The invention relates to a rechargeable lithium battery cell with a positive electrode, a negative electrode and an electrolyte that contains a conducting salt.
Rechargeable battery cells are of great importance in many technical fields. They are often used for applications in which only relatively small current levels are required, such as mobile phones. There is also a great demand for battery cells for high current applications (high-current cells), where the electric propulsion of vehicles is of particular importance. The present invention is directed in particular to cells that are also suitable for high current applications.
An important requirement is a high energy density. The cell is intended to contain as much electrical energy per unit weight and unit volume as possible. In this respect, lithium is particularly advantageous as an active metal.
Rechargeable lithium cells are in practice almost exclusively lithium-ion cells. Their negative electrode consists of copper-coated carbon, in which lithium-ions are stored during charging. The positive electrode also consists of an insertion material that is suitable for absorbing ions of the active metal. Normally the positive electrode is based on lithium-cobalt oxide which is coated onto an aluminum conducting element. Both electrodes are very thin (thickness typically less than 100 μm). During charging, the ions of the active metal are discharged from the positive electrode and inserted into the negative electrode. During discharging the reverse process occurs. The ions are transported between the electrodes by means of the electrolyte, which has the required ion mobility. Lithium-ion cells contain an electrolyte consisting of a lithium salt (e.g. LiPF6) dissolved in an organic solvent or a solvent mixture (e.g. based on ethylene carbonate). They are also designated hereafter as “organic lithium-ion cells”.
Organic lithium-ion cells are problematic with regard to safety. Safety risks are caused in particular by the organic electrolyte. If a lithium-ion cell catches fire or even explodes, the organic solvent of the electrolyte forms the combustible material. In order to avoid such hazards, additional measures must be taken, in particular with regard to a very precise regulation of the charging and discharging processes and with regard to additional safety measures in the battery design. For example, the cell contains components that melt in the event of a fault and therefore prevent the flow of current in the cell. However, these measures lead to increased costs and increased volume and weight, thus reducing the energy density.
The problems are particularly serious when battery cells are to be developed for high current applications. The requirements on the stability and long-term operational safety are particularly high. Cells which are designated as high-current cells here are those which (at the rated voltage) have a current carrying capacity, in relation to the electrode surface area (hereinafter referred to as “area-specific current carrying capacity”), of at least 5 mA/cm2, preferably at least 10 mA/cm2, more preferably at least 50 mA/cm2, and particularly preferably at least 100 mA/cm2.
There is a high demand for improved rechargeable battery cells, which in particular meet the following requirements:
In WO 2011/098233 A2 a battery cell is described that satisfies these partially conflicting demands in a substantially better manner than has been the case up to now. It is characterized by the following special features, which are also preferably implemented in the battery cell of the present invention:
The active material may contain an additional doping, which is not a component part of its atomic structure.
On the basis of this prior art the invention aims to create a cell with improved functioning and operational safety.
This technical problem is solved by a rechargeable electrochemical battery cell comprising a housing, a positive electrode, a negative electrode and an electrolyte that contains SO2 and a conducting salt of the active metal of the cell, which is characterized in that at least one of the electrodes is enveloped by a sheath made from a glass fiber textile material, the areal extent of the sheath made from glass fiber textile material is greater than the areal extent of the electrode, so that the glass fiber textile material extends beyond the limit of the electrode, and two layers of the glass fiber textile material which cover the electrode on both sides are connected to one another at the edge of the electrode by an edge connection. The subject matter of the invention also includes a method for producing such a battery cell.
The combination of the features according to the invention enables a significant improvement in the functioning of the cells to be obtained. In particular, it has been found in the context of the invention that the sheathing of the electrode leads to a more uniform ion migration and ion distribution. The more uniform the ion distribution, in particular in the negative electrode, the higher the possible charging of the active material of the electrode and, as a consequence, the usable capacity of the cell. At the same time, this prevents the hazards that can be associated with a non-uniform charging and the resulting deposition of the active metal. These advantages are most effective when the positive electrodes of the cell are enveloped with the sheath made of glass fiber textile material (hereafter also designated as “glass fiber pouch”). This means the effect is different with regard to the electrode polarity, even if the electrode design is completely symmetrical, apart from the active material of the electrode.
