Rechargeable, high-density electrochemical device

Information

  • Patent Grant
  • 10680277
  • Patent Number
    10,680,277
  • Date Filed
    Tuesday, November 21, 2017
    6 years ago
  • Date Issued
    Tuesday, June 9, 2020
    3 years ago
Abstract
Rechargeable, high-density electrochemical devices are disclosed. These electrochemical devices may, for example, include high energy densities that store more energy in a given, limited volume than other batteries and still show acceptable power or current rate capability without any liquid or gel-type battery components. Certain embodiments may involve, for example, low volume or mass of all of the battery components other than the cathode, while simultaneously achieving high electrochemically active mass inside the positive cathode.
Description
TECHNICAL FIELD

This invention relates to rechargeable, high-density electrochemical devices. In particular, certain embodiments of the present invention relate to, for example, all-solid state, rechargeable batteries with high energy densities that have the capacity to store more energy in a limited volume and still show acceptable power or current rate capability without any liquid or gel-type battery components.


BACKGROUND OF THE INVENTION

The capacity of rechargeable and non-rechargeable batteries is defined by the positive cathode and the negative anode. When using a metallic lithium anode (e.g. in Li—MnO2 coin cells) or a capacity rich Li-ion anode that, for example, may be based on silicon or tin, the capacity of the battery is dominated or limited by the specific capacity (measured in mAh/g or mAh/ccm) of the positive cathode. Reducing the volume of all of the other battery components, which is most useful for small batteries, or the mass of all of the other battery components, which is most useful for large batteries (e.g. in electric vehicles), while simultaneously increasing the electrochemically active mass inside the positive cathode is the most effective approach to increase the energy density (measured in Wh/liter, for example) of a battery for a given cathode-anode chemistry.


Increasing the electrochemically active mass inside the positive cathode means to either reduce any auxiliary phases inside the cathode, such as mechanical binders or ionic or electronic conduction enhancers, or fabricate the cathode thicker for a given cathode area. Due to the limiting diffusion kinetics and the associated limited current rate or power capability when the cathode thickness becomes substantial (>>20 μm), high energy density room temperature batteries, such as cell phone and laptop batteries, require a highly conductive, liquid-organic-solvent based lithium ion electrolyte to penetrate the cathodes of these batteries. However, the presence of the liquid organic solvent is the origin of most problems experienced with such batteries over the last twenty years such as, for instance, thermal runaway upon decomposition or short-circuiting of the battery upon heat-related failure, fire/fume/smoke/explosion upon certain battery failure modes, gas evolution and pressure build-up in the early electrochemical cycles, charge-discharge cycle limitation to 300-1000 cycles, limited operational temperature range (0° C.-60° C. in many cases), among others. In addition, constraining the volatile liquid organic solvent demands specific packaging architectures and cell housing often equipped with vents and valves that avoid cell over-pressurization during the early electrochemical cycles.


There is a need in the industry for batteries with higher energy densities. In particular, there is a need for all-solid-state rechargeable batteries without any liquid or gel-type battery components to store more energy in a limited volume that still show acceptable power and/or current rate capability. This results in a safer battery and allows for the use of simplified packaging and higher and lower temperature ranges of operation and storage.


SUMMARY OF INVENTION

Certain exemplary embodiments of this invention may include batteries with high energy density for a given cathode-anode chemistry. Certain embodiments, as discussed in further detail below, may involve, for example, low volume or mass of all of the battery components other than the cathode, while simultaneously achieving high electrochemically active mass inside the positive cathode.


An embodiment of a rechargeable electrochemical device with a positive composite cathode may include a solid-state electrochemically active material, a solid-state electronically conducting material which has an electronic conductivity that is at least three times higher than the electronic conductivity of said electrochemically active material before the electrochemically active material is initially charged, and a solid-state, inorganic, ionically conducting material which has an ionic conductivity that is at least three times higher than the ionic conductivity of said electrochemically active material before the electrochemically active material is initially charged.


Alternatively, an embodiment of a rechargeable electrochemical device with a positive composite cathode may include at least one solid-state electrochemically active material, at least one solid-state, ionically conducting material that is different from the electrochemically active material, and may not contain liquid or gel-like solvent.


An alternative embodiment of a rechargeable electrochemical device may include a solid state positive cathode, a negative anode, and a solid state electrolyte sandwiched between the cathode and the anode; wherein the electrochemical device contains a single electrochemical cell which has a rated capacity preferably of, for example, at least 2 mAh/cm2 based on the geometric footprint of the positive cathode.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a cross-sectional view of an exemplary Li-ion or Li-polymer battery that could be used in a cell phone.



FIG. 2 illustrates an exemplary electrochemical device with three solid phases including an electrochemically active cathode material, an ionic conductivity enhancer and an electronic conductivity enhancer.



FIG. 3 illustrates an exemplary electrochemical device with two solid phases including an electrochemically active cathode material and an electronic conductivity enhancer.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

It is to be understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements, and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps or subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.


Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices and materials are described although any methods, techniques, devices, or materials similar or equivalent to those described may be used in the practice or testing of the present invention. Structures described herein are to be understood also to refer to functional equivalents of such structures.


All patents and other publications are incorporated herein by reference for the purpose of describing and disclosing, for example, the methodologies described in such publications that might be useful in connection with the present invention. These publications are provided solely for their disclosure prior to the filing date of the present application. Nothing in this regard should be construed as an admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention or for any other reason.


Certain embodiments of the present invention, for example, include an all-solid state, high energy density battery cell that does not contain any liquid or gel-like components, unlike traditional cell phone batteries and coin cells. Gel-like components consist of, for example, solvents that have viscosities so high they do not flow like a common liquid. The high energy density may be accomplished through a combination of features, such as, for example:

    • 1. maximizing the cathode thickness per unit cathode area while keeping the charge and discharge current capability within acceptable performance limits;
    • 2. optimizing the loading or volume percentage of the electrochemically active mass inside the cathode, which may include a composite rather than a single phase of electrochemically active material to make up 100% of the cathode volume;
    • 3. utilizing a composite electrochemically active material which contains all-solid state lithium ion conduction and electron conduction enhancing phases; and/or
    • 4. minimizing the volume fraction of all of the other battery cell components, such as the substrate, electrolyte, negative anode, current collectors and terminals and the packaging.


      Regarding item 1, certain embodiments of the present invention, for example, may include an electrochemical device with a cathode thickness of about 100-1000 μm, whereas the cathode thickness of cell phone type batteries may be, for example, approximately 100 μm. Regarding item 2, an example electrochemical device may preferably use a loading of the electrochemically active material of higher than about 50 vol %. To enhance the power and current rate capability of the cell (items 1 and 3), the remaining, for instance, 50 vol % of the composite cathode may be filled with two materials: (a) a lithium ion conduction enhancing material, which is chemically stable with the electrochemically active cathode material during fabrication and battery operation and storage while showing an ionic conductivity that is at least three times higher than that of the electrochemically active material; and (b) an electron conduction enhancing material which has an electronic conductivity that is at least three times higher than that of the electrochemically active material. Regarding item 4, the device of certain embodiments of the present invention may be configured, among other parts, with: (i) a thin metal cathode current collector, such as, for instance, 10 μm Al foil, which also serves as an optional substrate (or no such current collector if the positive cathode is conductive enough along its outside surface to which the positive terminal may be connected); (ii) a thin-film electrolyte, such as, for instance, 1-3 μm thick Lipon; and (iii) a thin metal anode, such as, for instance, 10-50 μm of metallic lithium. One or more elements of item 4 may be fabricated into the device of certain embodiments of the present invention by physical vapor deposition (PVD) processing or heat-pressure lamination using readily available Li foil. Finally, the device of certain embodiments of the present invention may be, for example, packaged using a thin-film encapsulation of about 3 μm in thickness, as previously disclosed, for example, in U.S. Pat. Appl. Pub. No. 2009/0181303, which is incorporated herein by reference in its entirety.


In certain embodiments, the absence of any volatile liquid organic solvents inside the composite cathode and/or the electrolyte can be highly conducive to improved safety and higher temperature limits for operation and storage of the electrochemical device, which include lead-free solder reflow conditions during which temperature excursions of up to 265° C. may occur for several minutes.


Lower cost versions of a high-capacity cell of certain embodiments of the present invention may include electrolyte alternatives comprising a thicker ceramic layer, or multi-layers, that are entirely or partially fabricated by non-PVD or non-chemical vapor deposition (CVD) methods, such as traditional ceramic or wet chemical processing. Examples of these electrolyte alternatives may include compacted Li2S—SiS2 or Li2S—P2S5 based glass electrolyte powder (˜100 μm layer thickness), Li3N—LiTi2(PO4)3 dual layer ceramic plate (˜100 μm thickness), single-sided Lipon protected LiAl2Ti(PO4)3 or Li0.35La0.55TiO3 plates (˜100 μm thickness) or compacted (pressed) Li7La3Zr2O12 powder (˜50 μm thickness). Analogous to the composite cathode, a composite anode may be used for certain embodiments of the present invention and may include ceramic compacted, LiySn-activated, nano-sized Li4Ti5O12 powder (1.5V vs. Li+/Li; results include 1.5V voltage reduction of the fully fabricated electrochemical cell of certain embodiments of the present invention when compared to those 4V cells that employ a metal lithium anode) wherein LiySn serves as a lithium ion and electron conduction enhancing second phase in the volume un-changing LixTi5O12 (4≤x≤7) anode phase. Other composite anodes may also be employed.


Although the fabrication of solid state, high capacity cells with ceramic and/or wet chemistry fabricated electrolytes and/or anodes may be attractive because of their cost and manufacturing throughput, they do not include the power and energy density performance of the cells according to certain embodiments of the present invention that use a thin-film electrolyte and a metal anode consisting entirely of the electrochemically active species of the cell (such as metallic lithium for Li-ion batteries). These lower cost batteries are less desirable because the ceramic and/or wet chemistry fabricated electrolyte and/or composite anode are typically thicker (which may increase cell resistance and add non-energy containing volume to cell, both of which are undesirable characteristics) and provide lower cell voltages (which may cause lower energy and lower power, both of which are undesirable characteristics).


Good cathode performance for certain embodiments of the present invention (for both pure cathodes and composite cathodes) may require, for example, a high, effective diffusion coefficient inside the cathode. Such a diffusion coefficient inside the cathode allows for, upon cell discharge, as many electrochemically active species (ions and electrons) as possible to be inserted into the cathode in the shortest time possible and into cathode locations that are farthest away from the diffusion originating plane, which is the cathode-electrolyte interface. In a simplified picture, one may use the one-dimensional solution of Fick's second law of diffusion wherein for a given diffusion coefficient, D, a wave-front of diffusing species penetrates a body after a diffusion period t by depth X (sometimes called diffusion length) according to

X=2(D*t)1/2  (1)


Equation (1) is an accurate estimate for the combined diffusion of ions and electrons. In many practical electrochemically active cathode materials, the electronic conductivity is much higher than that of the electrochemically active ions. For example, the electronic conductivity in charged LixCoO2 (x<0.7) is about 1 S/cm at ambient temperatures while that of the lithium ions is less than 10−7 S/cm. Therefore, it may be beneficial to enhance the lithium ion conductivity of the cathode by admixing appropriate lithium ion conduction enhancing materials, thereby forming a cathode composite.


In certain embodiments, using the ionic conductivity as the determining, independent variable for equation (1), the diffusion coefficient D may be replaced by part of Fick's law of diffusion, which is

D=RT/(c*z*F2*dE/dx)*j  (2)

that relates D to the gas constant R, the absolute temperature T, the local concentration of diffusing species c, the charge number z of these species (z=1 for Li+ ions), the Faraday constant F, the local electric field strength dE/dx, and the current density j of the diffusing species. The resulting equation after inserting equation (2) into equation (1) and squaring both sides of the resulting equation is

X2=4*RT/(c*z*F2*dE/dx)*t*j  (3)

wherein the diffusion period t could also be interpreted as the continuous discharge or charge time that it takes at a given current density j to discharge or charge the rated capacity of a cathode wherein the rated capacity is proportional to the thickness X of the cathode for a given cathode composition of electrochemically active cathode material, ionic conductivity enhancing material and electronic conductivity enhancing material. The rated capacity of a cathode is, for example, the discharge capacity of a battery supplied at ambient conditions following a full battery charge. The resulting equation after converting the current density j into the conductivity G using Ohm's law with resistance R and voltage E across the entire cathode, which in turn has the cross-sectional diffusion area A,

R=E/(j*A)  (4)

and the definition for the conductivity G (=inverse resistivity)

G=1/R*X/A  (5)
is
j=E*G/X  (6)

The resulting equation after inserting equation (6) into equation (2) and considering the voltage drop across the entire thickness X of the cathode is

X2=4*RT/(c*z*F2*dE/dX)*t*E*G/X  (7)
or, after rearranging equation (7),
X3=4*RT/(c*z*F2*dE/dX)*t*E*G  (8)

For a constant electric field gradient throughout the cathode, which may be the case for electronically well conducting cathodes, dE/dx becomes E/X such that equation (8) simplifies to

X2=4*RT/(c*z*F2)*t*G  (9)
Therefore,
X2˜t*G  (10)


Equation (10) may be considered a design rule for cathodes if, for example, for a given diffusion period (or discharge or charge time) t through thickness X of an electrochemical cell, the ionic conductivity G of the cathode may be increased four-fold before one may afford to double the thickness X of the cathode in order to double its capacity per footprint under otherwise constant parameters (i.e., the same electrochemically active material, same volumetric loading of electrochemically active material, same cross-sectional area of the cathode, among others). The discharge time capability of batteries may be given its reciprocal value, the so-called C-rate, which defines how often a battery or electrochemical cell is able to mathematically discharge its rated capacity in one hour when mathematically neglecting the charge periods in between discharges.


Equation (10) also represents that for a given conductivity G inside the cathode, increasing the cathode thickness can cause a much slower (i.e., longer) discharge time capability (lower C-rate). For example, the discharge time for full discharge of a given rated capacity may increase approximately four-fold (C-rate drops to about 25%) when doubling the thickness of the cathode. Maintaining a given rated capacity while doubling the cathode thickness implies that the thickness increase can be accomplished either by adding electrochemical inert material to the cathode, doubling its porosity or changing the electro-active material inside the cathode.


Equation (10) further teaches that adding electrochemically inert material to the cathode, such as mere ionic or electronic conductivity enhancers that do not store electrochemical capacity or energy and therefore merely increase the thickness of the cathode by ΔX without increasing the capacity or energy of the cathode, comes with a price: it therefore may be appropriate in certain embodiments to add the inert material if it may increase the ionic conductivity of the (composite) cathode to G*(X+ΔX)2/X2 in order to maintain or, even better, shorten the discharge or charge time because

(X+ΔX)2˜t*G[(X+ΔX)2/X2]  (11)


The importance of, and need for, a great ionic conductivity inside certain embodiments of the cathode is evident. Since the electrochemically active cathode material such as, for instance, commercially available LiCoO2, may not provide a sufficiently high lithium ion conductivity itself (e.g., it may exhibit at ambient temperatures <10−7 S/cm throughout its electrochemically active range between 4.2V-2.0V vs. Li+/Li) one may, for instance, fabricate composite cathodes with lithium ion conductivity enhancing materials which have a lithium ion conductivity that is substantially higher than that of the electrochemically active cathode material.


