1
6364511 Cohen Apr 2002 B1
6402112 Thomas et al. Jun 2002 B1
D461455 Forbes Aug 2002 S
6461016 Jamison et al. Oct 2002 B1
6474846 Kelmelis et al. Nov 2002 B1
6491413 Benesohn Dec 2002 B1
D468697 Straub, Jr. Jan 2003 S
6515313 Ibbetson et al. Feb 2003 B1
6583573 Bierman Jun 2003 B2
6585389 Bonazzi Jul 2003 B2
6600175 Baretz et al. Jul 2003 B1
D478872 Heggem Aug 2003 S
6657236 Thibeault et al. Dec 2003 B1
6666419 Vrame Dec 2003 B1
D488583 Benghozi Apr 2004 S
6719438 Sevack et al. Apr 2004 B2
6758578 Chou Jul 2004 B1
6777615 Gretz Aug 2004 B1
6827229 Dinh et al. Dec 2004 B2
6906352 Edmond et al. Jun 2005 B2
D509314 Rashidi Sep 2005 S
6948829 Verdes et al. Sep 2005 B2
6958497 Emerson et al. Oct 2005 B2
6964501 Ryan Nov 2005 B2
D516235 Rashidi Feb 2006 S
7064269 Smith Jun 2006 B2
D528673 Maxik et al. Sep 2006 S
D531740 Maxik Nov 2006 S
D532532 Maxik Nov 2006 S
7148420 Johnson et al. Dec 2006 B1
7154040 Tompkins Dec 2006 B1
7170015 Roesch et al. Jan 2007 B1
D536349 Humber et al. Feb 2007 S
D537039 Pincek Feb 2007 S
D539229 Murphey Mar 2007 S
7186008 Patti Mar 2007 B2
7190126 Paton Mar 2007 B1
7211833 Slater, Jr. et al. May 2007 B2
7213940 Van De Ven et al. May 2007 B1
D547889 Huang Jul 2007 S
D552969 Bobrowski et al. Oct 2007 S
D553267 Yuen Oct 2007 S
D555106 Pape et al. Nov 2007 S
D556144 Dinh Nov 2007 S
7297870 Sartini Nov 2007 B1
7312474 Emerson et al. Dec 2007 B2
7320536 Petrakis et al. Jan 2008 B2
D561372 Yan Feb 2008 S
D561373 Yan Feb 2008 S
7335920 Denbaars et al. Feb 2008 B2
D563896 Greenslate Mar 2008 S
7347580 Blackman et al. Mar 2008 B2
D570012 Huang May 2008 S
7374308 Sevack et al. May 2008 B2
D570504 Maxik et al. Jun 2008 S
D570505 Maxik et al. Jun 2008 S
7399104 Rappaport Jul 2008 B2
D578677 Huang Oct 2008 S
7431482 Morgan et al. Oct 2008 B1
7432440 Hull et al. Oct 2008 B2
7442883 Jolly et al. Oct 2008 B2
7446345 Emerson et al. Nov 2008 B2
7473005 O'Brien Jan 2009 B2
7488097 Reisenauer et al. Feb 2009 B2
7503145 Newbold et al. Mar 2009 B2
7524089 Park Apr 2009 B2
D591894 Flank May 2009 S
7534989 Suehara et al. May 2009 B2
D596154 Rivkin Jul 2009 S
7566154 Gloisten et al. Jul 2009 B2
D599040 Alexander et al. Aug 2009 S
D600836 Hanley et al. Sep 2009 S
7588359 Coushaine et al. Sep 2009 B2
7592583 Page et al. Sep 2009 B2
D606696 Chen et al. Dec 2009 S
7625105 Johnson Dec 2009 B1
7628513 Chiu Dec 2009 B2
7651238 O'Brien Jan 2010 B2
7654705 Czech et al. Feb 2010 B2
D611650 Broekhoff Mar 2010 S
7670021 Chou Mar 2010 B2
7673841 Wronski Mar 2010 B2
7677766 Boyer Mar 2010 B2
7692182 Bergmann et al. Apr 2010 B2
7704763 Fujii et al. Apr 2010 B2
D616118 Thomas et al. May 2010 S
7722208 Dupre et al. May 2010 B1
7722227 Zhang et al. May 2010 B2
7735795 Wronski Jun 2010 B2
7735798 Kojima Jun 2010 B2
7748887 Zampini, II et al. Jul 2010 B2
7766518 Piepgras et al. Aug 2010 B2
7769192 Takagi et al. Aug 2010 B2
7771082 Peng Aug 2010 B2
7771094 Goode Aug 2010 B2
D624692 Mackin et al. Sep 2010 S
D625847 Maglica Oct 2010 S
D625876 Chen et al. Oct 2010 S
D627727 Alexander et al. Nov 2010 S
7828465 Roberge et al. Nov 2010 B2
D629366 Ericson et al. Dec 2010 S
7871184 Peng Jan 2011 B2
