RECIPE IDENTIFICATION METHOD AND APPARATUS

Information

  • Patent Application
  • 20160188712
  • Publication Number
    20160188712
  • Date Filed
    August 14, 2015
    9 years ago
  • Date Published
    June 30, 2016
    8 years ago
Abstract
Disclosed embodiments include apparatus, method and storage medium associated with recipe identification. In embodiments, an apparatus may include a recipe identification function configured to receive or retrieve a text document, analyze the text document to identify a recipe, and return the identified recipe. Other embodiments may be described and claimed.
Description
TECHNICAL FIELD

The present disclosure relates to the field of data processing. More particularly, the present disclosure relates to recipe identification method and apparatus.


BACKGROUND

The background description provided herein is for the purpose of generally presenting the context of the disclosure. Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.


Currently if an individual would like to save a recipe the individual encountered in an article, online or printed, the individual has to identify the various components of the recipe himself/herself, i.e., the name of the recipe, ingredients, servings, directions and so forth. The undertaking could be cumbersome in many cases.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. To facilitate this description, like reference numerals designate like structural elements. Embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings.



FIG. 1 illustrates a fitness management system suitable for practicing the present disclosure, according to the various embodiments.



FIG. 2 illustrates an example operation flow of the recipe identification function of FIG. 1 in further details, according to the various embodiments.



FIG. 3 illustrates an example computing system suitable for use as a fitness management server or a client device, according to various embodiments.



FIG. 4 illustrates an example storage medium having instructions to cause a computing device to practice aspects of the fitness management application, recipe identification function in particular, according to various embodiments.





DETAILED DESCRIPTION

Disclosed embodiments include apparatus, method and storage medium associated with fitness management application in general, and recipe identification in particular.


In the following detailed description, reference is made to the accompanying drawings which form a part hereof wherein like numerals designate like parts throughout, and in which is shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.


Aspects of the disclosure are disclosed in the accompanying description. Alternate embodiments of the present disclosure and their equivalents may be devised without parting from the spirit or scope of the present disclosure. It should be noted that like elements disclosed below are indicated by like reference numbers in the drawings.


Various operations may be described as multiple discrete actions or operations in turn, in a manner that is most helpful in understanding the claimed subject matter. However, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations may not be performed in the order of presentation. Operations described may be performed in a different order than the described embodiment. Various additional operations may be performed and/or described operations may be omitted in additional embodiments.


For the purposes of the present disclosure, the phrase “A and/or B” means (A), (B), or (A and B). For the purposes of the present disclosure, the phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).


The description may use the phrases “in an embodiment,” or “in embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments of the present disclosure, are synonymous.


Referring now to FIG. 1, wherein a fitness management system, according to the various embodiments, is illustrated. As shown, fitness management system (FMS) 100 may include client devices 102 and one or more servers 104 coupled with each other. Server(s) 104 may host a fitness management application (FMA) 112, including a number of databases, e.g., food and beverages database 114 and user database 116, configured in accordance to the teachings of the present disclosure. Whereas each client device 102 may include a client side agent 124 of FMA 112 configured to access and interact with FMA 112, to enable a user of the client device 102, among other things, to develop a fitness plan that may include a food and beverage budget, and monitor the progress towards meeting the plan, to be described more fully below.


In embodiments, servers 104, except for FMA 112 and databases 114-116, may be any one of a number of computer servers known in the art, including but are not limited to servers available from Dell Computing of Austin, Tex. or Hewlett Packard of Palo Alto, Calif. In embodiments, FMA 112 may include recipe identification function 122 configured to extract a recipe from a textual document or an image of a textual document, for client device 102 or other components of FMA 112.