After the selection of appropriate lithium ion conduction enhancing material, such as, for example, lithium lanthanum titanate (Li0.35La0.55TiO3 has G=10−3 S/cm (bulk) and G=2*10−5 S/cm (grain boundary) at 25° C., an example of which is discussed in Y. Inaguma et al., Solid State Communications 86 (1993) p. 689, which is incorporated herein by reference in its entirety), lithium lanthanum zirconate (Li7La3Zr2O12 exhibits 7.7*10−4 S/cm at 25° C., an example of which is discussed in R. Murugan et al., Angewandte Chemie International Edition 46 (2007) 7778, which is incorporated herein by reference in its entirety), lithium aluminum titanium, phosphate (Li1.3Ti1.7Al0.3(PO4)3 shows 7*10−4 S/cm at 25° C., an example of which is discussed in G. Adachi et. al, U.S. Pat. No. 4,985,317, which is incorporated herein by reference in its entirety), or lithium thio-phosphate (80 at % Li2S-20 at % P2S5[═Li8P2S9; “Thio-LISICON II”] shows 7.4*10−4 S/cm at 25° C., an example of which is discussed in Senga Minoru et. al, U.S. Pat. Appl. Publ. No. 2007/0160911, which is incorporated herein by reference in its entirety), it is important in certain circumstances to ensure that the morphology, which comprises particle size and particle size distribution, of the lithium ion conductivity enhancing material is tuned to the particle size and distribution of the electrochemically active cathode material inside the composite cathode. This approach may provide a positive three-dimensional network of lithium ion conductivity inside said composite cathode. Porosity within the composite cathode may offset the effectiveness of materials with great conductivity (applies to ions and electrons) due to poor conduction paths or inter-grain contact area, which in turn may be maximized for optimum conduction between the grains and throughout the composite cathode. This objective may be well accomplished with particle sizes preferably in the range of approximately 0.1-10 μm, and most preferably 0.5-5 μm, for both the ionic conductivity enhancing material and the electrochemically active material within the cathode. Much larger particles than 10 μm may entail the risk of shadowing or interrupting the ionic conduction path in the ionic network and also the electron conduction path in the electronic network.


Alternatively or additionally, the ionic conductivity of the electrochemically active material itself may be enhanced. This may be achieved by, for example, doping its bulk grain (intra-grain) portion with other, appropriate chemical elements and/or by chemically or mechanically modifying its grain boundaries, which may be the premier ionic conduction gateways between the grains inside a solid state cathode. Chemical modification via reaction with appropriate chemicals may be a preferred method according to certain embodiments of the present invention. Fast ionic grain boundary conduction is most effective in providing ions to and from the locations of the electrochemical reactions responsible for capacity and energy storage, which are inside the grain bulk. If the so-enhanced electrochemically active material in grain bulk and/or grain boundary, for example LiCoO2, inside the cathode shows a sufficiently high lithium ion conductivity, then the addition of an inert phase that merely provides enhanced lithium ion conductivity, such as, for instance, lithium lanthanum titanate (Li0.35La0.55TiO3), may become unnecessary. However, it may be important to ensure that the cathode is electronically conducting well, for example with an electronic conductivity that is much higher than the lithium ion conductivity inside the cathode. Otherwise, the electronic conductivity of the cathode may limit the effectiveness of the lithium ion conductivity, and thus the lithium diffusion through the cathode may occur only at the pace of the limiting electronic conductivity, according to equation (9) when applying to electrons instead of ions.


Electron conductivity enhancing materials are relatively inexpensive such as, for example, carbon or nickel powder. These materials are fairly stable up to at least 500° C. with commonly used electrochemically active materials (e.g., LiCoO2) and selected ionic conductivity enhancing materials, such as, for example, lithium lanthanum titanate (Li0.35La0.55TiO3) or lithium lanthanum zirconate (Li7La3Zr2O12). It is preferred according to certain embodiments of the present invention to have these electronic conductivity enhancing materials available in an appropriate particle size distribution that is conducive to maximizing the electronic conductivity of the composite cathode, most preferably at the lowest admixed volume fraction of electron conductivity enhancing material. If one used larger particles, such as, for example, 50 μm Ni, then these particles may provide the composite cathode with a good electronic conductivity but may unnecessarily remove valuable volume inside the composite cathode that may not be filled with the more important electrochemically active cathode material (which provides energy) and/or the optional lithium ion conductivity enhancing material (may enhance the power capability at that energy level).


Alternatively or additionally, the electronic conductivity of the electrochemically active material itself may be enhanced. This may be achieved by, for example, doping its bulk grain (intra-grain) portion with other, appropriate chemical elements and/or by chemically or mechanically modifying its grain boundaries, which may be the premier electronic conduction gateways between the grains inside a solid state cathode. Chemical modification via reaction with appropriate chemicals may be a preferred method according to certain embodiments of the present invention. Fast electronic grain boundary conduction is most effective in providing electrons to and from the locations of the electrochemical reactions responsible for capacity and energy storage, which are inside the grain bulk. If the so-enhanced electrochemically active material in grain bulk and/or grain boundary, for example LiCoO2, inside the cathode shows a sufficiently high electronic conductivity, then the addition of an inert phase that merely provides enhanced electronic conductivity without supplying substantial electrochemical storage capacity in the positive cathode, such as, for instance, nickel or carbon powder, may become unnecessary.


Appropriate particle sizes and distribution may be generated using, for example, high energy ball milling that may grind raw powders down to nano/sub-micron sized particles. Specific particle size distribution of a given material could be accomplished by mixing separately ground powder batches for which different grinding parameters were applied. Since the so-obtained powder of one material (e.g., the lithium ion conductivity enhancing material) has a specific particle size distribution, this powder may be mixed with another material (e.g., the electrochemically active cathode material) that has a particle size distribution that has been created in a similar fashion. Finally, the electron conductivity enhancing material (specific particle size distribution made in a similar manner as employed for the lithium ion conductivity enhancing material) may be added to the powder mix. Then, homogenizing the powder mix may be achieved in various ways, such as, for example, by low-energy ball milling using low concentrations of low-density grinding media such as Si3N4 or Al2O3, which may or may not further change the particle size distribution of one or more materials within the powder mixture.


EXAMPLE EMBODIMENTS OF THE PRESENT INVENTION
Example 1

According to an embodiment of the present invention, a commercially available LiCoO2 powder may be used to determine its electronic conductivity at ambient conditions prior to its initial charge by (a) cold pressing 7 tons of a 0.5 mm thick and 10 mm in diameter powder pellet, which may achieve 76% of the theoretical density of 5.06 g/ccm and (b) by cold pressing 7 tons of 0.5 mm thick and 10 mm in diameter powder pellet followed by sintering the pellet at 900° C. for 1 h in air, which may achieve 72% of the theoretical density of 5.06 g/ccm. The so-obtained pellets may then be coated with 0.3 μm thick, PVD fabricated, lithium ion blocking gold electrodes on both pellet faces and subjected to electronic resistance measurements using electrochemical impedance spectroscopy and 10 mV of amplitude. The electronic conductivity of an exemplary cold pressed LiCoO2 pellet obtained 2.7*10−5 S/cm while the pellet that may be annealed at 900° C. exhibited an electronic conductivity of 7.1*10−4 S/cm.


Example 2

According to an embodiment of the present invention, the electronic conductivity of a commercially available Ni powder (2-3 μm grain size) may be determined from a cold pressed a 7 ton Ni pellet that was 0.5 mm thick and 10 mm in dia. The density may be 80% of the theoretical density (8.91 g/ccm). The so-obtained Ni pellet may be sandwiched between two copper electrodes and subjected to 10 mVDC. However, the electronic resistance may be so low (<<1 Ohm) that the currents fall outside the capability of the test equipment (10A). Instead of determining the exact electronic conductivity, the electronic conductivity may be approximated by the literature value for Ni, which at 25° C. is about 105 S/cm. This value is more than 10 orders of magnitude greater than that of LiCoO2 prior to the initial charge.


Example 3

According to an embodiment of the present invention, the commercially available LiCoO2 powder from Example 1 may be used to determine its ionic conductivity at ambient conditions prior to its initial charge by (a) cold pressing 7 tons of a 0.5 mm thick and 10 mm in diameter powder pellet and by (b) cold pressing 7 tons of a 0.5 mm thick and 10 mm in diameter powder pellet followed by sintering of the pellet at 700° C. for 1 h in air, which may achieve 73% of the theoretical density of 5.06 g/ccm. The so-obtained pellets may be coated with a 3 μm thick electron blocking Lipon electrolyte layer on each pellet face. In addition, two metallic Li electrodes may be PVD fabricated onto the Lipon electrolyte layers opposite to the sandwiched LiCoO2 pellet. This ionic conductivity test cell may be subjected to ohmic resistance measurements by applying various voltages between 1-5 VDC to the lithium electrodes whereupon lithium plating or stripping may occur. In this setup, only lithium ions may conduct through the LiCoO2 pellet while its electronic conduction was completely arrested. The resulting, instant currents may show ohmic behavior and were calculated into resistances. Subtracting the known, combined resistances of the two 3 μm Lipon layers connected in series (from other separate experiments) enabled the extraction of the ionic conductivity of LiCoO2 prior to its initial charge. The ionic conductivity of both an exemplary cold pressed LiCoO2 pellet and the cold pressed LiCoO2 pellet that was subsequently annealed at 700° C. for 1 h in air was 2*10−8 S/cm when measured at 25° C., which is more than three orders of magnitude lower than the electronic conductivity of LiCoO2 at 25° C. Therefore, LiCoO2 in this example demonstrates a predominantly electronically conducting material with a poor lithium ion conductivity.


Example 4

According to an embodiment of the present invention, Li0.35La0.55TiO3 may be synthesized by standard powder reaction from the starting compounds LiOH, La2O3, and TiO2. The final powder, Li0.35La0.55TiO3, may be virtually free of impurity phases as verified by XRD. This powder may then be (a) cold pressed a 7 ton, 0.4 mm thick and 10 mm diameter powder pellet, which achieved 64% of the theoretical density of 4.99 g/ccm, and (b) cold pressed a 7 ton, 0.4 mm thick and 10 mm diameter powder pellet and subsequently sintered at 1100° C. for 1 h in air, which may achieve 70% of the theoretical density of 4.99 g/ccm. The so-obtained pellets may be applied with a PVD fabricated gold electrode on each pellet face. The ionic conductivity of the Li0.35La0.55TiO3 pellets may be determined by electrochemical impedance spectroscopy that can reveal a grain boundary (inter-grain) conductivity of 5.6*10−8 S/cm measured at 25° C. for the cold pressed pellet while the bulk (intra-grain) conductivity may not be determined due the limited frequency capability of the test setup, which in turn may require frequencies of about 10 MHz range. The grain boundary conductivity of Li0.35La0.35TiO3 pellets annealed at 700° C. for 1 h in air was determined to about 1.8*10−7 S/cm when measured at 25° C. The 1100° C. fabricated pellet, however, may allow the deconvolution into bulk (inter-grain) and grain boundary (intra-grain) conductivity, which can amount to 5.6*10−4 S/cm and 2.4*10−6 S/cm, respectively. These conductivities may be more than two orders of magnitude larger than the lithium ion conductivity of LiCoO2 prior to its initial charge (see Example 3).


Example 5

According to an embodiment of the present invention, a composite cathode may be fabricated with, for example, a mixture of 80 wt % LiCoO2 and 20 wt % Ni without the addition of an ionic conduction enhancer such as Li0.35La0.55TiO3. The mixture may be cold pressed into a composite cathode pellet of the dimensions 0.3 mm×10 mm in diameter Other pellets may be further treated by sintering the pellets at 700° C. for 1 h in air. The resulting cold pressed or sintered composite cathode pellets may remain electronically well conducting (>10−2 S/cm). When fabricated into full electrochemical cells comprising 1.5 μm thick Lipon electrolyte and a 10 μm metal Li anode, both pellet types may be found to suffer from severe current rate limitations as early as during the initial charge step at a constant voltage of 4.2V. At 25° C. the current may decay to about 1 μA within minutes, which may cause charge times of more than 10,000 h (more than 1 year) in the case of a 10 mAh cell. Such a cell, for example, may contain 83 mg of LiCoO2. The mere composition of electrochemically active cathode material (LiCoO2), which exhibits ionic and electronic conductivities sufficient, for example, for small cathode thicknesses, such as, for example, less than 30 μm, which are routinely built in thin-film form in certain embodiments of the present invention. Furthermore, electronic conduction enhancer (Ni) may not lead to electrochemically well active composite cathodes when used in substantial thicknesses (>>30 μm) for high capacity cells (>1 mAh/cm2). Therefore, at least one critical component may be missing from the composite cathode to attain useful battery performance.


Example 6

This example demonstrates an exemplary potential improvement over Example 5. According to an embodiment of the present invention, the powders used from Examples 1-4 may be mixed in the following weight percentage ratio: 40 wt % LiCoO2 (theoretical density=5.06 g/ccm), 40 wt % Li0.35La0.55TiO3 (theoretical density=4.99 g/ccm), and 20 wt % Ni (theoretical density=8.91 g/ccm). The powder mixture may be cold pressed into a 0.3 mm×10 mm in diameter composite cathode pellet of 80% of the theoretical density, which may be calculated from equation (12):

Theoretical density of composite cathode pellet (g/ccm)=100%/(40 wt %/5.06 g/ccm+40 wt %/4.99 g/ccm+20 wt %/8.91 g/ccm)=5.50 g/ccm  (12)

The electronic conductivity of an exemplary composite cathode pellet using two sandwiching copper plates was greater than 10−2 S/cm while no new phases were detected by XRD other than the starting constituents LiCoO2, Li0.35La0.55TiO3, and Ni. The ionic conductivity of the composite cathode may be estimated from the volume fraction of the Li0.35La0.55TiO3 within the composite cathode, which is given by equation (13):

vol % of Li0.35La0.55TiO3=40 wt %*5.50 g/ccm/4.99 g/ccm=44 vol %  (13)

In a first approximation it may be assumed that pellet the following approximation holds true inside the composite cathode:

Density of composite cathode/actual density of Li0.35La0.55TiO3≈theoretical density of composite cathode/theoretical density of Li0.35La0.55TiO3  (14)

so that equation (13) provides a good estimate for the actual vol % of Li0.35La0.55TiO3 inside the composite cathode. It may be further assumed that the lithium ion conductivity for an ideal grain size composition inside the composite cathode may be determined by the vol % of the dominant lithium ion conductor according to

Actual vol % Li0.35La0.55TiO3*5.6*10−8 S/cm=2.5*10−8 S/cm  (15)


This lithium ion conductivity, example, based on the lithium ion grain boundary conductivity of Li0.35La0.55TiO3 when cold pressed into a composite cathode pellet and not further heat treated, may be too low for practical purposes and may be similar to lithium ion conductivity of pure LiCoO2 (see Example 3). Therefore, the composite cathode pellet may be heat treated at 700° C. at which the composite cathode may be provided with 0.44*1.8*10−7 S/cm=7.9*10−8 S/cm. This may still not be enough lithium ionic conductivity for practical applications (see Example 14). Annealing the composite cathode pellet at 900° C. may cause some reaction of LiCoO2 with Ni to form NiO and LiCoO2 decomposition side phases. The improvement in lithium ion conductivity may be minor and/or may rise to about 4*10−7 S/cm.


It may be evident that the lithium ionic grain boundary conductivity of the enhancer material can be improved when inside the composite cathode. The composite cathode may, for example, not be processed above a certain temperature (e.g., 900° C.) before undesirable chemical reactions can set in between the constituents of the composite cathode.


These certain exemplary improvements may be accomplished by grinding and milling the powder of the lithium ion conductivity enhancer to smaller grain sizes (<2 μm) and/or by appropriately modifying its grain surfaces, mechanically or chemically, to increase its lithium ion grain boundary conductivity. This so-surface-modified lithium ion conductivity enhancer material may exhibit a grain boundary conductivity of about 10−4 S/cm when cold pressed into composite cathode pellets and followed by an anneal step at 700° C. for 1 h in air. An overall lithium ion conductivity of an exemplary composite cathode of about 10−4 S/cm may permit continuous current draws of C/30, which translates into 0.2 mA for 6 mAh cells, which may have a 300 μm thick composite cathode (see Example 13).


Example 7

According to an embodiment of the present invention, a 10 mm diameter electrochemical cell providing 2 mAh/cm2 capacity based on the geometric footprint of the positive cathode may be fabricated with a composite cathode consisting of 40 wt % LiCoO2 (theoretical density=5.06 g/ccm), 40 wt % Li0.35La0.55TiO3 (theoretical density=4.99 g/ccm), and 20 wt % Ni (theoretical density=8.91 g/ccm). The geometric footprint of a cathode is, for example, the surface area that one obtains when looking onto a surface along its surface normal or along the main axis of a device which has a geometric area that is measured while assuming a perfectly smooth surface. With this loading of the electrochemical active cathode material (LiCoO2) the composite cathode can be fabricated with 11.2 mg LiCoO2 thereby leading to a thickness, preferably of about 28 mg/(0.785 cm2*80%*5.50 g/ccm)=81 μm.