7874539 Wright et al. Jan 2011 B2
7874709 Beadle Jan 2011 B1
D633224 Lee Feb 2011 S
D636903 Torenbeek Apr 2011 S
D637339 Hasan et al. May 2011 S
D637340 Hasan et al. May 2011 S
7950832 Tanaka et al. May 2011 B2
D639499 Choi et al. Jun 2011 S
D640819 Pan Jun 2011 S
7959332 Tickner et al. Jun 2011 B2
7967480 Pickard et al. Jun 2011 B2
D642317 Rashidi Jul 2011 S
7972035 Boyer Jul 2011 B2
7972043 Schutte Jul 2011 B2
D642536 Robinson Aug 2011 S
D643970 Kim et al. Aug 2011 S
D646011 Rashidi Sep 2011 S
8013243 Korcz et al. Sep 2011 B2
8038113 Fryzek et al. Oct 2011 B2
D648476 Choi et al. Nov 2011 S
D648477 Kim et al. Nov 2011 S
D650115 Kim et al. Dec 2011 S
8070328 Knoble et al. Dec 2011 B1
8096670 Trott et al. Jan 2012 B2
D654205 Rashidi Feb 2012 S
D656263 Ogawa et al. Mar 2012 S
8142057 Roos et al. Mar 2012 B2
8152334 Krogman Apr 2012 B2
D658788 Dudik et al. May 2012 S
D658802 Chen May 2012 S
D659862 Tsai May 2012 S
D659879 Rashidi May 2012 S
D660814 Wilson May 2012 S
8182116 Zhang et al. May 2012 B2
8201968 Maxik et al. Jun 2012 B2
D663058 Pan Jul 2012 S
D663466 Rashidi Jul 2012 S
D664274 de Visser et al. Jul 2012 S
D664705 Kong et al. Jul 2012 S
8215805 Cogliano et al. Jul 2012 B2
8220970 Khazi Jul 2012 B1
8226270 Yamamoto et al. Jul 2012 B2
8240630 Wronski Aug 2012 B2
D667155 Rashidi Sep 2012 S
8262255 Rashidi Sep 2012 B1
D668372 Renshaw et al. Oct 2012 S
D668809 Rashidi Oct 2012 S
D669198 Qui Oct 2012 S
D669199 Chuang Oct 2012 S
D669620 Rashidi Oct 2012 S
8277090 Fryzek et al. Oct 2012 B2
8308322 Santiago et al. Nov 2012 B2
D673869 Yu Jan 2013 S
D676263 Birke Feb 2013 S
D676814 Paul Feb 2013 S
8376593 Bazydola et al. Feb 2013 B2
D677417 Rashidi Mar 2013 S
D677634 Korcz et al. Mar 2013 S
D679047 Tickner et al. Mar 2013 S
8403533 Paulsel Mar 2013 B1
8403541 Rashidi Mar 2013 B1
D681259 Kong Apr 2013 S
8408759 Rashidi Apr 2013 B1
D682459 Gordin et al. May 2013 S
D683063 Lopez et al. May 2013 S
D683890 Lopez et al. Jun 2013 S
D684269 Wang et al. Jun 2013 S
D684719 Rashidi Jun 2013 S
D685118 Rashidi Jun 2013 S
D685120 Rashidi Jun 2013 S
8454204 Chang et al. Jun 2013 B1
D685507 Sun Jul 2013 S
D687586 Rashidi Aug 2013 S
D687587 Rashidi Aug 2013 S
D687588 Rashidi Aug 2013 S
D687980 Gravely et al. Aug 2013 S
D688405 Kim et al. Aug 2013 S
D690049 Rashidi Sep 2013 S
D690864 Rashidi Oct 2013 S
D690865 Rashidi Oct 2013 S
D690866 Rashidi Oct 2013 S
D691314 Rashidi Oct 2013 S
D691315 Samson Oct 2013 S
D691763 Hand et al. Oct 2013 S
8550669 Macwan et al. Oct 2013 B2
D693043 Schmalfuss et al. Nov 2013 S
D693517 Davis Nov 2013 S
D694456 Rowlette, Jr. et al. Nov 2013 S
8573816 Negley et al. Nov 2013 B2
D695441 Lui et al. Dec 2013 S
D696446 Huh Dec 2013 S
D696447 Huh Dec 2013 S
D696448 Huh Dec 2013 S
8602601 Khazi et al. Dec 2013 B2
D698067 Rashidi Jan 2014 S
D698068 Rashidi Jan 2014 S
8622361 Wronski Jan 2014 B2
D698985 Lopez et al. Feb 2014 S
D699384 Rashidi Feb 2014 S
D699687 Baldwin et al. Feb 2014 S
D700387 Snell Feb 2014 S
8641243 Rashidi Feb 2014 B1
8659034 Baretz et al. Feb 2014 B2
D701175 Baldwin et al. Mar 2014 S
D701466 Clifford et al. Mar 2014 S
8672518 Boomgaarden et al. Mar 2014 B2