An integral component of each electrode is an active material, the charge state of which changes when ions of the active metal surface of the cell, in particular lithium ions, are absorbed into the active material during charging or discharging of the cell. Electrons released by this process are transported into an electronically conductive conducting element, which is also part of the electrode.
As already mentioned, the present invention is preferably used in a rechargeable lithium battery cell in accordance with WO 2011/098233 A2. Reference is made to the content of this document in full. For example, the present invention incorporates the following special features that are substantially described in the document cited, from which further details can also be obtained:
The solution to the problem addressed by the invention was faced with a number of difficult issues related to the use of an inorganic, preferably SO2-based, electrolyte and which are not present in the case of conventional cells with an organic electrolyte.
In the context of the invention it has been found that, in spite of these concerns, the sheathing of the electrodes, in particular of the positive electrodes, with a glass fiber pouch is not only possible, but also particularly advantageous, with the advantages resulting in particular from the improved uniformity of the ion migration, as explained above.
Further advantages are obtained, taking into account the preferred embodiments explained hereafter.
The invention is explained hereafter in more detail by means of an exemplary embodiment shown in the figures. The special features shown there and described hereafter can be used singly or in combination to produce preferred forms of the invention. In the figures:
In the preferred case shown, the cover part 3 has four ports, namely two electrical feed-throughs 5 and 6, a filling port 7 and a safety port 8. The electrical feed-throughs 5 and 6 each have one conductor rod 28 which is seated in an insulation ring 29, which serves to seal off the electrical feed-through and ensure the required electrical insulation from the cover part 3. The electrical feed-throughs 5 and 6 are connected in an electrically conductive manner to the terminal wires 23 and 24 of the positive and the negative electrodes respectively.
Preferably, the electrical feed-throughs are implemented as glass-to-metal feed-throughs, and the insulation ring 29 is composed of a glass material which is connected in a sealed manner, for example by laser welding, to the cover part 3 and to the conductor rod 28. The conductor rod 28 extends into the interior of the housing. It can be of solid construction and be used for the electrical connection of the cell. The terminal wires 23, 24 can be welded to the lower end of the conductor rod 28 in the interior of the cell. The terminal wires 23, 24 can also be implemented in the form of metal plates.
Also possible are embodiments in which at least one of the conductor rods 28 has a channel in its interior, which is used as the outlet opening between the interior and the exterior of the cell. The terminal wires can be fed through the channels of the conductor rods 28. The openings 5, 6 are then closed with a gas-tight seal, for example, welded, so that the cell is permanently sealed with a gas-tight seal. The electrodes are connected in parallel. For the sake of clarity the electrical connections necessary for this purpose are not shown in the figure.
In the embodiment shown, the filling port 7 has a connecting pipe 30 with an passage channel that ensures the required connection between the interior and the exterior of the cell to fill the cell with the electrolyte. The passage channel is closed off, for example by welding, after filling with appropriate media, so that the cell is permanently gas-tight.
The safety port 8 preferably has a surface layer which is implemented such that it bursts open or gives way if the internal pressure in the cell exceeds a predetermined value. The surface layer of a disk 31 which is designed to rupture (bursting disk) is preferably formed of metal. In the operating state of the cell the housing is preferably hermetically sealed. Further, it is preferable that one or more of the elements shown (glass-to-metal feed-through, electrolyte filling port and bursting disc) are joined to the corresponding ports on the cover part 3 by laser welding. A laser welding method is preferably also used for connecting the cover part 3 to the lower part 2 of the housing 1.
