BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic drawing showing the fabrication of a rechargeable battery in accordance with a first embodiment of the present invention (I).
FIG. 2 is a schematic drawing showing the fabrication of a rechargeable battery in accordance with the first embodiment of the present invention (II).
FIG. 3 is a schematic drawing showing the fabrication of a rechargeable battery in accordance with the first embodiment of the present invention (III).
FIG. 4 is a schematic drawing showing the fabrication of a rechargeable battery in accordance with the first embodiment of the present invention (IV).
FIG. 5 is a diagram of 10C discharge efficiency curves according to the present invention and the prior art.
FIG. 6 is a diagram of 15C discharge efficiency curves according to the present invention and the prior art.
FIG. 7 is a diagram of 20C discharge efficiency curves according to the present invention and the prior art.
FIG. 8 is a front view of a positive pole for a rechargeable battery in accordance with a second embodiment of the present invention.
FIG. 9 is a front view of a positive pole for a rechargeable battery in accordance with a third embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1˜4 illustrate the fabrication method of a rechargeable battery 10 in accordance with the first embodiment of the present invention. At first, as shown in FIG. 1, prepare a positive pole 20, a negative pole 30, and two isolation membranes 40. The positive pole 20 comprises a narrow, elongated aluminum strip 22, and a positive pole material film 24 covered on the two opposite surfaces of the aluminum strip 22. The positive pole material film 24 is a LiCoO2 film, having a width w1 smaller than the width w2 of the aluminum strip 22 so that the positive pole 20 has a bare aluminum zone 21. The negative pole 30 comprises a narrow, elongated copper strip 32, and a negative pole material film 34 covered on the two opposite surfaces of the copper strip 32. The negative pole material film 34 is a MCMB (Mesophase Carbon Micro Beads) film, having a width w3 approximately equal to the width w1 of the positive pole material film 24 and smaller than the width w4 of the copper strip 32 so that the negative pole 30 has a bare copper zone 31. The negative pole material film 34 may be made having its width w3 greater than the width w1 of the positive pole material film 24. The isolation membranes 40 are made of polyethylene, having a width w5 approximately equal to the width w3 of the negative pole material film 34, and smaller than both of the width w2 of the aluminum strip 22 or the width w4 of the copper strip 32. The isolation membranes 40 may be made having their width w5 greater than the width w3 of the negative pole material film 34. Further, the positive pole 20, the negative pole 30 and the two isolation membranes 40 are approximately equal in length.
Alternatively the positive pole material film 24 may be made of any of a variety of other equivalent materials such as lithiated oxide, lithiated sulfide, lithiated selenide, lithiated telluride, lithium-iron-phosphorus oxide, lithium-vanadium-phosphorus oxide of vanadium, titanium, chromium, copper, molybdenum, niobium, iron, nickel, cobalt, manganese or a mixture thereof. Alternatively, the negative pole material film 34 may be made of any of a variety of other equivalent materials such as Mesophase Carbon Micro Beads (MCMB), Vapor-Grown Carbon Fiber (VGCF), Carbon Nanotube (CNT), coke, carbon black, graphite, acetylene black, carbon fiber, vitreous carbon or a mixture thereof. Alternatively, the isolation membranes 40 may be made of polypropylene or polyether.
Thereafter, as shown in FIG. 2, roll up the positive pole 20, one of the isolation membranes 40, the negative pole 30 and the other on of the isolation membranes 40, which are orderly arranged in a stack, into a multilayer roll 50 to have said positive pole material film 24 of said positive pole 20 and said negative pole material film 34 of said negative pole 30 be overlapped. The bare aluminum zone 21 of the positive pole 20 and the bare copper zone 31 of the negative pole 30 are respectively positioned at two opposite (top and bottom) sides of said multilayer roll 50. The two isolation membranes 40 are respectively positioned corresponding to the positive pole material film 24 of the positive pole 20 and the negative pole material film 34 of the negative pole 30 to isolate the positive pole material film 24 from the negative pole material film 34. Alternatively, the sequence of the layers in the multilayer roll 50 can be so arranged with one isolation membrane 40, the positive pole 20, the other one of the isolation membranes 40 and the negative pole 30.
Thereafter, as shown in FIG. 3, weld a first conducting pole 26 to the bare aluminum zone 21 of the positive pole 20 of the multilayer roll 50 to electrically connect each layer of the bare aluminum zone 21 of the positive pole 20, and weld a second conducting pole 36 to the bare copper zone 31 of the negative pole 30 of the multilayer roll 50 to electrically connect each layer of the bare copper zone 31 of the negative pole 30.