D702867 Kim et al. Apr 2014 S
D703843 Cheng Apr 2014 S
8684569 Pickard et al. Apr 2014 B2
D705472 Huh May 2014 S
8727582 Brown et al. May 2014 B2
D708381 Rashidi Jul 2014 S
8777449 Ven et al. Jul 2014 B2
D710529 Lopez et al. Aug 2014 S
8801217 Oehle et al. Aug 2014 B2
8820985 Tam et al. Sep 2014 B1
8833013 Harman Sep 2014 B2
D714989 Rowlette, Jr. et al. Oct 2014 S
8870426 Biebl et al. Oct 2014 B2
8890414 Rowlette, Jr. et al. Nov 2014 B2
D721845 Lui et al. Jan 2015 S
8939418 Green et al. Jan 2015 B2
D722296 Taylor Feb 2015 S
D722977 Hagarty Feb 2015 S
D722978 Hagarty Feb 2015 S
8950898 Catalano Feb 2015 B2
D726363 Danesh Apr 2015 S
D726949 Redfern Apr 2015 S
9004435 Wronski Apr 2015 B2
9039254 Danesh May 2015 B2
D731689 Bernard et al. Jun 2015 S
9062866 Christ et al. Jun 2015 B1
9065264 Cooper et al. Jun 2015 B2
9068719 Van De Ven et al. Jun 2015 B2
D734525 Gordin et al. Jul 2015 S
D735012 Cowie Jul 2015 S
D735142 Hagarty Jul 2015 S
9078299 Ashdown Jul 2015 B2
D739590 Redfern Sep 2015 S
9140441 Goelz et al. Sep 2015 B2
D742325 Leung Oct 2015 S
9151457 Pickard et al. Oct 2015 B2
9151477 Pickard et al. Oct 2015 B2
9217560 Harbers et al. Dec 2015 B2
9222661 Kim et al. Dec 2015 B2
9239131 Wronski et al. Jan 2016 B1
9285103 Van De Ven et al. Mar 2016 B2
9291319 Kathawate et al. Mar 2016 B2
9301362 Dohn et al. Mar 2016 B2
D754078 Baldwin et al. Apr 2016 S
D754079 Baldwin et al. Apr 2016 S
D754605 McMillan Apr 2016 S
9303812 Green et al. Apr 2016 B2
9310038 Athalye Apr 2016 B2
9322543 Hussell et al. Apr 2016 B2
9347655 Boomgaarden et al. May 2016 B2
9366418 Gifford Jun 2016 B2
9371966 Rowlette, Jr. et al. Jun 2016 B2
D762181 Lin Jul 2016 S
9395051 Hussell et al. Jul 2016 B2
D762906 Jeswani et al. Aug 2016 S
D764079 Wu Aug 2016 S
9404639 Bailey et al. Aug 2016 B2
9417506 Tirosh Aug 2016 B1
D766185 Hagarty Sep 2016 S
D767199 Wronski et al. Sep 2016 S
9447917 Wronski et al. Sep 2016 B1
D768325 Xu Oct 2016 S
D768326 Guzzini Oct 2016 S
D769501 Jeswani et al. Oct 2016 S
D770065 Tittle Oct 2016 S
9476552 Myers et al. Oct 2016 B2
D776324 Gierl et al. Jan 2017 S
D777967 Redfern Jan 2017 S
9534751 Maglica et al. Jan 2017 B2
D778241 Holbrook et al. Feb 2017 S
D778484 Guzzini Feb 2017 S
D779100 Redfern Feb 2017 S
9581302 Danesh Feb 2017 B2
9599315 Harpenau et al. Mar 2017 B1
9605910 Swedberg et al. Mar 2017 B2
D785228 Guzzini Apr 2017 S
D786472 Redfern May 2017 S
D786474 Fujisawa May 2017 S
D788330 Johnson et al. May 2017 S
D790102 Guzzini Jun 2017 S
9673597 Lee Jun 2017 B2
9689541 Wronski Jun 2017 B2
D791709 Holton Jul 2017 S
D791711 Holton Jul 2017 S
D791712 Holton Jul 2017 S
9696021 Wronski Jul 2017 B2
9702516 Vasquez et al. Jul 2017 B1
D795820 Wengreen Aug 2017 S
9732904 Wronski Aug 2017 B1
9739464 Wronski Aug 2017 B2
9791111 Huang et al. Oct 2017 B1
9803839 Visser et al. Oct 2017 B2
D805660 Creasman et al. Dec 2017 S
D809176 Partington Jan 2018 S
9863619 Mak Jan 2018 B2
D809465 Keirstead Feb 2018 S
9964266 Danesh May 2018 B2
D820494 Cohen Jun 2018 S
9995441 Power et al. Jun 2018 B2
D824494 Martins et al. Jul 2018 S
D832218 Wronski et al. Oct 2018 S
D833977 Danesh et al. Nov 2018 S