In FIG. In
In the preferred embodiment shown, the positive electrode (preferably all positive electrodes of the cell) is enveloped by a sheath 13 made of a glass fiber textile material (glass fiber pouch). The areal extent of the sheath is greater than the areal extent of the electrode, the boundary 14 of which is drawn in
Different textile fiber composite structures are suitable for the glass fiber textile material. Important examples are woven fabrics, non-woven fabrics and knitted fabrics made of glass fibers. The textile fiber composite structure can consist of both single-filament glass threads and multi-filament glass threads (glass fiber yarns). Fabrics made of multi-filament glass fiber yarns are particularly preferred.
Detailed specifications of the parameters of particularly preferred glass fiber textile materials cannot be given, because a complex interrelationship exists among the different parameters of the glass fiber textile material (e.g. thread density, thread size, mono- or multi-filament, total thickness of the coating material). On the basis of the teachings of the present invention, however, it is possible without further effort to test the suitability of a particular glass fiber textile material under consideration.
In doing so, it may be expedient to first test the following properties of a proposed glass fiber textile material in preliminary tests outside of the cell:
The tests selected must be those which take into account the future usage of the material. For example, a material does not need to be stable against overcharging products if it is used in a cell in the operation of which no overcharging products are formed. Materials that are intended to serve as a stack sheath must not necessarily be wettable with electrolyte.
Materials that have proven useful in these preliminary tests can then be built into a test cell. Their properties are examined, in particular as regards electrical capacity over a plurality of charging and discharging cycles, and as regards safety even under extreme operating conditions (rapid charging and/or overcharging).
According to the present knowledge of the inventors, the thickness of the glass fiber textile material be a maximum of 300 μm, preferably no more than 200 μm, and particularly preferably no more than 150 μm. The further improvement of the electrical cell properties achievable with thicker materials does not as a rule justify the loss of energy density that is associated with the additional material.
On the other hand, the thickness of the glass fiber textile material should not fall below some minimum values either, because in the context of the invention it has been found that the improvements to electrical data of the cell which are sought are not then achieved to the desired extent. The thickness of the glass fiber textile material is preferably at least 50 μm, with values of 60, 70, 80 and 90 μm in this order being particularly preferred.
The thread density (TPI) is also important for success in practice. For the preferred case of a glass fiber fabric, the thread density can be different in the two spatial directions corresponding to the warp and weft of the fabric. In the direction having the lower density it should preferably be at least five threads/cm, preferably at least 10 threads/cm, more preferably at least 20 threads/cm.
The multi-filament glass fiber yarns (also designated as glass filament yarns) used for the production of glass fiber textile materials are often coated with a so-called “size”, which facilitates further processing, such as the weaving of a fabric. The size can consist of starch and oils.
It has been found that completely free, hence uncoated, glass fiber surfaces do not necessarily offer an advantage. Particularly good results have been obtained with glass fiber textile materials in which the glass fibers are provided with a suitable polymer coating. The coating preferably contains either a fluorine-containing polymer such as PTFE (polytetrafluoroethylene), ETFE (ethylene tetrafluoroethylene), FEP (perfluoroethylene propylene), THV (terpolymers made of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride) or PFA (perfluoroalkoxy polymers), or it contains an amino-silane or PP (polypropylene) or PE (polyethylene). A coating of such a type can improve the mechanical stability of the glass fiber textile material. In addition, an additional benefit in the safety of the cell can be obtained. In the case of fluorinated polymers this can be explained by the fact that if metallic lithium precipitation occurs, the lithium reacts with the fluorine of the coating, forming lithium fluoride (LiF). This reaction can prevent short circuits. If a greater precipitation of lithium were to occur, due to the reaction with the fluorinated coating the glass fiber textile material can become so dense that no further reactions can take place and the ionic transport is blocked by the textile material. This prevents or stops strong short-circuit reactions. In the practical testing of the invention it was also found that when the coated glass fiber textile materials were used, an improved stability of the electrical capacity could be obtained over a plurality of charging and discharging cycles.