At final, as shown in FIG. 4, package the multilayer roll 50 in a housing 60, and then fill an electrolyte solution 62 in the housing 60. After sealing of the housing 60, the desired rechargeable battery is thus obtained, and the first conducting pole 26 and the second conducting pole 36 extend out of the housing 60. According to this embodiment, the electrolyte solution 62 is 1.5M LiPF6 (lithium hexafluorophosphate). Alternatively, LiBF4, LiAsF6, LiSbF6, LiClO4, LiAlCl4, LiGaCl4, LiNO3, LiC(SO2CF3)3, LiN(SO2CF3)2, LiSCN, LiO3SCF2CF3, LiC6F5SO3, LiO2CCF3, LiSO3F, LiB(C6H5)4, LiCF3SO3, LiB(C2O4)2, or a mixture thereof can be adopted as electrolyte solution 62. The concentration of the electrolyte in the electrolyte solution 62 can be 1.1˜2.0M. The solvent for the electrolyte solution 62 is comprised by volume of 30% ethylene carbonates, 20% propylene carbonates, and 50% propyl acetate. Actually, the solvent can be prepared from ethylene carbonates, propylene carbonates, butylene carbonates, dipropyl carbonates, acid anhydrides, n-methylpyrrolidone, n-methyl acetamide, n-methyl formamide, dimethyl formamide, γ-butyrolactone, acetonitrile, dimethyl sulfoxide, dimethyl sulfite, vinylene carbonate (VC), 1,2-diethoxyethane, 1,2-dimethoxyethane, 1,2-dibutoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, propylene oxide, methyl acetate, ethyl acetate, propyl acetate, methyl butyrate, ethyl butyrate, methyl propionate, ethyl propionate, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), or a mixture thereof.
Because the first conducting pole 26 of the positive pole 20 is electrically connected to each layer of the bare aluminum zone 21 and the second conducting pole 36 of the negative pole 30 is electrically connected to each layer of the bare copper zone 31, the moving distance of electrons in both of the positive pole 20 and the negative pole 30 is greatly reduced during discharging of the rechargeable battery 10. The average moving distance is about 2 cm. In a conventional roll type battery, the average moving distance of electrons is about 20 cm. Therefore, the rechargeable battery 10 of the present invention has excellent high current discharge efficiency. When compared with a conventional roll type battery, as shown in FIG. 5, the discharge voltage of the rechargeable battery 10 according to the present invention is maintained at about 3.4˜3.5V when discharging at 10C (see line A) and the discharge voltage of a conventional roll type battery at 10C is maintained at about 3.2V (see line B). The discharge efficiency of the rechargeable battery 10 of the present invention is over 90%, obviously superior to the prior art. As shown in FIG. 6, the discharge voltage of the rechargeable battery 10 according to the present invention is maintained at about 3.3V when discharging at 15C (see line C) and the discharge voltage of a conventional roll type battery at 15C is maintained below 3V (see line D). The discharge efficiency of the rechargeable battery 10 of the present invention is about 90%, which is obviously superior to the discharge efficiency of the prior art (about 50%). As shown in FIG. 7, the discharge voltage of the rechargeable battery 10 according to the present invention is maintained at about 3.2V when discharging at 20C (see line E) and the discharge efficiency of the rechargeable battery 10 of the present invention is about 80%. A conventional roll type battery cannot discharge under the same situation (see line F).
Based on the spirit and scope of the invention, the positive pole material film can simply be coated on one of the two surfaces of the aluminum strip. Similarly, the negative pole material film can simply be coated on one of the two surfaces of the copper strip provided that the negative pole material film faces the positive pole material film. Further, the positive pole material film and the negative pole material film may be respectively coated on the aluminum strip and the copper strip to show any of a variety of patterns. FIG. 8 is a front view of a positive pole 70 for a rechargeable battery in accordance with the second embodiment of the present invention. According to this second embodiment, the positive pole material film 72 extends along one long side of the positive pole 70, having its two ends spaced from the two opposite short sides of the positive pole 70 at a distance. FIG. 9 is a front view of a positive pole 80 for a rechargeable battery in accordance with the third embodiment of the present invention. According to this third embodiment, the positive pole material film 82 shows a parallel pattern.
Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.