In embodiments, food & beverages database 114 may include tables having keywords frequently found in various sections of a recipe, e.g., ingredient keywords, such as chicken, beef, pork, lamb, shrimp, scallop, squid, salmon, halibut, rock cod, potato, onion, tomato, carrots, salt, pepper, sugar, soya sauce, and so forth, serving keywords, such as, a cup, ½ cup, ¼ cup, 1 table spoon, ½ table spoon, ¼ table spoon, 4 fluid oz, 8 fluid oz, 12 fluid oz, 1 gram, 2 grams, 4 grams, and so forth, or direction keywords, such as debone, rub, stir, bring to boil, simmer, and so forth. It should be noted that the preceding examples are illustrative only, and not limiting. In embodiments, food & beverages database 114 may include tables having hundreds and thousands of ingredient, serving, and/or direction keywords frequently found in various sections of a recipe. In embodiments, information about ingredient items may also include nutrient information for various units of measures. Examples of nutrient information may include, but is not limited to, amount of sodium, carbohydrates, calcium, various vitamins and calories per serving size of various units of measures.


In embodiments, client devices 102 may be any one of a number of stationary or portable electronic devices known in the art, including but are not limited to, desktop computers available from Dell Computing of Austin, Tex., or smartphones, computing tablets, lapstop computers, electronic readers, personal digital assistants, and so forth, such as Galaxy S4 from Samsung Electronics of Seoul, Korea, or iPad from Apple Computer of Cupertino, Calif. In embodiments, one or more portable computing devices 102 may be a wearable computing device, e.g., a smart watch, a smart eyeglasses, and so forth. In embodiments, FMA agent 122 may be a generic browser, such as Internet Explorer, available from Microsoft Corp., of Redmond, Wash., or Safari from Apple Computer of Cupertino, Calif., e.g., in cases where client devices 102 are desktop or tablet computers. In other embodiments, FMA agent 122 may be a client side application, e.g., in cases where client devices 102 are personal digital assistants or smartphones.


In embodiments, client devices 102 and server(s) 104 may be communicatively coupled with one another via communication links 106 over one or more wired and/or wireless, private and/or public networks, including the Internet. Each of client devices 102 and server(s) 104 may be configured with the appropriate networking communication interfaces. An example of wired communication interface may include but is not limited Ethernet, while examples of wireless communication interfaces may include but are not limited to near field communication (NFC), Bluetooth, WiFi, 4G or 5G LTE. In between the communication interfaces of client devices 102 and server(s) 104 may be any number of gateways, routers, switches, based stations, and so forth.


Referring now FIG. 2, wherein a method for recipe identification, in accordance with various embodiments, is shown. As illustrated, method 200 for recipe identification may include operations performed in blocks 202-210. The operations may be performed, e.g., by earlier described recipe identification function 122 of FMA 112 of FIG. 1.


At block 202, raw text to be analyzed to identify and extract a recipe may be received or extracted. In embodiments, an article or an image (or a locator of the article or image) containing the raw text may be received from client device 102 or another component of FMA 112. An example of a locator may be a uniform resource locator (URL). In the case of receipt of a locator, the article or image may be retrieved using the locator. Further, in the case of an image, character recognition may performed to extract the raw text to be analyzed from the image. On receipt or retrieval of the raw text, from block 202, process 200 may proceed to block 204.


At block 204, the raw text may be analyzed, and ingredient sections, i.e., sections of the raw text having ingredient information, may be identified. In embodiments, the analysis and identification may first begin with language identification, by looking up known common words and characters of various languages. The search for known common words and characters of various languages may begin with likely languages, e.g., based on locations of client devices 102, or which websites the article/image was retrieved. Once the language of the raw text is identified, the analysis may continue to identify the ingredient sections, through frequency analysis of known units of measures, e.g., cups, tablespoons, fluid oz, grams, and so forth, including common typos and alternative spellings. On identification of the ingredient sections, from block 204, process 200 may proceed to block 206.


At block 206, the individual text lines of the various ingredient sections may be parsed to discover the ingredients. Parsing may be performed using any one of a number of parsing techniques known. Ingredients may be identified through known ingredient keywords maintained in food and beverage database 114. Once the ingredient has been identified, from block 206, process 200 may proceed to block 208.


