1. Field of the Invention
The present invention relates to a rechargeable battery. More particularly, the present invention relates to a rechargeable battery having an electrode assembly that has an improved shape.
2. Description of the Related Art
Unlike a primary battery that cannot be recharged, a rechargeable battery can be repeatedly charged and discharged. Low-capacity rechargeable batteries are used for portable compact electronic apparatuses such as mobile phones, notebook computers, and camcorders, and high-capacity rechargeable batteries are widely used as a power source for driving a motor of a hybrid vehicle, etc.
The rechargeable battery includes an electrode assembly having a positive electrode plate and a negative electrode plate are disposed and a separator interposed therebetween. The battery also includes a cap assembly that closes and seals the case and is electrically connected to the electrode assembly. In the case of a prismatic rechargeable battery, an electrode assembly is wound in a jelly roll shape so as to include a flat portion and curved portions disposed at both sides of the flat portion, and the flat portion is positioned closely adjacent to an inner wall of the case.
In a charging/discharging process of the above rechargeable battery, volume of the electrode assembly varies. For example, in a lithium ion battery, a negative electrode active material of a negative electrode plate occludes lithium ions during a charging process so that the volume of the negative electrode active material expands, and emits the lithium ions during a discharging process so that the volume is reduced. As described, the electrode assembly repeats expansion and reduction whenever a charging/discharging cycle is repeated.
However, most cases, excluding a pouch-type case, are rigid bodies formed of metal so that the case cannot accommodate the volume expansion of the electrode assembly. Therefore, various methods including reducing capacity of the electrode assembly to match internal capacity of the case or changing a spiral-winding structure of the electrode assembly have been suggested to deal with the volume expansion of the electrode assembly.
However, charging/discharging capacity of the rechargeable battery is also reduced when the capacity of the electrode assembly is reduced so that performance of the rechargeable battery is deteriorated. In addition, when the spiral-winding structure of the electrode assembly is changed, the shape and a manufacturing process of the electrode assembly are complicated so that production efficiency of the rechargeable battery is deteriorated.
The present invention has been made in an effort to provide a rechargeable battery having advantages of reforming the shape of an electrode assembly for receiving volume expansion of the electrode assembly in a case to increase charging/discharging capacity and output performance.
A rechargeable battery according to an exemplary embodiment of the present invention includes i) an electrode assembly including a positive electrode plate, a negative electrode plate, and a separator that are wound in a jelly roll shape to have a flat portion and curved portions disposed at both sides of the flat portion, ii) a case for receiving the electrode assembly, and iii) a cap assembly combined with the case to close and seal the case and electrically connected to the electrode assembly.
When a direction that is perpendicular to a surface of the separator disposed in the flat portion is set to a first direction, the thickness of the flat portion, measured along the first direction, is smaller than the maximum thickness of the curved portion, measured along the first direction.
The curved portion may include a first outermost curved portion located in the outermost portion of a second direction that is perpendicular to the first direction, and when the center of a curvature of the first outermost curved portion is set to a first center point, the width of the flat portion, measured along the second direction, may be smaller than an interval of a pair of first center points within a distance between the pair of first center points.
The curved portion may further include a second outermost curved portion that connects the first outermost curved portion and the flat portion. A curvature of the second outermost curved portion may be greater than, equal to, or smaller than that of the first outermost curved portion.
The positive electrode plate may include a first current collector and a positive electrode active material layer, and the negative electrode plate may include a second current collector and a negative electrode active material layer. The positive and negative active material layers may be formed over the entire area of the flat portion and the curved portion.
Alternatively, the positive and negative active material layers may be intermittently formed in the electrode assembly. The positive and negative active material layers may be formed in the flat portion, excluding the curved portion, or may be formed in the flat portion and between the flat portion and the first center point.
The negative active material layer may include a negative electrode active material having a volume expansion rate of higher than 10%. The negative active material may include at least one selected from a group including silicon, a silicon oxide material, and a silicon-carbon composite.
The flat portion may be disposed at a distance from an inner wall of the case. The case may have a prismatic shape.
In another implementation, the aforementioned needs are satisfied by an electrode assembly for a rechargeable battery, the electrode assembly having a positive and negative electrode and a separator interposed therebetween. In this implementation, the electrodes and separators are wound so that the resulting wound electrode assembly defines a first cross-sectional shape having a first curved portion, a second curved portion and a flat portion interposed between the first and second curved portions. In this implementation, the flat portion has a width dimension that is less than the width dimension of the first and second curved portions.