Example 8

According to an embodiment of the present invention, a 10 mm diameter electrochemical cell providing 2 mAh/cm2 capacity may be fabricated with a composite cathode consisting of 20 wt % LiCoO2 (theoretical density=5.06 g/ccm), 60 wt % Li0.35La0.55TiO3 (theoretical density=4.99 g/ccm), and 20 wt % Ni (theoretical density=8.91 g/ccm). With this loading of the electrochemical active cathode material (LiCoO2), the composite cathode can be fabricated with 11.2 mg LiCoO2, thereby leading to a thickness of about 56 mg/(0.785 cm2*80%*5.49 g/ccm)=162 μm.


Example 9

According to an embodiment of the present invention, a 10 mm diameter electrochemical cell providing 4 mAh/cm2 capacity may be fabricated with a composite cathode consisting of 40 wt % LiCoO2 (theoretical density=5.06 g/ccm), 40 wt % Li0.35La0.55TiO3 (theoretical density=4.99 g/ccm), and 20 wt % Ni (theoretical density=8.91 g/ccm). With this loading of the electrochemical active cathode material (LiCoO2), the composite cathode can be fabricated with 22.4 mg LiCoO2, thereby leading to a thickness of about 56 mg/(0.785 cm2*80%*5.50 g/ccm)=162 μm.


Example 10

According to an embodiment of the present invention, a 10 mm diameter electrochemical cell providing 4 mAh/cm2 capacity may be fabricated with a composite cathode consisting of 20 wt % LiCoO2 (theoretical density=5.06 g/ccm), 60 wt % Li0.35La0.55TiO3 (theoretical density=4.99 g/ccm), and 20 wt % Ni (theoretical density=8.91 g/ccm). With this loading of the electrochemical active cathode material (LiCoO2), the composite cathode can be fabricated with 22.4 mg LiCoO2, thereby leading to a thickness of about 112 mg/(0.785 cm2*80%*5.49 g/ccm)=325 μm.


Example 11

According to an embodiment of the present invention, a 10 mm diameter electrochemical cell providing 5 mAh/cm2 capacity may be fabricated with a composite cathode consisting of 40 wt % LiCoO2 (theoretical density=5.06 g/ccm), 40 wt/o Li0.35La0.55TiO3 (theoretical density=4.99 g/ccm), and 20 wt % Ni (theoretical density=8.91 g/ccm). With this loading of the electrochemical active cathode material (LiCoO2), the composite cathode can be fabricated with 28 mg LiCoO2, thereby leading to a thickness of about 70 mg/(0.785 cm2*80%*5.50 g/ccm)=203 μm.


Example 12

According to an embodiment of the present invention, a 10 mm diameter electrochemical cell providing 5 mAh/cm2 capacity may be fabricated with a composite cathode consisting of 20 wt % LiCoO2 (theoretical density=5.06 g/ccm), 60 wt %/Li0.35La0.55TiO3 (theoretical density=4.99 g/ccm), and 20 wt % Ni (theoretical density=8.91 g/ccm). With this loading of the electrochemical active cathode material (LiCoO2), the composite cathode can be fabricated with 28 mg LiCoO2, thereby leading to a thickness of about 140 mg/(0.785 cm2*80%*5.49 g/ccm)=406 μm.


Example 13

According to an embodiment of the present invention, the cell of Example 11 wherein the 28 mg of LiCoO2 material may be replaced by 28 mg of Li1.2Ni0.175Co0.10Mn0.525O2 (see, e.g., U.S. Pat. Appl. Publ. No. 2010/086853, which is incorporated herein by reference in its entirety), which may improve the capacity of the cell by 70% when cycled between 4.6-2.0V and while concomitantly enhancing the capacity per unit area from 5 mAh/cm2 to more than approximately 8.5 mAh/cm2. Since the theoretical densities of LiCoO2 and Li1.2Ni0.175Co0.10Mn0.525O2 are similar, the actual densities of the fabricated composite cathode pellets in the cells are also similar, and therefore both composite cathode pellet thicknesses may be approximately 200 μm.


Example 14

According to an embodiment of the present invention, after rearranging equation (9),

X2=4*RT/(c*z*F2)*t*G  (16)
to
X2*c*z*F2/(4*RT)=t*G  (17)
wherein
c=vol % of active cathode loading in composite cathode*concentration of mobile ionic species in the given active cathode material   (18)

For the case wherein the active cathode material is LiCoO2, c=vol % of active cathode loading in composite cathode*2.3*10−2 mol/ccm (100% dense composite cathode assumed), z=1, F=96485 C/mol, R=8.3143 J/(K*mol), T=298 K, and

(Thickness of composite cathode)2*vol % active cathode loading in composite cathode*2.2*104 sec/(Ohm*ccm)=discharge time*lithium ion conductivity in composite cathode  (19)


In the case of a 5001 μm thick composite cathode with a 40 vol % loading, for example, a 10 hours (36,000 sec) discharge or charge time (C/10 rate) requires a minimum lithium ion conductivity inside the composite cathode of about 6*10−4 S/cm while a C/30 rate (30 hours discharge time or charge time) demands only about 2*10−4 S/cm.


Doubling the cathode loading (80 vol % active loading), for example, while maintaining a given capacity allows the composite cathode to be fabricated in about ½ the cathode thickness or 250 μm. As a result, the C/10 rate capability may require only about 3*10−4 S/cm while the C/30 scenario may only need about 1*10−4 S/cm.


Because creating composite cathodes with high lithium ion conductivity at, for example, 10−4 S/cm, is difficult, one option, for a given capacity in a given composite cathode and for a given discharge or charge time at a given temperature, may be to maximize the vol % loading of the active electrochemical material inside the composite cathode while concurrently minimizing the thickness of the composite cathode.


For a given capacity Q in the given composite cathode which has a given ionic conductivity, the discharge or charge time t determines the maximum continuous discharge or charge current according to

maximum continuous discharge or charge current=Q/t  (20)


Example 15

According to an embodiment of the present invention, a cell similar to the cell in example 7, but in which the Li0.35La0.55TiO3 powder has an average grain size of less than 2 μm, may have an improved grain boundary conductivity in a manner that it enables the cell to be continuously discharged to about 2 mAh/cm2 within 10 hours or less within its reversibility range of 4.2-2.0V. Reversibility range is, for example, the commonly accepted voltage range within which a given electrode is “substantially” stable at a given temperature. Higher temperatures may typically reduce reversibility range of electrodes. For example, at 25° C., the reversibility range of LiCoO2 is commonly accepted as 4.2-2.0V vs. Li+/Li, which is equivalent to a stoichiometry range from about Li1.0CoO2 (2.0V vs. Li+/Li) to about Li0.5CoO2 (4.2V vs. Li+/Li).


Example 16

According to an embodiment of the present invention, a cell similar to the cell in example 9, but in which the Li0.35La0.55TiO3 powder has an average grain size of less than 1 μm, may have an improved grain boundary conductivity that enables the cell to be continuously discharged to about 4 mAh/cm2 within 10 hours or less within 4.2-2.0V.


Example 17

According to an embodiment of the present invention, a cell similar to the cell in example 11, but in which the Li0.35La0.55TiO3 powder has an average grain size of less than 0.5 μm, which may have an improved grain boundary conductivity that enables the cell to be continuously (and fully) discharged to about 5 mAh/cm2 in 10 hours or less within 4.2-2.0V.


Example 18

According to an embodiment of the present invention, the electrochemical cell of Example 7 may be configured with a 1.5 μm thick Lipon electrolyte, a 10 μm thick metal Li anode, a 10 μm Al cathode current collector foil, a 10 μm Cu anode current collector foil and a polymeric pouch encapsulation of 100 μm wall thickness above and below the electrochemical cell. Such characteristics provide a volumetric capacity density (which is calculated, for example, by dividing the rated capacity by the fully packaged battery volume) of about 59 Ah/liter in a fully packaged state and a volumetric energy density (which is calculated, for example, by dividing the product of rated capacity times the rated voltage by the fully packaged battery volume) of about 236 Wh/liter, after taking into account that the Li anode increases its thickness to a total of about 22 μm and the composite cathode to a total of about 82 μm when the cell is charged to 4.2V. A “fully packaged state”, for example, is the state of a battery that includes all of the peripherals inherent to the battery, which includes, for example, current collectors, terminals, primary encapsulation (if the housing is not already included in the encapsulation), and the housing.


Example 19

According to an embodiment of the present invention, the electrochemical cell of Example 9 may be configured with a 1.5 μm thick Lipon electrolyte, a 10 μm thick metal Li anode, a 10 μm Al cathode current collector foil, a 10 μm Cu anode current collector foil, and a polymeric pouch encapsulation of 100 μm wall thickness above and below the electrochemical cell. Such characteristics provide a volumetric capacity density of about 92 Ah/liter in a fully packaged state and a volumetric energy density of about 368 Wh/liter, after taking into account that the Li anode increases its thickness to a total of about 34 μm and the composite cathode to a total of about 163 μm when the cell is charged to 4.2V.


Example 20

According to an embodiment of the present invention, the electrochemical cell of Example 11 may be configured with a 1.5 μm thick Lipon electrolyte, a 10 μm thick metal Li anode, a 10 μm Al cathode current collector foil, a 10 μm Cu anode current collector foil, and a polymeric pouch encapsulation of 100 μm wall thickness above and below the electrochemical cell. Such characteristics provide a volumetric capacity density of about 103 Ah/liter in a fully packaged state and a volumetric energy density of about 412 Wh/liter, after taking into account that the Li anode increases its thickness to a total of about 40 μm and the composite cathode to a total of about 205 μm when the cell is charged to 4.2V.


Example 21

According to an embodiment of the present invention, the energy densities given in Examples 18, 19, and 20 increase to about 354 Wh/liter, about 552 Wh/liter, and about 618 Wh/liter, respectively, when increasing the loading of the electrochemically active cathode material (LiCoO2) in each example from about 40 wt % to about 60 wt % and reducing the lithium conductivity enhancing material (Li0.35La0.55TiO3, which has very similar density as LiCoO2 so that that the thickness of the composite cathode remains virtually the same) from about 40 wt % to about 20 wt %.


Example 22

According to an embodiment of the present invention, a 618 Wh/liter cell from Example 21 contains about 5.89 mAh and may be configured with a 50 μm thick Li7La3Zr2O12 electrolyte, a 50 μm thick LiySn-activated, a nano-sized Li4Ti5O12 Li-ion anode, a 10 μm Al cathode current collector foil, a 10 μm Cu anode current collector foil, and polymeric pouch encapsulation of 100 μm wall thickness above and below the electrochemical cell. This configuration provides the cell with a volumetric capacity density of about 135 Ah/liter in a fully packaged state and a volumetric energy density of about 338 Wh/liter, while the anode thickness remains approximately constant at about 50 nm and the composite cathode may reach a total thickness of about 205 μm when the cell is charged to 4.2V. The midpoint voltage, however, may change from 4.0V (Example 21) to about 2.5V.


Example 23

According to an embodiment of the present invention, a composite cathode may be fabricated consisting of a mixture of 60 wt % LiCoO2, 20 wt % Ni, and 20 wt % of chemically surface modified Li0.35La0.55TiO3. The chemical surface modification of Li0.35La0.55TiO3 may be accomplished by separate and prior reaction with LiIO4*2H2O, Polypyrrole, Li3N, Ni or carbon at temperatures between 250° C.-900° C. The mixture may then be cold pressed into a composite cathode pellet of the dimensions 0.3 mm×10 mm in diameter and subsequently annealed at 250° C.-500° C. for 1 h in air. The resulting annealed composite cathode pellets remains electronically well conducting (>10−2 S/cm). When fabricated into full electrochemical cells comprising 1.5 μm thick Lipon electrolyte and a 10 μm metal Li anode, the composite cathode may supply the cell with continuous charge and discharge currents greater than C/30 of between 4.2-2.0V. The chemical surface modification substantially enhances the lithium ion conductivity of the ionic conductivity enhancer material (Li0.35La0.55TiO3) by about three orders of magnitude from a lithium ion grain boundary (intra-grain) conductivity of 10−7 S/cm to a lithium ion grain boundary conductivity value close to 10−4 S/cm.


Example 24

According to an embodiment of the present invention, a composite cathode consisting of a mixture of about 80 wt % chemically surface modified LiCoO2 and about 20 wt % Ni without the addition of any ionic conduction enhancer such as Li0.35La0.55TiO3 may be fabricated. The chemical surface modification of LiCoO2 may be accomplished by separate and prior reaction with LiIO4*2H2O or Polypyrrole at temperatures between about 250° C.-900° C. The mixture may then be cold pressed into a composite cathode pellet of the dimensions 0.3 mm×10 mm in diameter and subsequently annealed at about 250° C.-500° C. for 1 h in air. The resulting annealed composite cathode pellets may remain electronically well conducting (>10−2 S/cm). When fabricated into full electrochemical cells comprising 1.5 μm thick Lipon electrolyte and a 10 μm metal Li anode, these composite cathodes in these cells may sustain continuous charge and discharge currents greater than C/30 of between 4.2-2.0V. It is evident that the chemical surface modification substantially enhances the lithium ion conductivity of the electrochemically active material (LiCoO2) by more than approximately 3 orders of magnitude from about 2*10−8 S/cm to a value close to about 10−4 S/cm. This approach allows the fabrication of composite cathodes, which have an ionic conductivity enhancer that may be the electrochemically active material itself, thereby rendering a separately provided ionic conductivity enhancer that has no electrochemical storage capacity (e.g., Li0.35La0.55TiO3) redundant.


Example 25

According to an embodiment of the present invention, a 10 mm diameter electrochemical cell that utilizes the composite cathode from Example 24 may be fabricated. The composite cathode may have an actual cold pressed density of about 4.43 g/ccm, which is about 80% of its theoretical density of about 5.54 g/ccm, and a thickness of about 350 μm. This composite cathode supplies the cell with about 13.7 mAh of capacity. This cell may be further configured with a 1.5 μm thick Lipon electrolyte, a 10 μm thick metal Li anode, a 10 μm Al cathode current collector foil, a 10 μm Cu anode current collector foil and polymeric pouch encapsulation of 100 μm wall thickness above and below the electrochemical cell. This construction provides the cell with a volumetric capacity density of about 254 Ah/liter in a fully packaged state and a volumetric energy density of about 1018 Wh/liter, after taking into account that the Li anode will increase its thickness to a total of about 92 μm and the composite cathode to a total of about 355 μm when the cell is charged to 4.2V. Such an electrochemical cell may have an improved grain boundary conductivity that enables the cell to be continuously (and fully) discharged to about 17 mAh/cm2 in 10 hours or less within 4.2-2.0V.



FIG. 1 shows a prior art cross-sectional view of a Li-ion or Li-polymer battery as used in cell phone batteries. The composite cathode 110 is typically approximately 100 μm thick and composed of four phases, three of which are solid state phases and the fourth of which is a liquid phase. The electrochemically active cathode material 111 may be solid state LiCoO2 (or derivative) powder and the electronic conductivity enhancer 113 can be graphitic carbon. Polymeric binder 114, such as PVDF, binds the previous two solid state phases to the Al foil substrate 130. A non-aqueous liquid electrolyte 112, which is an organic solvent with dissolved lithium salt, is soaked into the pores of the composite cathode 110. Liquid electrolyte 112 has a high lithium ion conductivity of 10−2-10−3 S/cm at 25° C., when 100% of the measurement volume is electrolyte. Liquid electrolyte 112 may reach almost every volume element inside the composite cathode, except for those volume elements that are already taken by the electrochemically active cathode material 111, the electronic conductivity enhancer 113 and, to some extent, the polymeric binder 114. The composite cathode 110 may have an effective overall lithium ion conductivity throughout its bulk of approximately 10−3-10−4 S/cm at 25° C. given that the electrolyte 112 can be present in, for example, only about 30% of the composite cathode volume and additionally may, for example, have torturous pathways to overcome in the pores to unfold its lithium conductivity.


Further shown in FIG. 1 are the non-aqueous liquid electrolyte 112 soaked, perforated polymeric separator 120 (typically 13-50 μm thick) and a typical Li-ion or Li-polymer anode 140. A Li-ion or Li-polymer anode 140 is typically around 100 μm thick and consists of electrochemical anode material 141, usually provided through graphitic carbon, a polymeric binder 142 that is optimized for graphitic carbon, and non-aqueous liquid electrolyte 112. Additional cell components exist, such as the Cu anode current collector foil and cell packaging, but are not included in FIG. 1.