At block 208, the raw text may be analyzed to identify direction information and related meta data. Identification of direction information and related data may be located in part using the ingredients identified at block 206 as guide, and the known direction keywords maintained in food and beverage database 114. On identification of the direction and related metadata, from block 208, process 200 may proceed to block 210.


Metadata can be found using known keyword matching, known patterns and previously extracted information. Keyword matching is useful for determining metadata such as course (‘Main Course’, ‘Appetizer’, ‘Desserts’). Pattern matching is used to determine metadata where a common text appears with relevant information interpolated. For example, to determine prepartion time for a recipe, the text: “Prep Time: 10 minutes” is found, and the relevant metadata is ‘10 minutes’. Further, previously extracted information can be used to refine metadata. For example if the processing has discovered the name of a recipe to be “Chocolate Chip Cookies,” the keyword cookies may be used to determine serving size metadata, i.e. “Makes 10 Cookies”.


At block 210, the gathered information may be organized into a standardized or normalized recipe format, and return to client device 102 or another component of FMA 112, which requested the analysis and identification. On return, process 200 may end.


For example given the raw text:












Chocolate Chip Cookies

















Prep Time: 10 minutes



Cook Time: 25 minutes



Makes 10 cookies



1 stick unsalted butter



½ cup packed dark brown sugar



¾ cup sugar



2 large eggs



Preheat Oven. Mix butter and Sugar. Mix remaining ingredients.



Bake for 25 minutes.











The recipe identification system may yield:


















Recipe Name
Chocolate Chip Cookies



Prep Time
10 minutes



Cook Time
25 minutes



Total Time
35 minutes



Ingredients
1 stick unsalted butter




½ cup packed dark brown sugar




¾ cup sugar




2 large eggs



Directions
Preheat Oven. Mix butter and Sugar. Mix




remaining ingredients. Bake for 25 minutes.










Referring now to FIG. 3, wherein an example computer suitable for use as computing device 114 or portable client device 104 of FIG. 1, in accordance with various embodiments, is illustrated. As shown, computer 700 may include one or more processors or processor cores 702, and system memory 704. For the purpose of this application, including the claims, the terms “processor” and “processor cores” may be considered synonymous, unless the context clearly requires otherwise. Additionally, computer 700 may include mass storage devices 706 (such as diskette, hard drive, compact disc read only memory (CD-ROM) and so forth), input/output devices 708 (such as display, keyboard, cursor control and so forth) and communication interfaces 710 (such as network interface cards, modems and so forth). The elements may be coupled to each other via system bus 712, which may represent one or more buses. In the case of multiple buses, they may be bridged by one or more bus bridges (not shown).


Each of these elements may perform its conventional functions known in the art. In particular, when used as computing device 114, system memory 704 and mass storage devices 706 may be employed to store a working copy and a permanent copy of the programming instructions implementing the operations associated with recipe identification function 122 earlier described, shown as computational logic 714. The various elements may be implemented by assembler instructions supported by processor(s) 702 or high-level languages, such as, for example, C, that can be compiled into such instructions.


The permanent copy of the programming instructions may be placed into permanent storage devices 706 in the factory, or in the field, through, for example, a distribution medium (not shown), such as a compact disc (CD), or through communication interface 710 (from a distribution server (not shown)). That is, one or more distribution media having an implementation of the agent program may be employed to distribute the agent and program various computing devices.


The number, capability and/or capacity of these elements 710-712 may vary, depending on whether computer 700 is used as computing device 114 or portable client device 104. When used as portable client device 104, computing device 700 may be a smartphone, computing tablet, ereader, ultrabook or laptop. Otherwise, the constitutions of elements 710-712 are known, and accordingly will not be further described.