According to the exemplary embodiments of the present invention, a space for receiving volume expansion of the electrode assembly is provided in the case so that the negative electrode plate can be made of a negative electrode active material having a high volume expansion rate and excellent efficiency. Accordingly, capacity and energy density of the rechargeable battery can be increased, thereby improving output efficiency.
The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. Like reference numerals designate like constituent elements throughout the specification.
Referring to
Referring to
The negative electrode plate 12 includes a second current collector 121 formed of a thin metal foil, and a negative electrode active material layer 122 formed in the second current collector 121. The negative electrode active material layer 122 is formed to be smaller than the second current collector 121 in width, and a negative electrode uncoated region 123 is located at the other side end of the negative electrode plate 12 along a length direction of the negative electrode plate 12. The negative electrode uncoated region 123 is a region where a negative electrode active material is not coated.
The positive electrode plate 11 and the negative electrode plate 12 are spirally wound, interposing the separator 13 which is an insulator, such that the electrode assembly 10 is formed. In this case, the separator 13 is formed to be smaller than the first and second current collectors 111 and 121 in width, such that the positive electrode uncoated region 113 is exposed to one side end of the electrode assembly 10 that is wound in a jelly roll shape and the negative electrode 123 is exposed to the other side end of the electrode assembly 10.
Referring back to
In the cap plate 31, an electrolyte injection opening through which an electrolyte solution is injected and a sealing cap 34 that seals and closes the electrolyte injection opening are provided. The positive electrode terminal 32 and the negative electrode terminal 33 are insulated from the cap plate 31 by insulation gaskets. In addition, a vent member 35 having a groove formed therein is formed in the cap plate 31 so that it can be broken according to a predetermined internal pressure level.
A positive electrode lead tab 36 and a negative electrode lead tab 37 are provided in the case 20. The positive electrode lead tab 36 is internally attached to the positive electrode uncoated region 113 of the electrode assembly 10 to electrically connect the positive electrode plate 11 and the positive electrode terminal 32, and the negative electrode lead tab 37 is attached to the negative electrode uncoated region 123 to electrically connect the negative electrode plate 12 and the negative electrode terminal 33. Insulation members 38 are provided between the cap plate 31 and the positive electrode lead tab 36 and between the cap plate and the negative electrode lead tab 37.
Referring to
More particularly, the electrode assembly 10 includes a flat portion 14 having a constant thickness and curved portions 15 formed at respective sides of the flat portion 14, and the curved portions 15 are where the positive electrode plate 11, the negative electrode 12, and the separator 13 are circularly curved around 180 degrees to proceed in the opposite direction. In this case, a direction that is perpendicular to a side of the separator 13 located in the flat portion 14 is set as a first direction (y-axis direction of
Therefore, the sides of the electrode assembly 10 are formed like a dumbbell, and the flat portion 14 in the pressed state has a predetermined gap (refer to g in
When the lithium ion battery is charged, the negative electrode active material layer 122 occludes lithium ions such that volume expansion occurs. In this case, since the flat portion 14 has a larger amount of negative electrode active material than the curved portion 15, the volume expansion rate of the flat portion 14 is larger than that of the curved portion 15. Therefore, a space between the flat portion 14 and the case 20 receives the volume expansion of the flat portion 14.
That is, the flat portion 14 expands while filling the space between the flat portion 14 and the case 20 when the rechargeable battery 100 is charged, and returns to the initial shape while slowly contracting when the rechargeable battery 100 is discharged. As described, the thickness t1 of the flat portion 14 is set to be smaller than the maximum thickness t2 of the curved portion 15 so that volume expansion of the flat portion 14 is not interrupted by the case 20.
As a result, the rechargeable battery 100 of the first exemplary embodiment is advantageous in application of a highly efficient negative electrode active material having a volume expansion rate of higher than 10%. The negative electrode active material layer 122 includes at least one negative electrode active material among silicon, a silicon oxide material, and a silicon-carbon composite.
The negative electrode active material can occlude and emit much more lithium ions than a negative electrode active material using a carbon-based material, and therefore a rechargeable battery having high capacity and high energy density can be manufactured. For example, pure silicon is known to have a high theoretical capacity of 4017 mAh/g. However, there has been a difficulty in practical use of the above-stated negative electrode active material because it greatly varies in volume during charging and discharging processes.