10139059 Danesh Nov 2018 B2
D836976 Reese et al. Jan 2019 S
D848375 Danesh et al. May 2019 S
20020172047 Ashley Nov 2002 A1
20030006353 Dinh et al. Jan 2003 A1
20030021104 Tsao Jan 2003 A1
20030161153 Patti Aug 2003 A1
20040001337 Defouw et al. Jan 2004 A1
20050225966 Hartmann et al. Oct 2005 A1
20050227536 Gamache et al. Oct 2005 A1
20050231962 Koba et al. Oct 2005 A1
20050237746 Yiu Oct 2005 A1
20060005988 Jorgensen Jan 2006 A1
20060158873 Newbold et al. Jul 2006 A1
20060198126 Jones Sep 2006 A1
20060215408 Lee Sep 2006 A1
20060237601 Rinderer Oct 2006 A1
20060243877 Rippel Nov 2006 A1
20060250788 Hodge et al. Nov 2006 A1
20070035951 Tseng Feb 2007 A1
20070185675 Papamichael et al. Aug 2007 A1
20070200039 Petak Aug 2007 A1
20070206374 Petrakis et al. Sep 2007 A1
20080112168 Pickard et al. May 2008 A1
20080112170 Trott May 2008 A1
20080112171 Patti et al. May 2008 A1
20080137347 Trott et al. Jun 2008 A1
20080165545 O'Brien Jul 2008 A1
20080232116 Kim Sep 2008 A1
20080247181 Dixon Oct 2008 A1
20090003009 Tessnow et al. Jan 2009 A1
20090034261 Grove Feb 2009 A1
20090080189 Wegner Mar 2009 A1
20090086484 Johnson Apr 2009 A1
20090135613 Peng May 2009 A1
20090141500 Peng Jun 2009 A1
20090141506 Lan et al. Jun 2009 A1
20090141508 Peng Jun 2009 A1
20090147517 Li Jun 2009 A1
20090161356 Negley et al. Jun 2009 A1
20090237924 Ladewig Sep 2009 A1
20090280695 Sekela et al. Nov 2009 A1
20090283292 Lehr Nov 2009 A1
20090290343 Brown et al. Nov 2009 A1
20100014282 Danesh Jan 2010 A1
20100061108 Zhang et al. Mar 2010 A1
20100110690 Hsu et al. May 2010 A1
20100110698 Harwood et al. May 2010 A1
20100148673 Stewart et al. Jun 2010 A1
20100149822 Cogliano et al. Jun 2010 A1
20100165643 Russo et al. Jul 2010 A1
20100244709 Steiner et al. Sep 2010 A1
20100246172 Liu Sep 2010 A1
20100259919 Khazi et al. Oct 2010 A1
20100270903 Jao et al. Oct 2010 A1
20100302778 Dabiet et al. Dec 2010 A1
20110043040 Porter et al. Feb 2011 A1
20110063831 Cook Mar 2011 A1
20110068687 Takahasi et al. Mar 2011 A1
20110069499 Trott et al. Mar 2011 A1
20110080750 Jones et al. Apr 2011 A1
20110116276 Okamura et al. May 2011 A1
20110134634 Gingrich, III et al. Jun 2011 A1
20110134651 Berman Jun 2011 A1
20110170294 Mier-Langner et al. Jul 2011 A1
20110194299 Crooks et al. Aug 2011 A1
20110216534 Tickner et al. Sep 2011 A1
20110226919 Fryzek et al. Sep 2011 A1
20110255292 Shen Oct 2011 A1
20110267828 Bazydola et al. Nov 2011 A1
20110285314 Carney et al. Nov 2011 A1
20120020104 Biebl et al. Jan 2012 A1
20120074852 Delnoij Mar 2012 A1
20120106176 Lopez et al. May 2012 A1
20120113642 Catalano May 2012 A1
20120140442 Woo et al. Jun 2012 A1
20120162994 Wasniewski et al. Jun 2012 A1
20120182744 Santiago et al. Jul 2012 A1
20120188762 Joung et al. Jul 2012 A1
20120243237 Toda et al. Sep 2012 A1
20120287625 Macwan et al. Nov 2012 A1
20120305868 Callahan et al. Dec 2012 A1
20130009552 Page Jan 2013 A1
20130010476 Pickard et al. Jan 2013 A1
20130033872 Randolph et al. Feb 2013 A1
20130051012 Oehle et al. Feb 2013 A1
20130141913 Sachsenweger Jun 2013 A1
20130163254 Chang et al. Jun 2013 A1
20130170232 Park et al. Jul 2013 A1