FIG. 4 illustrates an example computer-readable non-transitory storage medium having instructions configured to practice all or selected ones of the operations associated with earlier described recipe identification function 122, in accordance with various embodiments. As illustrated, non-transitory computer-readable storage medium 804 may include a number of programming instructions 806. Programming instructions 806 may be configured to enable a device, e.g., computer 800, in response to execution of the programming instructions, to perform, e.g., various operations of process 200 of FIG. 2, e.g., but not limited to, the operations associated with recipe identification function 122. In alternate embodiments, programming instructions 804 may be disposed on multiple computer-readable non-transitory storage media 804 instead. In alternate embodiments, programming instructions 804 may be disposed on computer-readable transitory storage media 804, such as, signals.


It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed embodiments of the disclosed device and associated methods without departing from the spirit or scope of the disclosure. Thus, it is intended that the present disclosure covers the modifications and variations of the embodiments disclosed above provided that the modifications and variations come within the scope of any claims and their equivalents.

Claims
  • 1. A method comprising: at a server device, retrieving text information from a client device in communication with the server device;analyzing the text information to determine one of a plurality of keyword categories in the text information;extracting information associated with the keyword categories in the text information; andorganizing the extracted information into sections related to the keyword categories.
  • 2. The method of claim 1, wherein analyzing comprises analyzing the text information into one or more of an ingredient keyword category, serving keyword category or a direction keyword category.
  • 3. The method of claim 2, wherein the ingredient keyword category comprises text information related to ingredients or nutrient information of food and beverages, wherein the serving keyword category comprises text information related to serving sizes for food and beverages, and wherein the direction keyword category comprises text information related to preparation techniques for food and beverages.
  • 4. The method of claim 1, wherein organizing comprises organizing the extracted information such that text information related to the ingredient keyword category is organized into an ingredient section, text information related to the serving keyword category is organized into a serving section and text information related to the direction keyword category is organized into a direction section.
  • 5. A computer-readable, non-transitory storage medium having computer executable instructions and when the instructions are executed operable to: retrieve text information from a client device in communication with a server device;analyze the text information to determine one of a plurality of keyword categories in the text information;extract information associated with the keyword categories in the text information; andorganize the extracted information into sections related to the keyword categories.
  • 6. The computer readable storage media of claim 5, wherein the instructions that are operable to analyze comprise instructions that are operable to analyze the text information into one or more an ingredient keyword category, a serving keyword category or a direction keyword category.
  • 7. The computer readable storage media of claim 6, wherein the ingredient keyword category comprises text information related to ingredients or nutrient information of food and beverages, wherein the serving keyword category comprises text information related to serving sizes for food and beverages, and wherein the direction keyword category comprises text information related to preparation techniques for food and beverages.
  • 8. The computer readable storage media of claim 5, wherein the instructions that are operable to organize comprise instructions that are operable to organize the extracted information such that text information related to the ingredient keyword category is organized into an ingredient section, text information related to the serving keyword category is organized into a serving section and text information related to the direction keyword category is organized into a direction section.
  • 9. An apparatus comprising: a memory unit; anda processor coupled to the memory unit and configured to: retrieve text information from a client device in communication with the apparatus;analyze the text information to determine one of a plurality of keyword categories in the text information;extract information associated with the keyword categories in the text information; andorganize the extracted information into sections related to the keyword categories.
  • 10. The apparatus of claim 9, wherein the processor is further configured to analyze the text information into one or more an ingredient keyword category, a serving keyword category or a direction keyword category.
  • 11. The apparatus of claim 9, wherein the processor is further configured to organize the extracted information such that text information related to the ingredient keyword category is organized into an ingredient section, text information related to the serving keyword category is organized into a serving section and text information related to the direction keyword category is organized into a direction section.
RELATED APPLICATIONS

This application claims priority from U.S. Provisional Patent Application No. 62/037,522 filed on Aug. 14, 2014, the entirety of which is incorporated by reference herein.

Provisional Applications (1)
Number Date Country
62037522 Aug 2014 US