FIG. 2 shows one of the exemplary embodiments of the present invention. Composite cathode 210 may be composed of, for example, at least three solid state phases (without any liquid phases present): (1) at least one solid-state electrochemically active cathode material 211 such as, for instance, LiCoO2; (2) at least one solid-state electronically conducting material 213, such as, for instance, Ni, which has an electronic conductivity that may be at least three times higher than the electronic conductivity of said electrochemically active cathode material 211 prior to its initial charge; and (3) at least one solid-state, inorganic, ionically conducting material 212, such as, for instance, Li0.35La0.55TiO3, which may have an ionic conductivity that may be at least three times higher than the ionic conductivity of the electrochemically active cathode material 211 prior to its initial charge.


Composite cathode 210 of certain embodiments of the present invention may not require any pores for a liquid non-aqueous electrolyte and thus may be fabricated in a denser fashion (e.g., typical residual porosity of less than 20%) and annealed at higher temperatures for improved grain boundary bonding. Composite cathode 210 of certain embodiments of the present invention may be easily fabricated with increased thickness (e.g., 100-1000 μm) and good mechanical properties. In certain embodiments of the present invention, composite cathode 210 may have sufficient rigidity so that it is able to serve as its own substrate or substrate for the other cell components, such as, for instance, 1.5 μm thick solid-state thin-film electrolyte 220 and thin-film metallic lithium anode 240.



FIG. 3 shows another alternative preferred embodiment of the present invention. Composite cathode 310 may be composed of at least two solid state phases (without any liquid phases present): (1) at least one solid-state electrochemically active cathode material 311 such as, for instance, surface modified LiCoO2 with strongly enhanced lithium ion grain boundary conductivity; and (2) at least one solid-state electronically conducting material 313, such as, for instance Ni, which has an electronic conductivity that may be at least three times higher than the electronic conductivity of said electrochemically active cathode material 311 prior to its initial charge. The provision of surface modified LiCoO2 with strongly enhanced lithium ion grain boundary conductivity may make obsolete the need for a separate, solid-state, inorganic, ionically conducting material, such as element 212 in FIG. 2.


Composite cathode 310 of certain embodiments of the present invention may not require any pores for a liquid non-aqueous electrolyte and thus may be fabricated in a denser fashion (typical residual porosity of less than 20%) and annealed at higher temperatures for improved grain boundary bonding. Composite cathode 310 of certain embodiments of the present invention may be easily fabricated with increased thickness (e.g., 100-1000 μm) and good mechanical properties. In most cases, composite cathode 310 of certain embodiments of the present invention may have sufficient rigidity so that it is able to serve as its own substrate or substrate for the other cell components, such as, for instance, 1.5 μm thick solid-state thin-film electrolyte 320 and thin-film metallic lithium anode 340.


The embodiments and examples described above are exemplary only. One skilled in the art may recognize variations from the embodiments specifically described here, which are intended to be within the scope of this disclosure and invention. As such, the invention is limited only by the following claims. Thus, it is intended that the present invention cover the modifications of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A rechargeable electrochemical device comprising: a solid-state cathode comprising: an electrochemically active material having an electronic conductivity and an ionic conductivity, the electrochemically active material having a modified surface with enhanced lithium ion grain boundary conductivity, such that the ionic conductivity of the electrochemically active material with the modified surface is at least three times higher than an ionic conductivity of the electrochemically active material without the modified surface, wherein the solid-state composite cathode does not include a liquid and does not include a gel, andthe modified surface is a chemically modified surface achieved with reacting the electrochemically active material with a surface modifying chemical.
  • 2. The rechargeable electrochemical device of claim 1, wherein the solid-state cathode further comprises an electronically conducting material having an electronic conductivity at least three times higher than the electronic conductivity of the electrochemically active material in a pre-charged state.
  • 3. The rechargeable electrochemical device of claim 2, wherein the electronically conducting material is nickel.
  • 4. The rechargeable electrochemical device of claim 2, wherein the electrochemically active material is 80 wt. % or greater of the solid-state composite cathode.
  • 5. The rechargeable electrochemical device of claim 1, wherein a particle size of the electrochemically active material is between 0.1-10 μm.
  • 6. The rechargeable electrochemical device of claim 1, wherein the electrochemically active material is surface modified LiCoO2.
  • 7. The rechargeable electrochemical device of claim 1, wherein the electronic conductivity of the electrochemically active material is enhanced by doping a bulk grain portion of the electrochemically active material.
  • 8. The rechargeable electrochemical device of claim 1, further comprising a solid-state electrolyte, which does not comprise a liquid and which does not comprise a gel.
  • 9. The rechargeable electrochemical device of claim 1, wherein the surface modifying chemical is LiIO4*2H2O or polypyrrole.
  • 10. A rechargeable electrochemical device comprising: a solid-state composite cathode consisting of: an electrochemically active material having an electronic conductivity and an ionic conductivity, the electrochemically active material having a modified surface such that the ionic conductivity of the electrochemically active material with the modified surface is at least three times higher than an ionic conductivity of the bulk grain of the electrochemically active material, andan electronically conducting material having an electronic conductivity at least three times higher than the electronic conductivity of the electrochemically active material in a pre-charged state.
  • 11. The rechargeable electrochemical device of claim 10, wherein the electronically conducting material is nickel and the electrochemically active material is LiCoO2.
  • 12. The rechargeable electrochemical device of claim 10, wherein the modified surface of the electrochemically active material is a mechanically modified surface.
  • 13. The rechargeable electrochemical device of claim 10, wherein the modified surface of the electrochemically active material is a chemically modified surface by reaction of the electrochemically active material with a surface modifying chemical.
  • 14. A rechargeable electrochemical device comprising: a solid-state composite cathode including: an electrochemically active material consisting essentially of LiCoO2, the electrochemically active material having an electronic conductivity and an ionic conductivity, the electrochemically active material having a mechanically modified surface having enhanced lithium ion grain boundary conductivity, such that the ionic conductivity of the electrochemically active material with the modified surface is at least three times higher than an ionic conductivity of bulk electrochemically active material without the modified surface, wherein the solid-state composite cathode does not include a liquid and does not include a gel;a negative anode; anda solid-state electrolyte sandwiched between the solid state composite cathode and the negative anode.
  • 15. The rechargeable electrochemical device of claim 14, wherein a particle size of the electrochemically active material is between 0.1 μm-10 μm.
  • 16. The rechargeable electrochemical device of claim 14, wherein the solid-state composite cathode further comprises an electronically conducting material having an electronic conductivity at least three times higher than the electronic conductivity of the electrochemically active material in a pre-charged state.
  • 17. The rechargeable electrochemical device of claim 16, wherein the electronically conducting material is nickel.
  • 18. The rechargeable electrochemical device of claim 16, wherein the electrochemically active material is 80 wt. % or greater of the solid-state composite cathode.
  • 19. The rechargeable electrochemical device of claim 16, further comprising a volumetric capacity density of at least 250 Ah/liter in a fully packaged state.
  • 20. The rechargeable electrochemical device of claim 16, further comprising a volumetric energy density of at least 1000 Wh/liter in a fully packaged state.
RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 13/154,980 filed on Jun. 6, 2011, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 61/352,082, filed Jun. 7, 2010, each of which is incorporated herein by reference in its entirety.