20130170233 Nezu et al. Jul 2013 A1
20130258677 Fryzek et al. Oct 2013 A1
20130265750 Pickard et al. Oct 2013 A1
20130271989 Hussell et al. Oct 2013 A1
20130294084 Kathawate et al. Nov 2013 A1
20130301252 Hussell et al. Nov 2013 A1
20130322062 Danesh Dec 2013 A1
20130322084 Ebisawa Dec 2013 A1
20130335980 Nakasuji et al. Dec 2013 A1
20140036497 Hussell et al. Feb 2014 A1
20140049957 Goelz et al. Feb 2014 A1
20140063776 Clark et al. Mar 2014 A1
20140071679 Booth Mar 2014 A1
20140071687 Tickner et al. Mar 2014 A1
20140140490 Roberts et al. May 2014 A1
20140063818 Randolph et al. Jun 2014 A1
20140233246 Lafreniere et al. Aug 2014 A1
20140254177 Danesh Sep 2014 A1
20140268836 Thompson Sep 2014 A1
20140299730 Green et al. Oct 2014 A1
20140321122 Domagala et al. Oct 2014 A1
20140347848 Pisavadia et al. Nov 2014 A1
20150009676 Danesh Jan 2015 A1
20150138779 Livesay et al. May 2015 A1
20150184837 Zhang et al. Jul 2015 A1
20150198324 O'Brien et al. Jul 2015 A1
20150219317 Gatof et al. Aug 2015 A1
20150233556 Danesh Aug 2015 A1
20150241039 Fryzek Aug 2015 A1
20150263497 Korcz et al. Sep 2015 A1
20150276185 Bailey et al. Oct 2015 A1
20150308662 Vice et al. Oct 2015 A1
20150345761 Lawlor Dec 2015 A1
20150362159 Ludyjan Dec 2015 A1
20160209007 Belmonte et al. Jul 2016 A1
20160308342 Witherbee et al. Oct 2016 A1
20160312987 Danesh Oct 2016 A1
20160348860 Bailey et al. Dec 2016 A1
20160348861 Bailey et al. Dec 2016 A1
20160366738 Boulanger et al. Dec 2016 A1
20170045213 Williams et al. Feb 2017 A1
20170059135 Jones Mar 2017 A1
20170138576 Peng et al. May 2017 A1
20170138581 Doust May 2017 A1
20170307188 Oudina et al. Oct 2017 A1
Foreign Referenced Citations (59)
Number Date Country
2502637 Sep 2005 CA
2691480 Apr 2012 CA
2734369 Oct 2013 CA
2561459 Nov 2013 CA
2815067 Nov 2013 CA
2848289 Oct 2014 CA
201059503 May 2008 CN
201259125 Jun 2009 CN
101608781 Dec 2009 CN
201636626 Nov 2010 CN
102062373 May 2011 CN
202392473 Nov 2011 CN
103307518 Mar 2012 CN
202733693 Feb 2013 CN
103322476 Sep 2013 CN
203215483 Sep 2013 CN
101498411 Nov 2013 CN
104654142 Nov 2013 CN
203273663 Nov 2013 CN
203297980 Nov 2013 CN
103712135 Dec 2013 CN
203628464 Dec 2013 CN
203641919 Jun 2014 CN
204300818 Apr 2015 CN
204513161 Jul 2015 CN
204611541 Sep 2015 CN
204786225 Nov 2015 CN
204829578 Dec 2015 CN
205606362 Sep 2016 CN
2016130742 Apr 2017 CN
103154606 May 2017 CN
206222112 Jun 2017 CN
107013845 Aug 2017 CN
107084343 Aug 2017 CN
9109828 Feb 1992 DE
199 47 208 May 2001 DE
1 672 155 Jun 2006 EP
2 306 072 Apr 2011 EP
2 453 169 May 2012 EP
2 193 309 Jul 2012 EP
2 735 787 May 2014 EP
3 104 024 Dec 2016 EP
2427020 Dec 2006 GB
2509772 Jul 2014 GB
H02113002 Sep 1990 JP
2007091052 Apr 2007 JP
2007265961 Oct 2007 JP
2011060450 Mar 2011 JP
2012064551 Mar 2012 JP
2015002027 Jun 2013 JP
2015002028 Jan 2015 JP
2017107699 Jun 2017 JP
1020110008796 Jan 2011 KR
1020120061625 Jun 2012 KR
2011002947 Sep 2011 MX
474382 Jan 2002 TW
WO 2013128896 Sep 2013 WO
WO 2015000212 Jan 2015 WO
WO 2016152166 Aug 2016 WO
Non-Patent Literature Citations (101)
Entry
U.S. Non-Final Office Action, dated May 17, 2017, U.S. Appl. No. 14/183,424.