As mentioned above, the housing 1 of the cell preferably consists of a metal or other electrically conducting material. It has proved to be advantageous to envelope the electrode stack 20 with an outer sheath designated as stack sheath 25, in such a manner that no electrical contact exists with the walls of the housing 1. In
Suitable materials for the stack sheath are the glass fiber textile materials described above. But there are other suitable insulating materials, because the requirements are lower than in the case of the glass fiber pouches. Other materials which can be used for the stack sheath are polymer films made of e.g. PP (polypropylene) or PE (polyethylene), and in particular, films made of fluorine-containing polymers such as PTFE (polytetrafluoroethylene), ETFE (ethylene tetrafluoroethylene), FEP (perfluorethylenpropylene), THV (terpolymers made of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride) or PFA (perfluoroalkoxy polymers).
The dimensions of the electrode stack 20 and the housing 1 are matched to each other such that the electrode stack 20 can be inserted into the housing 1, as shown in
The housing 1 containing the electrodes 10, 11 is filled with an electrolyte 9 via the filling port 7 (
The electrodes described in document WO 2011/098233 A2 are unusually thick. Because of this thickness, and in addition due to the sharp edges of the porous metal structure used for the conducting element, additional problems were to be expected in combination with a glass fiber pouch. On the one hand, textile glass fiber materials have a low elasticity per unit area, while thick electrodes lead to a relatively strong material deformation at the edge of the glass fiber pouch. In addition, the risk of damage to thin glass fibers due to sharp edges is particularly high.
In
With regard to the ratio of the thicknesses of the glass fiber material of the sheath 13 (thickness D) and the electrode 11 (thickness d),
In spite of the problems to be expected for the person skilled in the art in the processing of glass fiber textile materials in an inorganic electrolyte solution, in the context of the invention a method for producing a battery cell has been successfully developed. An essential aspect of the development was achieving the maximum possible degree of automation in the production of the sheath 13 of the electrodes, in particular of the positive electrode. Producing the edge connection 17 of the sheath from glass fiber textile material was found to be crucial and the aspect in which the greatest problems had to be overcome.
The edge connection is produced according to the invention by applying a suitable polymer onto the glass fiber textile material. The layers 15, 16 of the glass fiber textile material are pressed together at the edge, so that the glass fiber material is bonded. The polymer is applied at least onto the edge of one of the layers 15, 16 to be joined. A suitable polymer is THV.
An edge strip, which is preferably no wider than 5% as a proportion of the corresponding dimensions in areal direction (width) of the layer of the glass fiber textile material, is covered with the polymer. Particularly preferably the edge is no wider than 3%, highly preferably no wider than 2% of the dimension in the areal direction of the layer.
A preferred method for producing the edge connection uses a thermoplastic polymer, which is applied and heated into a molten state. In another step the two layers of the glass fiber pouch to be joined are compressed at the edge, i.e. in the areas that are covered with the polymer. The compressed layers are cooled down such that the polymer solidifies. In this manner, a reliable connection is produced between the two layers. The threads from the two layers of the glass fiber textile material are thus connected together.
Some of the steps of the preferred production method can, of course, also be carried out in a different order. In particular, the steps comprising the application of the polymer material and the heating into a molten state, can take place in a different order. For example, it is possible to apply molten thermoplastic polymer to the edge region of the layers of the glass fiber textile material. The application of the thermoplastic polymer is preferably carried out by extrusion.
In a further preferred embodiment the thermoplastic polymer can also be applied in the form of a thin strip, for example, a strip-like film. In this case, the two layers at the edge are compressed and then heated together with the polymer film, until the polymer reaches a molten state.
In a particular embodiment, the heating of the polymer into the molten state is assisted by simultaneous exposure to an additional heat source on the edge of the glass fiber textile material. For example, the assistance can be provided by ultrasound or infrared radiation. A simultaneous exposure to ultrasound and heat transfer is preferably effected by a machine part, which contacts the edge of at least one of the glass fiber layers. In the context of the invention it was found that, in particular, the use of a heated sonotrode (ultrasonic horn) is suitable for assisting the heating of the polymer into the molten state, which leads to shorter melting times and therefore accelerates the execution of the method. This can increase the batch sizes obtained in automated production.