US Referenced Citations (823)
Number Name Date Kind
712316 Loppe et al. Oct 1902 A
3309302 Heil Mar 1967 A
3616403 Collins et al. Oct 1971 A
3790432 Fletcher et al. Feb 1974 A
3797091 Gavin Mar 1974 A
3850604 Klein Nov 1974 A
3939008 Longo et al. Feb 1976 A
4082569 Evans, Jr. Apr 1978 A
4111523 Kaminow et al. Sep 1978 A
4127424 Ullery, Jr. Nov 1978 A
4226924 Kimura et al. Oct 1980 A
4283216 Brereton Aug 1981 A
4318938 Barnett et al. Mar 1982 A
4328297 Bilhorn May 1982 A
4395713 Nelson et al. Jul 1983 A
4437966 Hope et al. Mar 1984 A
4442144 Pipkin Apr 1984 A
4467236 Kolm et al. Aug 1984 A
4481265 Ezawa et al. Nov 1984 A
4518661 Rippere May 1985 A
4555456 Kanehori et al. Nov 1985 A
4572873 Kanehori et al. Feb 1986 A
4587225 Tsukuma et al. May 1986 A
4619680 Nourshargh et al. Oct 1986 A
4645726 Hiratani et al. Feb 1987 A
4664993 Sturgis et al. May 1987 A
4668593 Sammells May 1987 A
RE32449 Claussen et al. Jun 1987 E
4672586 Shimohigashi et al. Jun 1987 A
4710940 Sipes, Jr. Dec 1987 A
4728588 Noding et al. Mar 1988 A
4740431 Little Apr 1988 A
4756717 Sturgis et al. Jul 1988 A
4785459 Baer Nov 1988 A
4826743 Nazri May 1989 A
4865428 Corrigan Sep 1989 A
4878094 Balkanski Oct 1989 A
4903326 Zakman et al. Feb 1990 A
4915810 Kestigian et al. Apr 1990 A
4964877 Keister et al. Oct 1990 A
4977007 Kondo et al. Dec 1990 A
4978437 Wirz Dec 1990 A
5006737 Fay Apr 1991 A
5019467 Fujiwara May 1991 A
5030331 Sato Jul 1991 A
5035965 Sangyoji et al. Jul 1991 A
5055704 Link et al. Oct 1991 A
5057385 Hope et al. Oct 1991 A
5085904 Deak et al. Feb 1992 A
5096852 Hobson Mar 1992 A
5100821 Fay Mar 1992 A
5107538 Benton et al. Apr 1992 A
5110694 Nagasubramanian et al. May 1992 A
5110696 Shokoohi et al. May 1992 A
5119269 Nakayama Jun 1992 A
5119460 Bruce et al. Jun 1992 A
5124782 Hundt et al. Jun 1992 A
5147985 DuBrucq Sep 1992 A
5153710 McCain Oct 1992 A
5169408 Biggerstaff et al. Dec 1992 A
5171413 Amtz et al. Dec 1992 A
5173271 Chen et al. Dec 1992 A
5174876 Buchal et al. Dec 1992 A
5180645 More Jan 1993 A
5187564 McCain Feb 1993 A
5196041 Tumminelli et al. Mar 1993 A
5196374 Hundt et al. Mar 1993 A
5200029 Bruce et al. Apr 1993 A
5202201 Meunier et al. Apr 1993 A
5206925 Nakazawa et al. Apr 1993 A
5208121 Yahnke et al. May 1993 A
5217828 Sangyoji et al. Jun 1993 A
5221891 Janda et al. Jun 1993 A
5225288 Beeson et al. Jul 1993 A
5227264 Duval et al. Jul 1993 A
5237439 Misono et al. Aug 1993 A
5252194 Demaray et al. Oct 1993 A
5262254 Koksbang et al. Nov 1993 A
5273608 Nath Dec 1993 A
5287427 Atkins et al. Feb 1994 A
5296089 Chen et al. Mar 1994 A
5300461 Ting Apr 1994 A
5302474 Shackle Apr 1994 A
5303319 Ford et al. Apr 1994 A
5306569 Hiraki Apr 1994 A
5307240 McMahon Apr 1994 A
5309302 Vollmann May 1994 A
5314765 Bates May 1994 A
5326652 Lake Jul 1994 A
5326653 Chang Jul 1994 A
5338624 Gruenstem et al. Aug 1994 A
5338625 Bates et al. Aug 1994 A
5342709 Yahnke et al. Aug 1994 A
5355089 Treger Oct 1994 A
5360686 Peled et al. Nov 1994 A
5362579 Rossoll et al. Nov 1994 A
5381262 Arima et al. Jan 1995 A
5387482 Anani Feb 1995 A
5401595 Kagawa et al. Mar 1995 A
5403680 Otagawa et al. Apr 1995 A
5411537 Munshi et al. May 1995 A
5411592 Ovshinsky et al. May 1995 A
5419982 Tura et al. May 1995 A
5427669 Drummond Jun 1995 A
5435826 Sakakibara et al. Jul 1995 A
5437692 Dasgupta et al. Aug 1995 A
5445856 Thaloner-Gill Aug 1995 A
5445906 Hobson et al. Aug 1995 A
5448110 Tuttle et al. Sep 1995 A
5449576 Anani Sep 1995 A
5455126 Bates et al. Oct 1995 A
5457569 Jou et al. Oct 1995 A
5458995 Behl et al. Oct 1995 A
5464692 Huber Nov 1995 A
5464706 Dasgupta et al. Nov 1995 A
5470396 Mongon et al. Nov 1995 A
5472795 Atita Dec 1995 A
5475528 LaBorde Dec 1995 A
5478456 Humpal et al. Dec 1995 A
5483613 Bruce et al. Jan 1996 A
5493177 Muller et al. Feb 1996 A
5498489 Dasgupta et al. Mar 1996 A
5499207 Mild et al. Mar 1996 A
5501918 Gruenstern et al. Mar 1996 A
5504041 Summerfelt Apr 1996 A
5512147 Bates et al. Apr 1996 A
5512387 Ovshinsky Apr 1996 A
5512389 Dasgupta et al. Apr 1996 A
5538796 Schaffer et al. Jul 1996 A
5540742 Sangyoji et al. Jul 1996 A
5547780 Kagawa et al. Aug 1996 A
5547782 Dasgupta et al. Aug 1996 A
5552242 Ovshinsky et al. Sep 1996 A
5555127 Abdelkader et al. Sep 1996 A
5561004 Bates et al. Oct 1996 A
5563979 Bruce et al. Oct 1996 A
5565071 Demaray et al. Oct 1996 A
5567210 Bates et al. Oct 1996 A
5569520 Bates Oct 1996 A
5582935 Dasgupta et al. Dec 1996 A
5591520 Migliorini et al. Jan 1997 A
5597660 Bates et al. Jan 1997 A
5597661 Takeuchi et al. Jan 1997 A
5599355 Nagasubramanian et al. Feb 1997 A
5601952 Dasgupta et al. Feb 1997 A
5603816 Demaray et al. Feb 1997 A
5607560 Hirabayashi et al. Mar 1997 A
5607789 Treger et al. Mar 1997 A
5612152 Bates Mar 1997 A
5612153 Moulton et al. Mar 1997 A
5613995 Bhandarkar et al. Mar 1997 A
5616933 Li Apr 1997 A
5618382 Mintz et al. Apr 1997 A
5625202 Chai Apr 1997 A
5637418 Brown et al. Jun 1997 A
5643480 Gustavsson et al. Jul 1997 A
5644207 Lew et al. Jul 1997 A
5645626 Edlund et al. Jul 1997 A
5645960 Scrosati et al. Jul 1997 A
5654054 Tropsha et al. Aug 1997 A
5654984 Hershbarger et al. Aug 1997 A
5658652 Sellergren Aug 1997 A
5660700 Shimizu et al. Aug 1997 A
5665490 Takeuchi et al. Sep 1997 A
5667538 Barley Sep 1997 A
5677784 Harris Oct 1997 A
5679980 Summerfelt Oct 1997 A
5681666 Treger et al. Oct 1997 A
5686360 Harvey, III et al. Nov 1997 A
5689522 Beach Nov 1997 A
5693956 Shi et al. Dec 1997 A
5702829 Paidassi et al. Dec 1997 A
5705293 Hobson Jan 1998 A
5716728 Smesko et al. Feb 1998 A
5718813 Drummond et al. Feb 1998 A
5719976 Henry et al. Feb 1998 A
5721067 Jacobs et al. Feb 1998 A
RE35746 Lake Mar 1998 E
5731661 So et al. Mar 1998 A
5738731 Shindo et al. Apr 1998 A
5742094 Ting Apr 1998 A
5755938 Fukui et al. May 1998 A
5755940 Shindo May 1998 A
5757126 Harvey, III et al. May 1998 A
5762768 Goy et al. Jun 1998 A
5763058 Isen et al. Jun 1998 A
5771562 Harvey et al. Jun 1998 A
5776278 Tuttle et al. Jul 1998 A
5779839 Tuttle et al. Jul 1998 A
5790489 O'Connor Aug 1998 A
5792550 Phillips et al. Aug 1998 A
5805223 Shikakura et al. Sep 1998 A
5811177 Shi et al. Sep 1998 A
5814195 Lehan et al. Sep 1998 A
5830330 Lantsman Nov 1998 A
5831262 Greywall et al. Nov 1998 A
5834137 Zhang et al. Nov 1998 A
5841931 Foresi et al. Nov 1998 A
5842118 Wood, Jr. Nov 1998 A
5845990 Hymer Dec 1998 A
5847865 Gopinath et al. Dec 1998 A
5849163 Ichikawa et al. Dec 1998 A
5851896 Summerfelt Dec 1998 A
5853830 McCaulley et al. Dec 1998 A
5855744 Halsey et al. Jan 1999 A
5856705 Ting Jan 1999 A
5864182 Matsuzaki Jan 1999 A
5865860 Delnick Feb 1999 A
5870273 Sogabe et al. Feb 1999 A
5874184 Takeuchi et al. Feb 1999 A
5882721 Delnick Mar 1999 A
5882946 Otani Mar 1999 A
5889383 Teich Mar 1999 A
5895731 Clingempeel Apr 1999 A
5897522 Nitan Apr 1999 A
5900057 Buchal et al. May 1999 A
5909346 Malhotra et al. Jun 1999 A
5916704 Lewin et al. Jun 1999 A
5923964 Li Jul 1999 A
5930046 Solberg et al. Jul 1999 A
5930584 Sun et al. Jul 1999 A
5942089 Sproul et al. Aug 1999 A
5948215 Lantsman Sep 1999 A
5948464 Delnick Sep 1999 A
5948562 Fulcher et al. Sep 1999 A
5952778 Haskal et al. Sep 1999 A
5955217 Van Lerberghe Sep 1999 A
5961672 Skotheim et al. Oct 1999 A
5961682 Lee et al. Oct 1999 A
5966491 DiGiovanni Oct 1999 A
5970393 Khorrami et al. Oct 1999 A
5973913 McEwen et al. Oct 1999 A
5977582 Fleming et al. Nov 1999 A
5982144 Johnson et al. Nov 1999 A
5985484 Young et al. Nov 1999 A
5985485 Ovshinsky et al. Nov 1999 A
6000603 Koskenmaki et al. Dec 1999 A
6001224 Drummond et al. Dec 1999 A
6004660 Topolski et al. Dec 1999 A
6007945 Jacobs et al. Dec 1999 A
6013949 Tuttle Jan 2000 A
6019284 Freeman et al. Feb 2000 A
6023610 Wood, Jr. Feb 2000 A
6024844 Drummond et al. Feb 2000 A
6025094 Visco et al. Feb 2000 A
6028990 Shahani et al. Feb 2000 A
6030421 Gauthier et al. Feb 2000 A
6033768 Muenz et al. Mar 2000 A
6042965 Nestler et al. Mar 2000 A
6045626 Yano et al. Apr 2000 A
6045652 Tuttle et al. Apr 2000 A
6045942 Miekka et al. Apr 2000 A
6046081 Kuo Apr 2000 A
6046514 Rouillard et al. Apr 2000 A
6048372 Mangahara et al. Apr 2000 A
6051114 Yao et al. Apr 2000 A
6051296 McCaulley et al. Apr 2000 A
6052397 Jeon et al. Apr 2000 A
6057557 Ichikawa May 2000 A
6058233 Dragone May 2000 A
6071323 Kawaguchi Jun 2000 A
6075973 Greeff et al. Jun 2000 A
6077106 Mish Jun 2000 A
6077642 Ogata et al. Jun 2000 A
6078791 Tuttle et al. Jun 2000 A
6080508 Dasgupta et al. Jun 2000 A
6080643 Noguchi et al. Jun 2000 A
6093944 VanDover Jul 2000 A
6094292 Goldner et al. Jul 2000 A
6096569 Matsuno et al. Aug 2000 A
6100108 Mizuno et al. Aug 2000 A
6106933 Nagai et al. Aug 2000 A
6110531 Paz de Araujo et al. Aug 2000 A
6115616 Halperin et al. Sep 2000 A
6117279 Smolanoff et al. Sep 2000 A
6118426 Albert et al. Sep 2000 A
6120890 Chen et al. Sep 2000 A
6129277 Grant et al. Oct 2000 A
6133670 Rodgers et al. Oct 2000 A
6137671 Staffiere Oct 2000 A
6144916 Wood, Jr. et al. Nov 2000 A
6146225 Sheats et al. Nov 2000 A
6148503 Delnick et al. Nov 2000 A
6156452 Kozuki et al. Dec 2000 A
6157765 Bruce et al. Dec 2000 A
6159635 Dasgupta et al. Dec 2000 A
6160373 Dunn et al. Dec 2000 A
6162709 Raoux et al. Dec 2000 A
6165566 Tropsha Dec 2000 A
6168884 Neudecker et al. Jan 2001 B1
6169474 Greeff et al. Jan 2001 B1
6175075 Shiotsuka et al. Jan 2001 B1
6176986 Watanabe et al. Jan 2001 B1
6181283 Johnson et al. Jan 2001 B1
6192222 Greeff et al. Feb 2001 B1
6197167 Tanaka Mar 2001 B1
6198217 Suzuki et al. Mar 2001 B1
6204111 Uemoto et al. Mar 2001 B1
6210544 Sasaki Apr 2001 B1
6210832 Visco et al. Apr 2001 B1
6214061 Visco et al. Apr 2001 B1
6214660 Uemoto et al. Apr 2001 B1
6218049 Bates et al. Apr 2001 B1
6220516 Tuttle et al. Apr 2001 B1
6223317 Pax et al. Apr 2001 B1
6228532 Tsuji et al. May 2001 B1
6229987 Greeff et al. May 2001 B1
6232242 Hata et al. May 2001 B1
6235432 Kono et al. May 2001 B1
6236793 Lawrence et al. May 2001 B1
6242128 Tura et al. Jun 2001 B1
6242129 Johnson Jun 2001 B1
6242132 Neudecker et al. Jun 2001 B1
6248291 Nakagama et al. Jun 2001 B1
6248481 Visco et al. Jun 2001 B1
6248640 Nam Jun 2001 B1
6249222 Gehlot Jun 2001 B1
6252564 Albert et al. Jun 2001 B1
6258252 Miyasaka et al. Jul 2001 B1
6261917 Quek et al. Jul 2001 B1
6264709 Yoon et al. Jul 2001 B1
6265111 Bito Jul 2001 B1
6265652 Kurata et al. Jul 2001 B1
6268695 Affinito Jul 2001 B1
6271053 Kondo Aug 2001 B1
6271793 Brady et al. Aug 2001 B1
6271801 Tuttle et al. Aug 2001 B2
6280585 Obinata et al. Aug 2001 B1
6280875 Kwak et al. Aug 2001 B1
6281142 Basceri et al. Aug 2001 B1
6284406 Xing et al. Sep 2001 B1
6287986 Mihara Sep 2001 B1
6289209 Wood, Jr. Sep 2001 B1
6290821 McLeod Sep 2001 B1
6290822 Fleming et al. Sep 2001 B1
6291098 Shibuya et al. Sep 2001 B1
6294722 Kondo et al. Sep 2001 B1
6296949 Bergstresser et al. Oct 2001 B1
6296967 Jacobs et al. Oct 2001 B1
6296971 Hara Oct 2001 B1
6300215 Shin Oct 2001 B1
6302939 Rabin et al. Oct 2001 B1
6306265 Fu et al. Oct 2001 B1
6316563 Naijo et al. Nov 2001 B2
6323416 Komori et al. Nov 2001 B1
6324211 Ovard et al. Nov 2001 B1
6325294 Tuttle et al. Dec 2001 B2
6329213 Tuttle et al. Dec 2001 B1
6339236 Tomii et al. Jan 2002 B1
6340880 Higashijima et al. Jan 2002 B1
6344366 Bates Feb 2002 B1
6344419 Forster et al. Feb 2002 B1
6344795 Gehlot Feb 2002 B1
6350353 Gopalraja et al. Feb 2002 B2
6351630 Wood, Jr. Feb 2002 B2
6356230 Greef et al. Mar 2002 B1
6356694 Weber Mar 2002 B1
6356764 Ovard et al. Mar 2002 B1
6358810 Dornfest et al. Mar 2002 B1
6360954 Barnardo Mar 2002 B1
6361662 Chiba et al. Mar 2002 B1
6365300 Ota et al. Apr 2002 B1
6365319 Heath et al. Apr 2002 B1
6368275 Sliwa et al. Apr 2002 B1
6369316 Plessing et al. Apr 2002 B1
6372383 Lee et al. Apr 2002 B1
6372386 Cho et al. Apr 2002 B1
6373224 Goto et al. Apr 2002 B1
6375780 Tuttle et al. Apr 2002 B1
6376027 Lee et al. Apr 2002 B1
6379835 Kucherovsky et al. Apr 2002 B1
6379842 Mayer Apr 2002 B1
6379846 Terahara et al. Apr 2002 B1
6380477 Curtin Apr 2002 B1
6384573 Dunn May 2002 B1
6387563 Bates May 2002 B1
6391166 Wang May 2002 B1
6392565 Brown May 2002 B1
6394598 Kaiser May 2002 B1
6395430 Cho et al. May 2002 B1
6396001 Nakamura May 2002 B1
6398824 Johnson Jun 2002 B1
6399241 Hara et al. Jun 2002 B1
6402039 Freeman et al. Jun 2002 B1
6402795 Chu et al. Jun 2002 B1
6402796 Johnson Jun 2002 B1
6409965 Nagata et al. Jun 2002 B1
6413284 Chu et al. Jul 2002 B1
6413285 Chu et al. Jul 2002 B1
6413382 Wang et al. Jul 2002 B1
6413645 Graff et al. Jul 2002 B1
6413676 Munshi Jul 2002 B1
6414626 Greef et al. Jul 2002 B1
6416598 Sircar Jul 2002 B1
6420961 Bates et al. Jul 2002 B1
6422698 Kaiser Jul 2002 B2
6423106 Bates Jul 2002 B1
6423776 Akkapeddi et al. Jul 2002 B1
6426163 Pasquier et al. Jul 2002 B1
6432577 Shul et al. Aug 2002 B1
6432584 Visco et al. Aug 2002 B1
6433380 Shin Aug 2002 B2
6433465 McKnight et al. Aug 2002 B1
6436156 Wandeloski et al. Aug 2002 B1
6437231 Kurata et al. Aug 2002 B2
6444336 Jia et al. Sep 2002 B1
6444355 Murai et al. Sep 2002 B1
6444368 Hikmet et al. Sep 2002 B1
6444750 Touhsaent Sep 2002 B1
6459418 Comiskey et al. Oct 2002 B1
6459726 Ovard et al. Oct 2002 B1
6466771 Wood, Jr. Oct 2002 B2
6475668 Hosokawa et al. Nov 2002 B1
6480699 Lovoi Nov 2002 B1
6481623 Grant et al. Nov 2002 B1
6485622 Fu Nov 2002 B1
6488822 Moslehi Dec 2002 B1
6494999 Herrera et al. Dec 2002 B1
6495283 Yoon et al. Dec 2002 B1
6497598 Affinito Dec 2002 B2
6500287 Azens et al. Dec 2002 B1
6503661 Park et al. Jan 2003 B1
6503831 Speakman Jan 2003 B2
6506289 Demaray et al. Jan 2003 B2
6511516 Johnson et al. Jan 2003 B1