Final Office Action, dated Jul. 26, 2017, U.S. Appl. No. 14/184,601.
Non-Final Office Action (dated Oct. 16, 2014), U.S. Appl. No. 13/484,901, filed May 31, 2012, First Named Inventor: Michael D. Danesh, 15 pages.
Final Office Action (dated Apr. 2, 2015), U.S. Appl. No. 13/484,901, filed May 31, 2012, First Named Inventor: Michael D. Danesh, 13 pages.
Non-Final Office Action (dated Jun. 2, 2015), U.S. Appl. No. 12/183,424, filed Feb. 14, 2014, First Named Inventor: Michael D. Danesh, 20 pages.
Non-Final Office Action (dated Jul. 20, 2015), U.S. Appl. No. 14/184,601, filed Feb. 19, 2014, First Named Inventor: Michael D. Danesh, 19 pages.
Non-Final Office Action (dated Sep. 15, 2015), U.S. Appl. No. 13/484,901, filed May 31, 2012. First Named Inventor: Michael D. Danesh, 16.
“CA Office Action (dated Dec. 23, 2013), Application No. 2,778,581, Date Filed—Jun. 1, 2012”, 3 pages.
DMF, INC., “dmfLighting: LED Recessed Lighting Solutions”, Info sheets, (Mar. 19, 2012), 4 pages.
Halo, Halo LED H4 H7 Collection, SustainabLEDesign, Cooper Lighting, (emphasis on p. 18 “H7 Collection LED Modules—Halo LED H7 Module Features”), (Mar. 28, 2012), 52 pages.
Halo, H7 LED Downlight Trims 49x Series, 6-inch LED Trims for Use with ML7x LED Modules, Cooper Lighting, ADV110422, (rev. Aug. 12, 2011), 15 pages.
HALO, LED Module ML706x, Cooper Lighting, General Installation for All Modules/p. 1; Tether Installation/pp. 2-3; Installation into HALO H750x Series LED-only (Non-Screw based) Recessed Fixture/p. 4, (Oct. 20, 2009), 4 pages.
CA Office Action (dated Feb. 1, 2016), Application No. 2,879,486, Filing Date: Jan. 23, 2015, First Named Inventor: Michael D. Danesh, 5.
Final Office Action (dated Apr. 27, 2016), U.S. Appl. No. 14/184,601, Filing Date: Feb. 19, 2014, First Named Inventor: Michael D. Danesh, 18.
Final Office Action (dated Jun. 23, 2016), U.S. Appl. No. 13/484,901, filed May 31, 2012, First Named Inventor: Michael D. Danesh, 18 pages.
“DME Series Installation Instructions”, (Oct. 18, 2011).
Final Office Action (dated Jan. 29, 2016), U.S. Appl. No. 14/183,424, filed Feb. 18, 2014, First Named Inventor: Michael D. Danesh, 21.
U.S. Appl. No. 29/645,941, filed Apr. 30, 2018, Danesh et al.
Acrich COB Zhaga Module, Product Description, Seoul Semiconductor, Nov. 2016, 39 pages.
<https://www.zhagastandard.org/books/book18/>, Mar. 2017, 5 pages.
Non-Final Office Action dated May 16, 2018 for U.S. Appl. No. 15/132,875, 18 pages.
Notice of Allowance dated May 10, 2018 from U.S. Appl. No. 14/726,064, 7 pages.
Non-Final Office Action, dated Dec. 15, 2016, U.S. Appl. No. 14/184,601.
Canadian Office Action, dated Dec. 6, 2016, Canadian Application No. 2,879,629.
U.S. Appl. No. 15/637,742, filed Jun. 29, 2017, Kopitzke, IV.
U.S. Appl. No. 15/688,266, filed Aug. 28, 2017, Gaskarimahalle.
U.S. Appl. No. 15/853,400, filed Dec. 22, 2017, Kashani.
U.S. Appl. No. 15/901,738, filed Feb. 21, 2018, Danesh.
U.S. Appl. No. 15/947,065, filed Apr. 6, 2018, Danesh.
U.S. Appl. No. 29/638,259, filed Feb. 26, 2018, Danesh.