The shape of the electrode assembly 10 of the rechargeable battery 100 of the first exemplary embodiment is formed to easily receive the volume variation of the electrode assembly 10 in the case 20 so that the above negative active material can be used without restriction. Therefore, the rechargeable battery 100 according to the first exemplary embodiment can realize high capacity and high energy density by a negative active material having excellent efficiency, and can improve output efficiency.
The curved portion 15 of the electrode assembly 15 includes a first outmost curved portion 151 located outermost of a second direction (x-axis direction of
If the curvature center of the first outermost curved portion 151 is a first center point (marked as C in
If the above-described condition is not satisfied, an inner portion of the curved portion 15, facing the flat portion 14, may be excessively deformed when the flat portion 14 and the curved portion 15 are formed by pressing the center portion of the electrode assembly 10. Therefore, the current collector may be broken or the active material may fall off at the inner portion. However, the flat portion 14 and the curved portion 15 of the rechargeable battery 100 according to the first exemplary embodiment have excellent shape stability by the width setting of the flat portion 14.
In addition, the curved portion 15 includes a second outermost curved portion 152 that connects the first outermost curved portion 151 and the flat portion 14. The curvature rate of the second outermost curved portion 152 is the same as that of the first outmost curved portion 151 in the first exemplary embodiment. The second outermost curved portion 152 may be formed to have the same curvature as the first outermost curved portion 151 by controlling the width of a pressing member (not shown) that presses the electrode assembly 10, to have a gap between a first center point C and the pressing member, and to have a pressing depth of the pressing member.
Referring to
In the rechargeable battery of the second exemplary embodiment, a width A1 of a flat portion 14 along a second direction (the x-axis direction of
Referring to
In the rechargeable battery of the third exemplary embodiment, a width A2 of a flat portion 14 along a second direction (x-axis direction of
In the above-described first to third exemplary embodiments, as shown in
Referring to
The positive electrode active material layer 112 and the negative electrode active material layer 122 are not disposed in a curved portion, and accordingly volume variation of the curved portion 15 and electrode deformation due thereto can be suppressed so that the cycle-life characteristic of the rechargeable battery can be improved. Here, “the electrode” conceptually includes a positive electrode plate 11 and a negative electrode plate 12.
Referring to
While this invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
This application claims priority to the Provisional Application No. 61/244,205, filed in the United Stated Patent Office on Sep. 21, 2009, the content of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7273679 | Yoon et al. | Sep 2007 | B2 |
7790313 | Lee | Sep 2010 | B2 |
20030138693 | Suzuki et al. | Jul 2003 | A1 |
20040197639 | Honda et al. | Oct 2004 | A1 |
20050123829 | Fukui et al. | Jun 2005 | A1 |
20060024578 | Lee | Feb 2006 | A1 |
20060093910 | Yoon et al. | May 2006 | A1 |
20060222944 | Yamamoto et al. | Oct 2006 | A1 |
20070141452 | Kim | Jun 2007 | A1 |
20090087731 | Fukui et al. | Apr 2009 | A1 |
20090169993 | Ohashi et al. | Jul 2009 | A1 |
Number | Date | Country |
---|---|---|
1728432 | Feb 2006 | CN |
101471451 | Jul 2009 | CN |
2003109869 | Apr 2003 | JP |
2004-63325 | Feb 2004 | JP |
2005-166530 | Jun 2005 | JP |
2009-081105 | Apr 2009 | JP |
2009-099523 | May 2009 | JP |
2009-158376 | Jul 2009 | JP |
10-2000-0051739 | Aug 2000 | KR |
10-2005-0113860 | Dec 2005 | KR |
10-2006-0037594 | May 2006 | KR |
Entry |
---|
Machine Translation of: KR 102000051739 A, Hwang, Aug. 16, 2000. |
Machine Translation of: JP 2003/109869 A, Ashino, Apr. 11, 2003. |
Office Action dated May 16, 2012 for corresponding KR Application No. 10-2010-0087995. |
Office Action dated Feb. 17, 2013 for corresponding CN Application No. 201010286369.5. |
Office Action dated Nov. 27, 2012 for corresponding JP Application No. 2010-209410. |
Office Action dated Oct. 11, 2013 for corresponding CN Application No. 201010286369.5. |
Number | Date | Country | |
---|---|---|---|
20110070471 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
61244205 | Sep 2009 | US |