6511615 Dawes et al. Jan 2003 B1
6517968 Johnson et al. Feb 2003 B2
6522067 Graff et al. Feb 2003 B1
6524466 Bonaventura et al. Feb 2003 B1
6524750 Mansuetto Feb 2003 B1
6525976 Johnson Feb 2003 B1
6528212 Kusumoto et al. Mar 2003 B1
6529827 Beason et al. Mar 2003 B1
6533907 Demaray et al. Mar 2003 B2
6537428 Xiong et al. Mar 2003 B1
6538211 St. Lawrence et al. Mar 2003 B2
6541147 McLean et al. Apr 2003 B1
6548912 Graff et al. Apr 2003 B1
6551745 Moutsios et al. Apr 2003 B2
6558836 Whitacre et al. May 2003 B1
6562513 Takeuchi et al. May 2003 B1
6563998 Farah et al. May 2003 B1
6569564 Lane May 2003 B1
6569570 Sonobe et al. May 2003 B2
6570325 Graff et al. May 2003 B2
6572173 Muller Jun 2003 B2
6573652 Graff et al. Jun 2003 B1
6576546 Gilbert et al. Jun 2003 B2
6579728 Grant et al. Jun 2003 B2
6582480 Pasquier et al. Jun 2003 B2
6582481 Erbil Jun 2003 B1
6582852 Gao et al. Jun 2003 B1
6589299 Missling et al. Jul 2003 B2
6593150 Ramberg et al. Jul 2003 B2
6599662 Chiang et al. Jul 2003 B1
6600905 Greeff et al. Jul 2003 B2
6602338 Chen et al. Aug 2003 B2
6603139 Tessler et al. Aug 2003 B1
6603391 Greeff et al. Aug 2003 B1
6605228 Kawaguchi et al. Aug 2003 B1
6608464 Lew et al. Aug 2003 B1
6608470 Oglesbee et al. Aug 2003 B1
6610440 LaFollette et al. Aug 2003 B1
6615614 Makikawa et al. Sep 2003 B1
6616035 Ehrensvard et al. Sep 2003 B2
6618829 Pax et al. Sep 2003 B2
6620545 Goenka et al. Sep 2003 B2
6622049 Penner et al. Sep 2003 B2
6632563 Krasnov et al. Oct 2003 B1
6637906 Knoerzer et al. Oct 2003 B2
6637916 Mullner Oct 2003 B2
6639578 Comiskey et al. Oct 2003 B1
6642895 Zurcher et al. Nov 2003 B2
6645675 Munshi Nov 2003 B1
6650000 Ballantine et al. Nov 2003 B2
6650942 Howard et al. Nov 2003 B2
6662430 Brady et al. Dec 2003 B2
6664006 Munshi Dec 2003 B1
6673484 Matsuura Jan 2004 B2
6673716 D'Couto et al. Jan 2004 B1
6674159 Peterson et al. Jan 2004 B1
6677070 Kearl Jan 2004 B2
6683244 Fujimori et al. Jan 2004 B2
6683749 Daby et al. Jan 2004 B2
6686096 Chung Feb 2004 B1
6693840 Shimada et al. Feb 2004 B2
6700491 Shafer Mar 2004 B2
6706449 Mikhaylik et al. Mar 2004 B2
6709778 Johnson Mar 2004 B2
6713216 Kugai et al. Mar 2004 B2
6713389 Speakman Mar 2004 B2
6713987 Krasnov et al. Mar 2004 B2
6723140 Chu et al. Apr 2004 B2
6730423 Einhart et al. May 2004 B2
6733924 Skotheim et al. May 2004 B1
6737197 Chu et al. May 2004 B2
6737789 Radziemski et al. May 2004 B2
6741178 Tuttle May 2004 B1
6750156 Le et al. Jun 2004 B2
6752842 Luski et al. Jun 2004 B2
6753108 Hampden-Smith et al. Jun 2004 B1
6753114 Jacobs et al. Jun 2004 B2
6760520 Medin et al. Jul 2004 B1
6764525 Whitacre et al. Jul 2004 B1
6768246 Pelrine et al. Jul 2004 B2
6768855 Bakke et al. Jul 2004 B1
6770176 Benson et al. Aug 2004 B2
6773848 Nortoft et al. Aug 2004 B1
6780208 Hopkins et al. Aug 2004 B2
6797428 Skotheim et al. Sep 2004 B1
6797429 Komatsu Sep 2004 B1
6805998 Jenson et al. Oct 2004 B2
6805999 Lee et al. Oct 2004 B2
6818356 Bates Nov 2004 B1
6822157 Fujioka Nov 2004 B2
6824922 Park et al. Nov 2004 B2
6827826 Demaray et al. Dec 2004 B2
6828063 Park et al. Dec 2004 B2
6828065 Munshi Dec 2004 B2
6830846 Kramlich et al. Dec 2004 B2
6835493 Zhang et al. Dec 2004 B2
6838209 Langan et al. Jan 2005 B2
6846765 Imamura et al. Jan 2005 B2
6852139 Zhang et al. Feb 2005 B2
6855441 Levanon Feb 2005 B1
6861821 Masumoto et al. Mar 2005 B2
6863699 Krasnov et al. Mar 2005 B1
6866901 Burrows et al. Mar 2005 B2
6866963 Seung et al. Mar 2005 B2
6869722 Kearl Mar 2005 B2
6884327 Pan et al. Apr 2005 B2
6886240 Zhang et al. May 2005 B2
6890385 Tsuchiya et al. May 2005 B2
6896992 Kearl May 2005 B2
6899975 Watanabe et al. May 2005 B2
6902660 Lee et al. Jun 2005 B2
6905578 Moslehi et al. Jun 2005 B1
6906436 Jenson et al. Jun 2005 B2
6911667 Pichler et al. Jun 2005 B2
6916679 Snyder et al. Jul 2005 B2
6921464 Krasnov et al. Jul 2005 B2
6923702 Graff et al. Aug 2005 B2
6924164 Jenson Aug 2005 B2
6929879 Yamazaki Aug 2005 B2
6936377 Wensley et al. Aug 2005 B2
6936381 Skotheim et al. Aug 2005 B2
6936407 Pichler Aug 2005 B2
6949389 Pichler et al. Sep 2005 B2
6955986 Li Oct 2005 B2
6962613 Jenson Nov 2005 B2
6962671 Martin et al. Nov 2005 B2
6964829 Utsugi et al. Nov 2005 B2
6982132 Goldner et al. Jan 2006 B1
6986965 Jenson et al. Jan 2006 B2
6994933 Bates Feb 2006 B1
7022431 Shchori et al. Apr 2006 B2
7033406 Weir et al. Apr 2006 B2
7045246 Simburger et al. May 2006 B2
7045372 Ballantine et al. May 2006 B2
7056620 Krasnov et al. Jun 2006 B2
7073723 Furst et al. Jul 2006 B2
7095372 Soler Castany et al. Aug 2006 B2
7129166 Speakman Oct 2006 B2
7131189 Jenson Nov 2006 B2
7144654 LaFollette et al. Dec 2006 B2
7144655 Jenson et al. Dec 2006 B2
7157187 Jenson Jan 2007 B2
7158031 Tuttle Jan 2007 B2
7162392 Vock et al. Jan 2007 B2
7183693 Brantner et al. Feb 2007 B2
7186479 Krasnov et al. Mar 2007 B2
7194801 Jenson et al. Mar 2007 B2
7198832 Burrows et al. Apr 2007 B2
7202825 Leizerovich et al. Apr 2007 B2
7220517 Park et al. May 2007 B2
7230321 McCain Jun 2007 B2
7247408 Skotheim et al. Jul 2007 B2
7253494 Mino et al. Aug 2007 B2
7265674 Tuttle Sep 2007 B2
7267904 Komatsu et al. Sep 2007 B2
7267906 Mizuta et al. Sep 2007 B2
7273682 Park et al. Sep 2007 B2
7274118 Jenson et al. Sep 2007 B2
7288340 Iwamoto Oct 2007 B2
7316867 Park et al. Jan 2008 B2
7323634 Speakman Jan 2008 B2
7332363 Edwards Feb 2008 B2
7335441 Luski et al. Feb 2008 B2
RE40137 Tuttle et al. Mar 2008 E
7345647 Rodenbeck Mar 2008 B1
7348099 Mukai et al. Mar 2008 B2
7389580 Jenson et al. Jun 2008 B2
7400253 Cohen Jul 2008 B2
7410730 Bates Aug 2008 B2
RE40531 Graff et al. Oct 2008 E
7466274 Lin et al. Dec 2008 B2
7468221 LaFollette et al. Dec 2008 B2
7494742 Tamowski et al. Feb 2009 B2
7648537 Harada et al. Jan 2010 B2
7670724 Chan et al. Mar 2010 B1
7848715 Boos Dec 2010 B2
7858223 Visco et al. Dec 2010 B2
7998622 Inda Aug 2011 B2
8010048 Brommer et al. Aug 2011 B2
8056814 Martin et al. Nov 2011 B2
8293389 Tsuchida Oct 2012 B2
20010005561 Yamada et al. Jun 2001 A1
20010016290 Kezuka Aug 2001 A1
20010027159 Kaneyoshi Oct 2001 A1
20010031122 Lackritz et al. Oct 2001 A1
20010032666 Jenson et al. Oct 2001 A1
20010033952 Jenson et al. Oct 2001 A1
20010034106 Moise et al. Oct 2001 A1
20010041294 Thu et al. Nov 2001 A1
20010041460 Wiggins Nov 2001 A1
20010052752 Ghosh et al. Dec 2001 A1
20010054437 Komori et al. Dec 2001 A1
20010055719 Akashi et al. Dec 2001 A1
20020000034 Jenson Jan 2002 A1
20020001746 Jenson Jan 2002 A1
20020001747 Jenson et al. Jan 2002 A1
20020004167 Jenson et al. Jan 2002 A1
20020009630 Gao et al. Jan 2002 A1
20020019296 Freeman et al. Feb 2002 A1
20020028377 Gross Mar 2002 A1
20020033330 Demaray et al. Mar 2002 A1
20020037756 Jacobs et al. Mar 2002 A1
20020066539 Muller Jun 2002 A1
20020067615 Muller Jun 2002 A1
20020071989 Verma et al. Jun 2002 A1
20020076133 Li et al. Jun 2002 A1
20020091929 Ehrensvard Jul 2002 A1
20020093029 Ballantine et al. Jul 2002 A1
20020106297 Ueno et al. Aug 2002 A1
20020110733 Johnson Aug 2002 A1
20020115252 Haukka et al. Aug 2002 A1
20020124386 Hosoya et al. Sep 2002 A1
20020134671 Demaray et al. Sep 2002 A1
20020139662 Lee Oct 2002 A1
20020140103 Kloster et al. Oct 2002 A1
20020159245 Murasko et al. Oct 2002 A1
20020161404 Schmidt Oct 2002 A1
20020164441 Amine et al. Nov 2002 A1
20020170821 Sandlin et al. Nov 2002 A1
20020170960 Ehrensvard et al. Nov 2002 A1
20030019326 Han et al. Jan 2003 A1
20030022487 Yoon et al. Jan 2003 A1
20030024994 Ladyansky Feb 2003 A1
20030029493 Plessing Feb 2003 A1
20030030589 Zurcher et al. Feb 2003 A1
20030035906 Memarian et al. Feb 2003 A1
20030036003 Shchori et al. Feb 2003 A1
20030042131 Johnson Mar 2003 A1
20030044665 Rastegar et al. Mar 2003 A1
20030048635 Knoerzer et al. Mar 2003 A1
20030054252 Kusumoto et al. Mar 2003 A1
20030063883 Demaray et al. Apr 2003 A1
20030064292 Neudecker et al. Apr 2003 A1
20030068559 Armstrong et al. Apr 2003 A1
20030076642 Shiner et al. Apr 2003 A1
20030077914 Le et al. Apr 2003 A1
20030079838 Brcka May 2003 A1
20030091904 Munshi May 2003 A1
20030095463 Shimada et al. May 2003 A1
20030097858 Strohhofer et al. May 2003 A1
20030109903 Berrang et al. Jun 2003 A1
20030127319 Demaray et al. Jul 2003 A1
20030134054 Demaray et al. Jul 2003 A1
20030141186 Wang et al. Jul 2003 A1
20030143853 Celii et al. Jul 2003 A1
20030146877 Mueller Aug 2003 A1
20030152829 Zhang et al. Aug 2003 A1
20030162094 Lee et al. Aug 2003 A1
20030173207 Zhang et al. Sep 2003 A1
20030173208 Pan et al. Sep 2003 A1
20030174391 Pan et al. Sep 2003 A1
20030175142 Milonopoulou et al. Sep 2003 A1
20030178623 Nishiki et al. Sep 2003 A1
20030178637 Chen et al. Sep 2003 A1
20030180610 Felde et al. Sep 2003 A1
20030185266 Henrichs Oct 2003 A1
20030231106 Shafer Dec 2003 A1
20030232248 Iwamoto et al. Dec 2003 A1
20040008587 Siebott et al. Jan 2004 A1
20040015735 Norman Jan 2004 A1
20040023106 Benson et al. Feb 2004 A1
20040028875 Van Rijn et al. Feb 2004 A1
20040029311 Snyder et al. Feb 2004 A1
20040038050 Saijo et al. Feb 2004 A1
20040043557 Haukka et al. Mar 2004 A1
20040048157 Neudecker et al. Mar 2004 A1
20040058237 Higuchi et al. Mar 2004 A1
20040072067 Minami et al. Apr 2004 A1
20040077161 Chen et al. Apr 2004 A1
20040078662 Hamel et al. Apr 2004 A1
20040081415 Demaray et al. Apr 2004 A1
20040081860 Hundt et al. Apr 2004 A1
20040085002 Pearce May 2004 A1
20040101761 Park et al. May 2004 A1
20040105644 Dawes Jun 2004 A1
20040106038 Shimamura et al. Jun 2004 A1
20040106045 Ugaji et al. Jun 2004 A1
20040106046 Inda Jun 2004 A1
20040118700 Schierle-Arndt et al. Jun 2004 A1
20040126305 Chen et al. Jul 2004 A1
20040151986 Park et al. Aug 2004 A1
20040161640 Salot Aug 2004 A1
20040175624 Luski et al. Sep 2004 A1
20040188239 Robison et al. Sep 2004 A1
20040209159 Lee et al. Oct 2004 A1
20040212276 Brantner et al. Oct 2004 A1
20040214079 Simburger et al. Oct 2004 A1
20040219434 Benson et al. Nov 2004 A1
20040245561 Sakashita et al. Dec 2004 A1
20040258984 Ariel et al. Dec 2004 A1
20040259305 Demaray et al. Dec 2004 A1
20050000794 Demaray et al. Jan 2005 A1
20050006768 Narasimhan et al. Jan 2005 A1
20050048802 Zhang et al. Mar 2005 A1
20050070097 Barmak et al. Mar 2005 A1
20050072458 Goldstein Apr 2005 A1
20050079418 Kelley et al. Apr 2005 A1
20050095506 Klaassen May 2005 A1
20050105231 Hamel et al. May 2005 A1
20050107239 Akiba et al. May 2005 A1
20050110457 LaFollette et al. May 2005 A1
20050112461 Amine et al. May 2005 A1
20050118464 Levanon Jun 2005 A1
20050130032 Krasnov et al. Jun 2005 A1
20050133361 Ding et al. Jun 2005 A1
20050141170 Honda et al. Jun 2005 A1
20050142447 Nakai et al. Jun 2005 A1
20050147877 Tamowski et al. Jul 2005 A1
20050158622 Mizuta et al. Jul 2005 A1
20050170736 Cok Aug 2005 A1
20050175891 Kameyama et al. Aug 2005 A1
20050176181 Burrows et al. Aug 2005 A1
20050181280 Ceder et al. Aug 2005 A1
20050183946 Pan et al. Aug 2005 A1
20050189139 Stole Sep 2005 A1
20050208371 Kim et al. Sep 2005 A1
20050239917 Nelson et al. Oct 2005 A1
20050255828 Fisher Nov 2005 A1
20050266161 Medeiros et al. Dec 2005 A1
20060019504 Taussig Jan 2006 A1
20060021214 Jenson et al. Feb 2006 A1
20060021261 Face Feb 2006 A1
20060040177 Onodera et al. Feb 2006 A1
20060046907 Rastegar et al. Mar 2006 A1
20060054496 Zhang et al. Mar 2006 A1
20060057283 Zhang et al. Mar 2006 A1
20060057304 Zhang et al. Mar 2006 A1
20060063074 Jenson et al. Mar 2006 A1
20060071592 Narasimhan et al. Apr 2006 A1
20060155545 Jayne Jul 2006 A1
20060201583 Michaluk et al. Sep 2006 A1
20060210779 Weir et al. Sep 2006 A1
20060222954 Skotheim et al. Oct 2006 A1
20060234130 Inda Oct 2006 A1
20060237543 Goto et al. Oct 2006 A1
20060255435 Fuergut et al. Nov 2006 A1
20060286448 Snyder et al. Dec 2006 A1
20070009802 Lee et al. Jan 2007 A1
20070021156 Hoong et al. Jan 2007 A1
20070023275 Tanase et al. Feb 2007 A1
20070037058 Visco et al. Feb 2007 A1
20070053139 Zhang et al. Mar 2007 A1
20070087230 Jenson et al. Apr 2007 A1
20070091543 Gasse et al. Apr 2007 A1
20070125638 Zhang et al. Jun 2007 A1
20070141468 Barker Jun 2007 A1
20070148065 Weir et al. Jun 2007 A1
20070148553 Weppner Jun 2007 A1
20070151661 Mao et al. Jul 2007 A1
20070164376 Burrows et al. Jul 2007 A1
20070166612 Krasnov et al. Jul 2007 A1
20070184345 Neudecker et al. Aug 2007 A1
20070196682 Visser et al. Aug 2007 A1
20070202395 Snyder et al. Aug 2007 A1
20070205513 Brunnbauer et al. Sep 2007 A1
20070210459 Burrows et al. Sep 2007 A1
20070222681 Greene et al. Sep 2007 A1
20070224951 Gilb et al. Sep 2007 A1
20070229228 Yamazaki et al. Oct 2007 A1
20070235320 White et al. Oct 2007 A1
20070259270 Inda et al. Nov 2007 A1
20070264564 Johnson et al. Nov 2007 A1
20070278653 Brunnbauer et al. Dec 2007 A1
20070298326 Angell et al. Dec 2007 A1
20080003496 Neudecker et al. Jan 2008 A1
20080008936 Mizuta et al. Jan 2008 A1
20080014501 Skotheim et al. Jan 2008 A1
20080057397 Skotheim et al. Mar 2008 A1
20080150829 Lin et al. Jun 2008 A1
20080213672 Skotheim et al. Sep 2008 A1
20080233708 Hisamatsu Sep 2008 A1
20080254575 Fuergut et al. Oct 2008 A1
20080261107 Snyder et al. Oct 2008 A1
20080263855 Li et al. Oct 2008 A1
20080286651 Neudecker et al. Nov 2008 A1
20090068563 Kanda et al. Mar 2009 A1
20090081554 Takada et al. Mar 2009 A1
20090092903 Johnson Apr 2009 A1
20090124201 Meskens May 2009 A1
20090181303 Neudecker et al. Jul 2009 A1
20090197172 Inda Aug 2009 A1
20090197281 Fremont et al. Aug 2009 A1
20090202903 Chiang Aug 2009 A1
20090274832 Inda Nov 2009 A1
20090302226 Schieber et al. Dec 2009 A1
20090308936 Nitzan et al. Dec 2009 A1
20090312069 Peng et al. Dec 2009 A1
20100001079 Martin et al. Jan 2010 A1