In the context of the invention, a further means of producing the edge connection was investigated. In another preferred variant of the method a suitable polymer is dissolved in a solvent. The solution is applied preferably onto one of the layers of the glass fiber textile material. After the second layer has been placed on top, both layers are compressed together. The solvent evaporates, for example at room temperature. Heating the edge up to a temperature adapted for the solvent accelerates the evaporation. Only the polymer therefore remains for connecting the edges, which thus provides the edge connection. When applying the dissolved polymer, no polymer should be allowed to completely penetrate and escape from the glass fiber textile material. A reliable, stable, and durable edge connection is thus obtained.
In the overall process of the method for producing a battery cell, the positive electrodes are sheathed first of all. In producing the sheath, a layer of glass fiber textile material can be first spread out, onto which the positive electrode 10 is placed. The polymer is applied to the edges of the layer to be connected together. This is followed by the addition of the second layer and compression of the two layers at the edge.
Alternatively, the two layers can also be first placed on top of one another and then the glass fiber pouch produced. The positive electrode can then be inserted into the glass fiber pouch which is open on at least one side.
The sheathed positive electrodes are stacked alternately with negative electrodes. The arrangement is such that the electrode stack comprises a negative electrode both at the start and at the end. In a further method step, the electrode stack is enveloped by a stack sheath. The entire enveloped electrode stack is then inserted into the battery cell housing and electrically connected in a further step. After the housing is closed the housing is filled with the electrolyte through the filling port, which is then closed off so that a gas-tight sealed cell is obtained.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/065727 | 8/10/2012 | WO | 00 | 8/19/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/024045 | 2/21/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4063978 | Badger | Dec 1977 | A |
4778479 | Römling et al. | Oct 1988 | A |
5470675 | Einerhand et al. | Nov 1995 | A |
5470676 | Nakano | Nov 1995 | A |
6280878 | Maruyama | Aug 2001 | B1 |
6511773 | Dampier | Jan 2003 | B1 |
6887620 | Klein et al. | May 2005 | B2 |
7951480 | Skinlo | May 2011 | B1 |
20030165736 | Hiratsuka | Sep 2003 | A1 |
20050031942 | Hennige | Feb 2005 | A1 |
20080199781 | Lunt | Aug 2008 | A1 |
20090136834 | Coowar | May 2009 | A1 |
20100062341 | Hambitzer | Mar 2010 | A1 |
20100283429 | Ofer et al. | Nov 2010 | A1 |
20110076544 | Maeda | Mar 2011 | A1 |
20110189536 | Moon et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
0 240 915 | Oct 1987 | EP |
0 269 855 | Jun 1988 | EP |
0 472 232 | Feb 1992 | EP |
1 923 934 | May 2008 | EP |
2 355 203 | Aug 2011 | EP |
S 61-183867 | Aug 1986 | JP |
S 62-237679 | Oct 1987 | JP |
S 63-143759 | Jun 1988 | JP |
H 07-34555 | Jun 1995 | JP |
H 10-188938 | Jul 1998 | JP |
2011071134 | Apr 2011 | JP |
WO 03021697 | Mar 2003 | WO |
WO 2008058685 | May 2008 | WO |
WO 2008147751 | Dec 2008 | WO |
WO 2011098233 | Aug 2011 | WO |
Entry |
---|
Stassen, I. and Hambitzer, G. “Metallic lithium batteries for high power applications”, Journal of Power Sources, vol. 105, pp. 145-150, published Nov. 5, 2001. |
English Translation of the International Preliminary Report on Patentability; PCT/EP2012/065727; dated Feb. 27, 2014. |
Foster et al., Newly High Conductive Inorganic Electrolytes, Electrochemical Science and Technology, Nov. 1988. vol. 135, No. 11. pp. 2682-2686. |
Number | Date | Country | |
---|---|---|---|
20150004463 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13209357 | Aug 2011 | US |
Child | 14238108 | US |