U.S. Appl. No. 29/541,565, filed Oct. 5, 2015, Peng.
“Membrane Penetrations in Fire-Resistance Rated Walls,” https://www.ul.com/wp-content/uploads/2014/04/ul_MembranePenetrations.pdf, Issue 1, 2009, 2 pages.
“Metallic and Non-metallic Outlet Boxes Used in Fire-rated Assembly,” https://iaeimagazine.org/magazine/2000/09/16/metallic-and-non-metallic-outlet-boxes-used-in-fire-rated-assembly/, Sep. 16, 2000, 5 pages.
“Metallic Outlet Boxes,” UL 514A, Underwriters Laboratories, Inc., Feb. 16, 2004 (Title Page Reprinted Aug. 10, 2007), 106 pages.
“Outlet Boxes for Use in Fire Rated Assemblies,” https://www.ul.com/wp-content/uploads/2014/04/Ul_outletboxes.pdf, 2011, 2 pages.
2006 International Building Code, Section 712 Penetrations, 2006, 4 pages.
BXUV.Guidelnfo, Fire Resistance Ratings—ANSI/UL 263, UL Online Certifications Directory, last updated Nov. 3, 2016, 27 pages.
Canadian Office Action dated Aug. 11, 2017 from Canadian Application No. 2,941,051, 4 pages.
Canadian Office Action dated Jun. 12, 2017 from Canadian Application No. 2,927,601, 4 pages.
Canadian Office Action dated Mar. 22, 2016 from Canadian Application No. 2,879,629, 4 pages.
Canadian Office Action dated Mar. 9, 2017 from Canadian Application No. 2,931,588, 5 pages.
CEYY.GuideInfo, Outlet Boxes and Fittings Certified for Fire Resistance, UL Online Certifications Directory, last updated May 16, 2013, 2 pages.
DMF, Inc., “dmfLIGHTING: LED Recessed Downlighting,” DRD2 Product Brochure, Oct. 23, 2014, 50 pages.
DMF, Inc., “dmfLIGHTING: Led Recessed Downlighting,” Product Catalog, Aug. 2012, 68 pages.
Final Office Action dated Jul. 26, 2017 from U.S. Appl. No. 14/184,601, 18 pages.
Non-Final Office Action dated Apr. 12, 2018 for U.S. Appl. No. 29/638,259, 5 pages.
Non-Final Office Action dated Apr. 30, 2010 from U.S. Appl. No. 12/173,232, 13 pages.
Non-Final Office Action dated Feb. 6, 2018 from U.S. Appl. No. 15/167,682, 9 pages.
Non-Final Office Action dated Mar. 15, 2010 from U.S. Appl. No. 12/100,148, 8 pages.
Non-Final Office Action dated Sep. 5, 2014 from U.S. Appl. No. 13/791,087, 8 pages.
Non-Final Office Action dated Sep. 6, 2017 from U.S. Appl. No. 14/726,064, 8 pages.
Notice of Allowance dated Aug. 23, 2017 from Canadian Application No. 2,879,629, 1 page.
Notice of Allowance dated Jan. 16, 2015 from U.S. Appl. No. 29/467,026, 9 pages.
Notice of Allowance dated Jan. 30, 2015 from U.S. Appl. No. 13/791,087, 9 pages.
Notice of Allowance dated Mar. 24, 2016 from U.S. Appl. No. 14/247,149, 8 pages.
Notice of Allowance dated Mar. 26, 2018 for U.S. Appl. No. 14/184,601, 10 pages.
Notice of Allowance dated Oct. 21, 2016 from U.S. Appl. No. 13/484,901, 7 pages.
“Advanced LED Solutions,” Imtra Marine Lighting. 2011. 39 pages.
“Cree LMH2 LED Module with TrueWhite Technology,” Cree Product Family Data Sheet. 2011. 3 pages.
“Cree LMH2 LED Modules Design Guide,” Cree Product Design Guide. 2011. 20 pages.
“Cree LMH2 LED Modules,” Mouser Electronics. 2 pages.
“LED Undercabinet Pocket Guide,” ELCO Lighting.12 pages.
“Portland Bi-Color, Warm White/Red,” item:ILIM30941.Imtra Marine Products. 2012. 3 pages.
“Undercabinet Pucks, Xyris Mini LED Puck Light,” ELCO Lighting. Sep. 2018. 1 page.
“VERSI LED Mini Flush,” Lithonia Lghting. 6 pages.
4″ Octagon Concrete Boxes and Back Plates. Appleton. Accessed at www.appletonelec.com on May 6, 2019. 1 page.
Civil Action No. 2:18-cv-07090. Complaint for Infringement and Unfair Competition. DMF, Inc. v. AMP Plus, Inc. d/b/a Elco Lighting. 52 pages. Dated Aug. 15, 2018.