20100032001 Brantner Feb 2010 A1
20100086853 Venkatachalam et al. Apr 2010 A1
20100112456 Kimura et al. May 2010 A1
20100273056 Kanda et al. Oct 2010 A1
20100285341 Yun et al. Nov 2010 A1
20110129723 Tsuchida Jun 2011 A1
20110212382 Randall et al. Sep 2011 A1
20110267235 Brommer et al. Nov 2011 A1
20110304430 Brommer et al. Dec 2011 A1
20130189562 Dolle et al. Jul 2013 A1
Foreign Referenced Citations (149)
Number Date Country
1415124 Apr 2003 CN
1532984 Sep 2004 CN
1918727 Feb 2007 CN
101385164 Mar 2009 CN
101401232 Apr 2009 CN
101595590 Dec 2009 CN
10 2005 014 427 Sep 2006 DE
10 2006 054 309 May 2008 DE
10 2008 016 665 Oct 2008 DE
10 2007 030604 Jan 2009 DE
0 510 883 Oct 1992 EP
0 639 655 Feb 1995 EP
0 652 308 May 1995 EP
0 820 088 Jan 1998 EP
0 867 985 Sep 1998 EP
1 068 899 Jan 2001 EP
1 092 689 Apr 2001 EP
1 189 080 Mar 2002 EP
1 713 024 Oct 2006 EP
2131421 Dec 2009 EP
2214248 Aug 2010 EP
2806198 Sep 2001 FR
2 861 218 Apr 2005 FR
19824145 Dec 1999 JE
S55009305 Jan 1980 JP
S56076060 Jun 1981 JP
S56156675 Dec 1981 JP
S6068558 Apr 1985 JP
S61269072 Nov 1986 JP
S62267944 Nov 1987 JP
S63290922 Nov 1988 JP
02054764 Jan 1990 JP
02230662 Sep 1990 JP
H03036962 Feb 1991 JP
04058456 Feb 1992 JP
04072049 Mar 1992 JP
H06010127 Jan 1994 JP
H06100333 Apr 1994 JP
H7224379 Aug 1995 JP
H7233469 Sep 1995 JP
H08114408 May 1996 JP
H10026571 Jan 1998 JP
H10239187 Sep 1998 JP
11-204088 Jul 1999 JP
2000-144435 May 2000 JP
2000162234 Jun 2000 JP
2000-188099 Jul 2000 JP
2000-268867 Sep 2000 JP
2000340257 Dec 2000 JP
2001015162 Jan 2001 JP
2001171812 Jun 2001 JP
2001-259494 Sep 2001 JP
2001-297764 Oct 2001 JP
2001-328198 Nov 2001 JP
2002026412 Jan 2002 JP
2002140776 May 2002 JP
2002-344115 Nov 2002 JP
2003-17040 Jan 2003 JP
2003-347045 Dec 2003 JP
2004-071305 Mar 2004 JP
2004-149849 May 2004 JP
2004-158268 Jun 2004 JP
2004213938 Jul 2004 JP
2004-273436 Sep 2004 JP
2005078985 Mar 2005 JP
2005-256101 Sep 2005 JP
2007107752 Apr 2007 JP
2007094641 Aug 2007 JP
2008091328 Apr 2008 JP
2008103283 May 2008 JP
2008270137 Nov 2008 JP
2009176541 Aug 2009 JP
2009193802 Aug 2009 JP
201090003 Apr 2010 JP
2013514308 Apr 2013 JP
20020007881 Jan 2002 KR
20020017790 Mar 2002 KR
20020029813 Apr 2002 KR
20020038917 May 2002 KR
20030033913 May 2003 KR
20030042288 May 2003 KR
20030085252 Nov 2003 KR
2241281 Nov 2004 RU
1995013629 May 1995 WO
1996023085 Aug 1996 WO
1996023217 Aug 1996 WO
1997027344 Jul 1997 WO
1997035044 Sep 1997 WO
1998047196 Oct 1998 WO
1999043034 Aug 1999 WO
1999057770 Nov 1999 WO
2000021898 Apr 2000 WO
2000022742 Apr 2000 WO
2000028607 May 2000 WO
2000036665 Jun 2000 WO
2000060682 Oct 2000 WO
2000060689 Oct 2000 WO
2000062365 Oct 2000 WO
2001001507 Jan 2001 WO
2001017052 Mar 2001 WO
2001024303 Apr 2001 WO
2001033651 May 2001 WO
2001039305 May 2001 WO
2001073864 Oct 2001 WO
2001073865 Oct 2001 WO
2001073866 Oct 2001 WO
2001073868 Oct 2001 WO
2001073870 Oct 2001 WO
2001073883 Oct 2001 WO
2001073957 Oct 2001 WO
2001082390 Nov 2001 WO
2002012932 Feb 2002 WO
2002042516 May 2002 WO
2002045187 Jun 2002 WO
2002071506 Sep 2002 WO
2002101857 Dec 2002 WO
2003003485 Jan 2003 WO
2003005477 Jan 2003 WO
2003026039 Mar 2003 WO
2003036670 May 2003 WO
2003069714 Aug 2003 WO
2003080325 Oct 2003 WO
2003083166 Oct 2003 WO
2004012283 Feb 2004 WO
2004021532 Mar 2004 WO
2004061887 Jul 2004 WO
2004077519 Sep 2004 WO
2004086550 Oct 2004 WO
2004093223 Oct 2004 WO
2004106581 Dec 2004 WO
2004106582 Dec 2004 WO
2005008828 Jan 2005 WO
2005013394 Feb 2005 WO
2005038957 Apr 2005 WO
2005067645 Jul 2005 WO
2005085138 Sep 2005 WO
2005091405 Sep 2005 WO
2006063308 Jun 2006 WO
2006085307 Aug 2006 WO
2007016781 Feb 2007 WO
2007019855 Feb 2007 WO
2007027535 Mar 2007 WO
2007095604 Aug 2007 WO
2007105869 Sep 2007 WO
2008036731 Mar 2008 WO
2008099656 Aug 2008 WO
2009048263 Apr 2009 WO
2009063747 May 2009 WO
2011101603 Aug 2011 WO
Non-Patent Literature Citations (156)
Entry
Abraham, K.M. et al., “Inorganic-organic composite solid polymer electrolytes,” 147(4) J. Electrochem. Soc. 1251-56 (2000).
Abrahams, I., “Li6Zr207 , a new anion vacancy ccp based structure, determined by ab initio powder diffraction methods,” 104 J. Solid State Chem. 397-403 (1993).
Affinito, J.D. et al., “PML/oxide/PML barrier layer performance differences arising from use of UV or electron beam polymerization of the PML layers,” Thin Solid Films 308-309: 19-25 (1997).
Affinito, J.D. et al., “Polymer-oxide transparent barrier layers,” Society of Vacuum Coaters, 39th Ann. Technical Conference Proceedings, May 5-10, 1996, Philadelphia, PA, pp. 392-397 (1996).
Alder, T. et al., “High-efficiency fiber-to-chip coupling using low-loss tapered single-mode fiber,” IEEE Photonics Tech. Lett. 12(8): 1016-1018 (2000).
Almeida, V.R. et al., “Nanotaper for compact mode conversion,” Optics Letters 28(15): 1302-1304 (2003).
Amatucci, G. et al., “Lithium scandium phosphate-based electrolytes for solid state lithium rechargeable nicrobatteries,” 60 Solid State Ionics 357-65 (1993).
Anh et al., “Significant Suppression of Leakage Current in (Ba,Sr)Ti03 Thin Films by Ni or Mn Doping,” J. Appl. Phys.,92(5): 2651-2654 (Sep. 2002).
Appetecchi, G.B. et al., “Composite polymer electrolytes with improved lithium metal electrode interfacial properties,” 145(12) J. Electrochem. Soc. 4126-32 (1998).
Asghari, M. and Dawnay, E., “Asoct™—a manufacturing integrated optics technology,” SPIE 3620: 252-262 (Jan. 1999).
Barbier, D. et al., “Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photonics Tech. Lett. 9:315-317 (1997).
Barbier, D., “Performances and potential applications of erbium doped planar waveguide amplifiers and lasers,” Proc. OAA, Victoria, BC, Canada, pp. 58-63 (Jul. 21-23, 1997).
Bates et al., “Thin-Fim Lithium Batteries” in New Trends in Electrochemical Technology: Energy Storage Systems for Electronics (T. Osaka & M. Datta eds. Gordon and Breach 2000).
Bates, J.B. et al., “Electrical properties of amorphous lithium electrolyte thin films,” 53-56 Solid State Ionics 647-54 (1992).
Beach R.J., “Theory and optimization oflens ducts,” Applied Optics 35(12): 2005-2015 (1996).
Belkind, A. et al., “Pulsed-DC Reactive Sputtering of Dielectrics: Pulsing Parameter Effects,” 43rd Annual Technical Conference Proceedings (2000).
Belkind, A. et al., “Using pulsed direct current power for reactive sputtering of Al203,” J. Vac. Sci. Technol. A 17(4): 1934-1940 (1999).
Bestwick, T., “ASOC™ silicon integrated optics technology,” SPIE 3631: 182-190 (1999).
Borsella, E. et al., “Structural incorporation of silver in soda-lime glass by the ion-exchange process: a photoluminescence spectroscopy study,” Applied Physics A 71: 125-132 (2000).
Byer, R.L., “Nonlinear optics and solid-state lasers: 2000,” IEEE J. Selected Topics in Quantum Electronics 6(6): 911-930 (2000).
Campbell, S.A. et al., “Titanium dioxide (Ti02)-based gate insulators,” IBM J. Res. Develop. 43(3): 383-392 (1999).
Chang, C.Y. and Sze, S.M. (eds.), in ULSI Technology, The McGraw-Hill Companies, Inc., New York, Chapter 4, pp. 169-170 and 226-231 (1996).
Chen, G. et al., “Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells,” J. Electrochemical Society 149(8): A1092-A1099 (2002).
Choi, Y.B. et al., “Er-Al-codoped silicate planar light waveguide-type amplifier fabricated by radio-frequency sputtering,” Optics Letters 25(4): 263-265 (2000).
Choy et al., “Eu-Doped Y203 Phosphor Films Produced by Electrostatic-Assisted Chemical Vapor Deposition,” J. Mater. Res. 14(7): 3111-3114 (Jul. 1999).
Cocorullo, G. et al., “Amorphous silicon waveguides and light modulators for integrated photonics realized by low-emperature plasma-enhanced chemical-vapor deposition,” Optics Lett. 21(24): 2002-2004 (1996).
Cooksey, K. et al., “Predicting permeability & Transmission rate for multilayer materials,” Food Technology 53(9): 60-63 (1999).
Crowder, M.A. et al., “Low-temperature single-crystal Si TFTs fabricated on Si films processed via sequential lateral solidification,” IEEE Electron Device Lett. 19(8): 306-308 (1998).
Delavaux, J-M. et al., “Integrated optics erbium ytterbium amplifier system in 10Gb/s fiber transmission experiment,” 22nd European Conference on Optical Communication, Osla, I.123-I.126 (1996).
Delmas, C. et al., “Des conducteurs ioniques pseudo-bidimensionnels Li8M06 (M=Zr, Sn), Li7L06 (L=Nb, Ta) et Li61n206 ,” 14 Mat. Res. Bull. 619-25 (1979).
Distributed Energy Resources: Fuel Cells, Projects, 4 pages http://www.eere.energy.gov/der/fuel_cells/projects.html (2003).
Dorey, R.A., “Low temperature micrornoulding of functional ceramic devices,” Grant summary for Gr/S84156/01 for the UK Engineering and Physical Sciences Research Council, 2 pages (2004).
DuPont Teijin Films, Mylar 200 SBL 300, Product Information, 4 pages (2000).
Electrometals Technologies Limited, Financial Report for 2002, Corporate Directory, Chairman's review, Review of Operations, 10 pages (2002).
E-Tek website: FAQ, Inside E-Tek, E-TEk News, Products; http://www.etek-inc.corni, 10 pages (2003).
Flytzanis, C. et al., “Nonlinear optics in composite materials,” in Progress in Optics XXIX, Elsevier Science Publishers B.V., pp. 323-425 (1991).
Frazao, 0. et al., “EDFA gain flattening using long-period fibre gratings based on the electric arc technique,” Proc. London Comm. Symp. 2001, London, England, 3 pages (2001).
Fujii, M. et al., “1.54 pm photoluminescence of Er.'+ doped into Si02 films containing Si nanocrystals: evidence for energy transfer from Si nanocrystals for Er3+,” Appl. Phys. Lett. 71(9): 1198-1200 (1997).
Garcia, C. et al., “Size dependence of lifetime and absorption cross section of Si nanocrystals embedded in Si02,” Appl. Phys. Lett. 82(10): 1595-1597 (2003).
Goossens, A. et al., “Sensitization of TiO2 with p-type semiconductor polymers,” Chem. Phys. Lett 287: 148 (1998).
Greene, J.E. et al., “Morphological and electrical properties ofrf sputtered Y20rdoped Zr02 thin films,” J. Vac. Sd. Tech. 13(1): 72-75 (1976).
Han, H.-S. et al., “Optical gain at 1.54 μm in Erbium-doped Silicon nanoclusler sensitized waveguide,” Appl. Phys. Lett, 79(27): 4568-4570 (2001).
Hayakawa, T. et al., “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Crystalline Solids 259: 16-22 (1999).
Hayakawa, T. et al., “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped Si0 glass,” App. Phys. Lett. 74(11): 1513-1515 (1999).
Hayfield, P.C.S., I Development of a New Material-Monolithic Ti407 Ebonix® Ceramic, Royal Society of Chemistry, Cambridge, Table of Contents, 4 pages (2002).
Hehlen, M.P. et al., “Spectroscopic properties of Er-'+_ and Yb_H_doped soda-lime silicate and aluminosilicate glasses,” Physical Review B 56(15): 9302-9318 (1997).
Hehlen, M.P. et al., “Uniform upconversion in high-concentration Er3+-doped soda lime silicate and aluminosilicate Masses,” Optics Letters 22(11); 772-774 (1997).
Horst, F. et al., “Compact, tunable optical devices in silicon-oxynitride waveguide technology,” Top. Meeting Integrated Photonics Res. '00, Quebec, Canada, p. IThFl, 3 pages (2000).
Howson, R.P., “The reactive sputtering of oxides and nitrides,” Pure & Appl. Chem. 66(6): 1311-1318 (1994).
Hu, Y-W. et al., “Ionic conductivity oftithium phosphate-doped lithium orthosilicate,” 11 Mat. Res. Bull. 1227-30 (1976).
Balanis, Constantine A., “Antenna Theory: Analysis and Design,” 3rd Ed., pp. 817-820 (John Wiley & Sons, Inc. Publication, 2005).
Inaguma, Yoshiyuki, “High Ionic Conductivity in Lithium Lanthanum Titanate,” Solid State Communications,vol. 86, No. 10, pp. 689-693 (1993).
Guy, D., “Novel Architecture of Composite Electrode for Optimization of Lithium Battery Performance,” Journal of Power Sources 157, pp. 438-442 (2006).
Wolfenstine, J., “Electrical Conductivity and Charge Compensation in Ta Doped Li4Ti5012,” Journal of Power Sources 180, pp. 582-585 (2008).
Balanis, Constantine A., “Antenna Theory: Analysis and Design,” 3rd Ed., pp. 811-820 (2005).
Jones and Akridge, “A thin film solid state microbattery,” Solid State Ionics 53-56 (1992), pp. 628-634.
Ramaswamy, R.V. et al., “Ion-Exchange Glass Waveguides: A Review,” J. Lightwave Technology 6(6): 984-1002 (1988).
Roberts, S.W. et al., “The Photoluminescence of Erbium-doped Silicon Monoxide,” University of Southampton , Department of Electronics and Computer Science Research Journal, 7 pages (1996).
Saha et al., “Large Reduction of Leakage Current by Graded-Layer La Doping in (Ba0.5,Sr0.5)TiO3 Thin Films,” Appl. Phys. Lett. 79(1): 111-113 (Jul. 2001).
Sanyo Vacuum Industries Co., Ltd. Products Inky, Ti02 ,(2003), 1 page, http://www.sanyovac.co.jp/Englishweb/products?ETi02.htm.
Sarro, P., “Silicon Carbide as a New Mems Technology,” Sensors and Actuators 82, 210-218 (2000).
Schermer, R. et al., “Investigation of Mesa Dielectric Waveguides,” Proceedings of the OSA Integrated Photonics Research Topical Meeting and Exhibit, Paper No. IWB3, 3 pages (2001).
Schiller, S. et al., “PVD Coating of Plastic Webs and Sheets with High Rates on Large Areas,” European Materials Research Society 1999 Spring Meeting, Jun. 1-4, 1999, Strasbourg, France, 13 pages (1999).
Scholder, V. et al., “Uber Zirkonate, Hafuate und Thorate von Barium, Strontium, Lithium und Natrium,” Zeitschrift ffu Anorganische und Allgemeine Chemie, Band 362, pp. 149-168 (1968).
Scholl, R., “Power Supplies for Pulsed Plasma Technologies: State-of-the-Art and Outlook,” Advances Energy ndustries, Inc. 1-8 (1999).
Scholl, R., “Power Systems for Reactive Sputtering of Insulating Films,” Advances Energy Industries, Inc., 1-8 (Aug. 2001).