Cree LED Lamp Family Sales Sheet—Better light is beautiful light , Apr. 24, 2017, 2 pages.
CS&E PCT Collaborative Search and Examination Pilot Upload Peer Contribution in International Patent Application No. PCT/US18/62868 dated Mar. 14, 2019, 61 pages.
CS&E PCT Collaborative Search and Examination Pilot Upload Peer Contribution in International Patent Application No. PCT/US18/67614 dated Apr. 24, 2019, 53 pages.
Final Office Action dated Mar. 15, 2019 from U.S. Appl. No. 15/132,875,15 pages.
Imtra Marine Lighting 2008 Catalog. 40 pages.
Imtra Marine Lighting 2009 Catalog. 32 pages.
Imtra Marine Lighting Spring 2007 Catalog. 36 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/39048 dated Dec. 14, 2018. 24 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/62868 dated Mar. 14, 2019, 13 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/67614 dated Apr. 25, 2019, 20 pages.
International Search Report and Written Opinion in PCT/US2018/048357 dated Nov. 14, 2018, 13 pages.
Non-Final Office Action dated Apr. 4, 2019 from U.S. Appl. No. 29/678,482, 8 pages.
Non-Final Office Action dated Dec. 5, 2018 from U.S. Appl. No. 14/942,937, 13 pages.
Non-Final Office Action dated Feb. 7, 2019 from U.S. Appl. No. 16/200,393, 32 pages.
Non-Final Office Action dated Jul. 24, 2018 from U.S. Appl. No. 29/638,259, 5 pages.
Non-Final Office Action dated Jun. 25, 2018 for U.S. Appl. No. 29/541,565, 10 pages.
Non-Final Office Action dated Oct. 24, 2018 for U.S. Appl. No. 15/688,266, 14 pages.
Notice of Allowance dated Apr. 1, 2019 from U.S. Appl. No. 15/167,682, 7 pages.
Notice of Allowance dated Apr. 17, 2019 from U.S. Appl. No. 29/678,478, 7 pages.
Notice of Allowance dated Apr. 8, 2019 from U.S. Appl. No. 29/653,142, 8 pages.
Notice of Allowance dated Feb. 8, 2019 from U.S. Appl. No. 29/541,565, 5 pages.
Notice of Allowance dated Jan. 2, 2019 from U.S. Appl. No. 29/541,565, 6 pages.
Notice of Allowance dated Jan. 28, 2019 from U.S. Appl. No. 29/664,471, 8 pages.
Notice of Allowance dated May 22, 2018 from U.S. Appl. No. 14/183,424, 9 pages.
Notice of Allowance dated Nov. 27, 2018 from U.S. Appl. No. 15/167,682, 11 pages.
Notice of Allowance dated Oct. 4, 2018 from U.S. Appl. No. 15/947,065 , 9 pages.
Notice of Allowance dated Oct. 9, 2018 from U.S. Appl. No. 29/653,142, 7 pages.
Notice of Allowance dated Sep. 19, 2018 from U.S. Appl. No. 15/167,682 , 7 pages.
Notice of Allowance dated Sep. 21, 2018 from U.S. Appl. No. 29/645,941, 5 pages.
OneFrame Recessed LED Downlight. Dmflighting.com. Published Jun. 6, 2018. Retrieved at https://www.dmflighting.com/productioneframe on Jun. 6, 2018. 11 pages.
RACO 4 in. Octagon Welded Concrete Ring, 3-1/2 in. Deep with 1/2 and 3/4 in. Knockouts and ilcludes 890 cover (20-Pack). Model # 280. Accessed at https://www.homedepot.com/p/RACO-4-in-Octagon-Welded-Concrete-Ring-3-1-2-in-Deep-with-1-2-and-3-4-in-Knockouts-and-ilcludes-890-cover-20-Pack-280/203638679 on Jan. 18, 2019. 3 pages.
RACO 4 in. Octagon Welded Concrete Ring, 6 in. Deep with 1/2 and 3/4 in. Knockouts (10-Pack). Model # 276. Accessed at https://www.homedepot.com/p/RACO-4-in-Octagon-Welded-Concrete-Ring-6-in-Deep-with-1-2-and-3-4-in-Knockouts-10-Pack-276/203638675 on Jan. 16, 2019. 4 pages.
RACO Commercial, Industrial and Residential Electrical Products. Hubbell. Accessed at www.Hubbell-RTB.com on May 6, 2019. 356 pages.
Specification & Features 4″ Octagonal Concrete Box Covers. Orbit Industries, Inc. Accessed at https://www.orbitelectric.com on May 6, 2019. 1 page.
Related Publications (1)
Number Date Country
20170138576 A1 May 2017 US