Second International Symposium of Polymer Surface Modification: Relevance to Adhesion, Preliminary Program, 13 pages (1999).
Seventh International Conference on T102 Photocatalysis: Fundamentals & Applications, Toronto, Ontario, Canada, Final Program, 7 pages (Nov. 17-21, 2002).
Sewell, P. et al., “Rib Waveguide Spot-Size Transformers: Modal Properties,” J Lightwave Technology 17(5):848-856 (1999).
Shaw, D.G. et al., “Use of Vapor Deposited Acrylate Coatings to Improve the Barrier Properties of Metallized Film,” Society of Vacuum Coaters, 37th Annual Technical Conference Proceedings, pp. 240-244 (1994).
Shin, J.C. et al. “Dielectric and Electrical Properties of Sputter Grown (Ba,Se)Ti03 Thin Films,” J. Appl. Phys. 86 (1):506-513 (1999).
Shmulovich, J. et al., “Recent progress in Erbium-doped waveguide amplifiers,” Bell Laboratories, pp. 35-37 (1999).
Slooff, L.H. et al., “Optical properties of Erbium-doped organic polydentate cage complexes,” J. Appl. Phys. 83 (1):497-503 (1998).
Smith, R.E. et al., “Reduced Coupling Loss Using a Tapered-Rib Adiabatic-Following Fiber Coupler,” IEEE Photonics Technology Lett. 8(8): 1052-1054 (1996).
Snoeks, E. et al., “Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides,” J. Opt. Soc. Am. B 12(8): 1468-1474 (1995).
Stamer “Human-Powered Wearable Computing” 35(3&4) IBM Sys. J. 618-29 (1996)[1].
Strohhofer, C. and Polman, A. “Energy transfer to ErH in Ag ion-exchanged glass,” FOM Institute for Atomic and Molecular Physics, 10 pages (2001).
Sugiyama, A. et al., “Gas Permeation Through the Pinholes of Plastic Film Laminated with Aluminum Foil,” Vuoto XXVIII(I-2):51-54 (1999).
Tervonen, A. “Challenges and opportunities for integrated optics in optical networks,” SPIE 3620:2-11 (1999).
Ting, C.Y. et al., “Study of planarized sputter-deposited Si02” J. Vac. Sci Technol, 15(3): 1105-1112 (1978).
Tomaszewski, H. et al., “Yttria-stabilized zirconia thin films grown by reactive r.f. magnetron sputtering,” Thin Solid Films 287: 104-109 (1996).
Triechel, 0. and Kirchhoff, V., “The influence of pulsed magnetron sputtering on topography and crystallinity of Ti02 films on glass,” Surface and Coating Technology 123:268-272 (2000).
Tukamoto, H. and West, A.R., “Electronic Conductivity of LiCoOs and Its Enhancement by Magnesium Doping,” J. Electrochem. Soc 144(9):3164-3168 (1997).
Van Dover, R.B., “Amorphous Lanthanide-Doped TiOx Dielectric Films,” Appl. Phys. Lett. 74(20):3041-3043 (1999).
Viljanen, J. and Leppihalme, M., “Planar Optical Coupling Elements for Muttimode Fibers with Two-Step Ion Migration Process,” Applied Physics 24(1):61-63 (1981).
Villegas, M.A. et al., “Optical spectroscopy of a soda lime glass exchanged with silver,” Phys. Chem. Glasses 37 (6):248-253 (1996).
Lee, Jong min et. al., “Study on the LLT Solid Electrolyte Thin Film with LiPON Interlayer Intervening Between LLT and Electrodes,” Journal of Power Sources 163:173-179 (2006).
Morirnoto, Hideyuki et al., Preparation of High Lithium Ion Conductive Glass-ceramics Solid Electrolytes in the LiTi2 (PO4)3 System by the Mechanochemical Method and Their Application as Coating Materials of LiCoO2, Key Engineering Materials 388:77-80 (2009).
Kobayashi, Y. et al., “All-Solid-State Lithium Secondary Battery witwithCerarnic/Polvmer Composite Electrolyte,” Solid State Ionics 1 52-153: 137-142 (2002).
Minami, Keiichi et al., “Characterization of Solid Electrolytes Prepared from Li2S—P2S5 Glass and Ionic Liquids,” J. Electrochem. Soc. 157:A1296-1301 (2010).
Murugan, Ramaswamy et al., “Fast Lithium Conduction in Garnet-Type Li7La3Zr2O12,” Angew. Chem. Int. Ed. 46:7778-7781 (2007).
Tatsumisago, Masahiro, “Glassy Materials Based on Li2S for All-Solid-State Lithium Secondary Battereis,” Solid State Ionics 175:12-18 (2004).
Sakuda, Atsushi et al., “Modification of Interface Between LiCoO2 Electrode and Li2S—P2S5 Solid Electrolyte Using Li2O—SiO2 Glassy Layers,” J. Electrochem. Soc. 156:A27-A32 (2009).
Hill, K et al,, “Large Area Deposition by Mid-Frequency AC Sputtering,” Society of Vacuum Coaters, 41st Annual Tech. Conference Proceedings, 197-202 (1998).
Macak, Karol et al, “Ionized Sputter Deposition Using an Extremely High Plasma Desnity Pulsed Magentron Discharge,” J. Vac. Sci. Technol. A 18(4):1533-37 (2000).
Von Rottkay, K. et al., “Influences of stoichiometry on electrochromic cerium-titanium oxide compounds,” Presented at the 11th Int'l Conference of Solid State Ionics, Honolulu, Hawaii, Nov. 19, 1997, Published in Solid Stale Ionics 113-115:425-430, (1998).
Wang, B. et al., “Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes,” J. Electrochem Soc. 143:3203-13 (1996).
Westlinder, J. et al., “Simulation and Dielectric Characterization of Reactive de Magnetron Cosputtered (Ta2O5 ) 1-x (Ti02)x Thin Films,” J Vac. Sci. Technol. B 20(3):855-861 (May/Jun. 2002).
Wilkes, K.E., “Gas Permeation Through Vacuum Barrier Films and its Effect on VIP Thermal Performance,” presented at the Vacuum Insulation Panel Symp., Baltimore, Maryland, 21 pages (May 3, 1999).
Yanagawa, H. et al., “Index-and-Dimensional Taper and Its Application to Photonic Devices,” J. Lightwave Technology 10(51:587-591 (1992).
Yoshikawa, K. et al., “Spray formed aluminum alloys for sputtering targets,” Powder Metallurgy 43(3): 1 98-199 (2000).
Yu, X. et al.,“A stable thin-film lithium electrolyte: lithium phosphorus oxynitride,” 144(2) J. Electrochem. Soc. 524-532 (1997).
Zhang, H. et al., “High Dielectric Strength, High k TiO2 Films by Pulsed DC, Reactive Sputter Deposition,” 5 pages (2001).
Dobkin, D.M., “Silicon Dioxide: Properties and Applications”.
Nakano, Hiroyuki et al., Three-Dimensionally Ordered Composite Electrode Between LiMn2O4 and Li1.5 (PO4)3, resented at the Itth EurpConference on the Science and Technolgoy of Ionics 14:173-177 (2008).
Kotubuki, Masashi et al., “Compatibility of Li7La3Zr2O12 Solid Electrolyte to All-Solid-State Battery Using Li Metal Mode,” J. Electrochem. Soc. 157:A1076-A1079 (2010).
Hubner, J. and Guldberg-Kjaer, S., “Planar Er- and Yb-doped amplifiers and lasers,” Com Technical University of Denmark, 10th European Conf. on Integrated Optics, Session WeB2, pp. 71-74 (2001).
Hwang et al., “Characterization of sputter-deposited LiMn204 thin films for rechargeable microbatteries,” 141(12) J. Electrochem. Soc. 3296-99 (1994).
Hwang, M-S. et al., “The effect of pulsed magnetron sputtering on the properties of iridium tin oxide thin films,” Surface and Coatings Tech. 171: 29-33 (2003).
Im, J.S. and Sposili, R.S., “Crystalline Si films for integrated active-matrix liquid crystal displays,” MRS Bulletin, pp. 39-48 (1996).
Im, J.S. et al., “Controlled super-lateral growth of Si-films for microstructural manipulation and optimization,” Physica Status Solidi (A) 166(2): 603-617 (1998).
Im, J.S. et al., “Single-crystal Si films for thin-film transistor devices,” Appl. Physics Lett. 70(25): 3434-3436 (1997).
Itoh, M. et al., “Large reduction of singlemode-fibre coupling loss in 1.5% L'l planar lightwave circuits using spot-size .mnverters,” Electronics Letters 38(2): 72-74 (2002).
Jackson, M.K. and Movassaghi, M., “An accurate compact EFA model,” Eur. Conf. Optical Comm., Munich, Germany, 2 pages (2000).
Janssen, R. et al., “Photoinduced electron transfer from conjugated polymers onto nanocrystalline Ti02,” Synthet. Metal., 1 page (1999).
Johnson, J.E. et al., “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input,” IEEE J. Selected topics in Quantum Electronics 6(1): 19-25 (2000).
Jones et al., “A Thin Film Solid State Microbattery” 53-56 Solid State Ionics 628 (1992).
Jonsson, L.B. et al., “Frequency response in pulsed DC reactive sputtering processes,” Thin Solid Films 365: 43-48 (2000).
Kato, K. and Inoue, Y., “Recent progress on PLC hybrid integration,” SPIE 3631: 28-36 (1999).
Kato, K. and Tohmori, Y., “Plc hybrid integration technology and its application to photonic components,” IEEE J. Selected Topics in Quantum Electronics 6(1): 4-13 (2000).
Kelly, P.J. and Amell, R.D., “Control of the structure and properties of aluminum oxide coatings deposited by pulsed magnetron sputtering,” J. Vac. Sci. Technol. A 17(3): 945-953 (1999).
Kelly, P.J. et al., “A novel technique for the deposition of aluminum-doped zinc oxide films,” Thin Solid Films 426(1-2): 111-116 (2003).
Kelly, P.J. et al., “Reactive pulsed magnetron sputtering process for alumina films,” J. Vac. Sd. Technol. A 18(6): 2890-2896 (2000).
Kik, P.G. and Polman, A., “Gain limiting processes in Er-doped Si nanocrystal waveguides in Si02,” J. Appl. Phys. 91 (1): 536-536 (2002).
Kim et al., “Correlation Between the Microstructures and the Cycling Performance of Ru02 Electrodes for Thin-Film Microsupercapacitros,” J. Vac. Sci. Technol. B20(5): 1827-1832 (Sep. 2002).
Kim, D-W. et al. “Mixture Behavior and Microwave Dielectric Properties in the Low-fired TiO2—CuO System,” Jpn. J. Appl. Phys. 39:2696-2700 (2000).
Kim, H-K. et al., “Characteristics of rapid-thermal-annealed LiCo02 cathode film for an all-solid-state thin film microbattery,” J. Vac. Sd. Technol. A 22(4): 1182-1187 (2004).
Kim J-Y. et al. “Frequency-dependent pulsed direct current magnetron sputtering of titanium oxide films,” J. Vac. Sd. Technol. A 19(2):429-434 (2001).
Ladouceur, F. and Love, J.D., in: Silica-based Buried Channel Waveguides and Devices, Chapman & Hall, London, Table of Contents, 6 pages ( 1996).
Ladouceur, F. et al., “Effect of side wall roughness in buried channel waveguides,” IEEE Proc. Optoelectron. 141 (4):242-248 (1994).
Lamb, W. and Zeiler, R., Designing Non-Foil Containing Skins for Vacuum Insulation Panel (VIP) Application, Vuoto XXVIII(I-2):55-58 (1999).
Lamb, W.B., “Designing Nonfoil Containing Skins for VIP Applications,” DuPont VIA Symposium Presentation, 35 Pages (1999).
Lange, M.R. et al, “High Gain Ultra-Short Length Phosphate glass Erbium-Doped Fiber Amplifier Material,” OSA Optical Fiber Communications (OFC), 3 Pages (2002).
Laporta, P. et al, “Diode-pumped cw bulk Er: Yb: glass laser,” Optics Letters 16(24): 1952-1954 (1991).
Laurent-Lund, C. et al., “Pecvd Grown Multiple Core Planar Waveguides with Extremely Low Interface Reflections and Losses,” IEEE Photonics Tech. Lett. 10(10):1431-1433 (1998).
Lee, B.H. et al., “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silion,” Appl. Phys. Lett. 74(21):3143-3145 (1999).
Lee, K.K. et al., “Effect of size and roughness on light transmission in a Si/Si02 waveguide: Experiments and model,” Apll. Phys. Lett. 77(11): 1617-1619 (2000).
Love, J.D. et al., “Quantifying Loss Minimisation in Single-Mode Fibre Tapers,” Electronics Letters 22(17):912-914 (1986).
Mardare, D. and Rusu, G.I., “On the structure of Titanium Oxide Thin Films,” Andalele Stiintifice Ale Universitatii IASI, Romania, pp. 201-208 (1999).
Marques, P.V.S. et al., “Planar Silica-on-Silicon Waveguide Lasers Based in Two Layers Core Devices,” 10th European Conference on Integrated Optics, Session WeB2, pp. 79-82 (2001).
Mattox “Handbook of Physical Vapor Deposition (PVD) Processing, Society of Vacuum Coaters,” Albuquerque, New Vlexico 660f and 692ff, Noyes Publications (1998).
Meijerink, A. et al, “Luminescence of Ag+ in Crystalline and Glassy Srb407,” J. Physics Chem. Solids 54(8):901-906 (1993).
Mesnaoui, M. et al, “Spectroscopic properties of Ag+ ions in phosphate glasses of NaP03—AgP03 system,” Eur. J. Solid State Inorg. Chem. 29:1001-1013 (1992).
Mitomi, 0. et al., “Design of a Single-Mode Tapered Waveguide for Low-Loss Chip-to-Fiber Coupling,” IEEE J. Quantum Electronics 30(8): 1787-1793 (1994).
Mizuno, Y. et al “Temperature dependence of oxide decomposition on titanium surfaces in UHV,” J. Vac. Sci & Tech. A. 20(5): 1716-1721 (2002).
Neudecker, B. et al., “Li9SiA108 : a lithium ion electrolyte for voltages above 5.4 V,” 143(7) J. Electrochem. Soc. 2198-203 (1996).
Ohkubo, H. et al., Polarization-Insensitive Arrayed-Waveguide Grating Using Pure Si02 Cladding, Fifth Optoelectronics and Communication Conference (OECC 2000) Technical Digest, pp. 366-367 (2000).
Ohmi, S. et al., “Rare earth mental oxides for high-K fate insulator,” VLSI Design 2004, 1 Page (2004).
Ohno, H. et al., “Electrical conductivity of a sintered pellet of octalithium zirconate,” 132 J. Nucl. Mat. 222-30 (1985).
Ohtsuki, T., et al., “Gain Characteristics of high concentration Er'+-doped phosphate glass waveguide,” J. Appl. Phys. 78(6):3617-3621 (1995).
Ono, H. et al., “Design of a Low-loss Y-branch Optical Waveguide,” Fifth Optoelectronic and Communications Conference (OECC 2000) Technical Digest, pp. 502-503 (2000).
Padmini, P. et al. “Realization of High Tunability Barium Strontium Titanate Thin Films by rf Megnetron Sputtering,” Appl. Phys. Lett. 75(20):3186-3188 (1999).
Pan, T. et al., “Planar Er _H_doped aluminosilicate waveguide amplifier with more than 10 dB gain across C-band,” Optical Society of America, 3 pages (2000).
Park et al., “Characteristics of Pt Thin Film on the Conducting Ceramics TiO and Ebonex (Ti407) as Electrode Materials,” Thin Solid Films 258: 5-9 (1995).
Peters, D.P. et al., Formation mechanism of silver nanocrystals made by ion inadlation of Na+.
Rajarajan, M. et al., “Numerical Study of Spot-Size Expanders fro an Efficient OEIC to SMF Coupling,” IEEE Photonics Technology Letters 10(8): 1082-1084 (1998).
Related Publications (1)
Number Date Country
20180097252 A1 Apr 2018 US
Provisional Applications (1)
Number Date Country
61352082 Jun 2010 US
Continuations (1)
Number Date Country
Parent 13154980 Jun 2011 US
Child 15819172 US