The present disclosure relates to recipient verification bands and related systems, for example patient identification systems. More particularly, it relates to wearable verification bands for use in various environments, such as caregiver environments. Said verification bands provide users with various labels and labeling methods, which can be linked to the wearer of the band. The systems described in the present disclosure are amenable for various end applications and methods for making the same.
The need to assign a unique code or other identifier to a person or thing (collectively referred to as a “recipient”) and to employ the identifier in correlating articles or activities to the recipient arises in a number of contexts. For example, positive patient identification is a critical step in providing medical treatment to patients in a caregiver environment (e.g., hospital). Commonly, an identification band (e.g., a flexible plastic wristband or ankle band) is issued to the patient at the time of admission to the caregiver institution, and is worn by the patient at all times (sometimes referred to as an “admission band”). The issued identification/admission band typically displays patient-related information (e.g., printed or labeled), such as name, date of birth, etc.
In some instances, a unique patient identifier or other code is assigned to the patient and is displayed on the admission band, including, for example, a bar code or numeric/alphanumeric code. The patient identifier can alternatively be supplied on a separate band (apart from the admission band), and is used to cross-reference other caregiver-related items with the patient via, for example, an electronic data base. The unique patient identifier provides an independent, physical link between the patient and associated patient articles or caregiver activities when applied to such articles. For example, paperwork or other caregiver documents/medical charts relating to the patient may include the patient identifier. In addition, the patient identifier can be applied to specimen samples (e.g., test tubes for blood specimens) taken from the patient, or applied to therapeutic material(s) to be given to the patient. The patient identifier ensures that said items are accurately associated with the correct patient at all stages of the patient's visit with the caregiver institution. Similar recipient verification needs apart from hospital admission may be found in multiple other situations including blood transfusion, pharmaceutical administration, trauma centers, etc. In these and other environments, a lack of immediate patient identification and verification can pose significant safety risks.
To facilitate accurate transposition of the patient identifier (and possibly other patient-related information) to items apart from the band(s) worn by the patient, it is known to provide one or more labels or tags that display the same patient identifier. Alternatively, it is also known to permit a caregiver to enter the patient identifier onto the label/tag. This manual process of transferring the patient identifier from the patient to his specimens, test requests, etc. and then back to the patient is prone to error. First, if the unique patient identifier or patient information must be transcribed by hand, the potential for human error will arise. Second, the patient identifier and/or patient information must be transferred to the correct specimen/item in question. In order to avoid transcription errors, it is desirable to use these patient identification labels in combination with the unique patient identifier. Hospital admission bands are commonly supplied with a plurality of patient identifying labels. In addition, laboratory test requests often can generate multiple patient identifying labels. In all these scenarios, the companion labels with the matching patient identifier information are separate from the patient identifier attached directly to the patient. This lack of direct physical connection can lead to confusion, lost labels, and other problems.
While systems exist that address several of the problems raised above, current systems also give rise to other concerns. For example, the need for removal, replacement and/or relocation of bands placed around patient extremities arises due to a number of reasons including lack of comfort, lack of access, swelling, and loss of durability. It is desirable to have a way to reattach a band after it has been removed and replace it on an extremity and/or alternate location on the body. Alternate location attachment (i.e. not attached around a wrist or ankle) is also desirable in cases where the band does not fit the patient, access is restricted, or the patient has a restricted extremity, among other reasons. A need exists for an improved recipient verification system that addresses the above challenges.
Some aspects in accordance with principles of the present disclosure relate to a recipient verification system including a band. The band includes a base, a strap and a closure device. The base defines a band identification portion for displaying a recipient identifier. First and second slots are formed through a thickness of the band. The strap defines a first end, a second end opposite the first end, and an intermediate segment between the first and second ends. The first end is contiguously formed with the base such that the strap extends from the base to the second end. The closure device is attached to the base opposite the first end of the strap. The band is configured to provide a worn state of the system in which the intermediate segment of the strap is looped about a recipient's appendage and is secured to the base by the closure device independent of the slots. A secondary band is optionally provided for securing the base to the recipient's appendage via the slots in a replacement worn state.
Other aspects of the present disclosure relate to a method of applying a recipient verification system to a recipient. The method includes receiving a band including a base, a strap, and a closure device. The base defines a band identification portion for displaying a recipient identifier. First and second slots are formed through a thickness of the band. The strap defines a first end, a second end opposite the first end, and an intermediate segment between the first and second ends. The first end is contiguously formed with the base such that the strap extends from the base to the second end. The closure device is attached to the base opposite the first end of the strap. The intermediate segment is looped about an appendage of the recipient and secured to the closure device to establish a primary worn state. In this regard, the step of securing is accomplished without the strap passing through either of the slots. In some embodiments, the base is subsequently severed from the closure device and a majority of the strap, and re-secured to the recipient's appendage by a secondary band assembled through the slots.
Aspects of the present disclosure relate to recipient verification systems useful in a variety of different environments. For example, the recipient verification systems of the present disclosure can be used in medical or patient-related contexts, such as with patient admission to a hospital (and related medical records, charts, items (e.g., clothing), etc.), testing or specimen drawing (e.g., X-rays, blood specimen, DNA specimen, organ donation, stem cell specimen, fertilized eggs, etc.) entirely apart from (or as part of) a hospital stay, blood banks, pharmacies (e.g., custom chemotherapy drugs, nuclear pharmacy, labor and delivery, etc.), or other instances in which patient identification is needed. Other applications are equally appropriate, such as police or security situations in which a number of individuals must be quickly processed on-site, ticketing applications, etc. Thus, while several of the examples described below mention patient identification, as well as hospital admission, the systems of the present disclosure are in no way limited.
A recipient verification system 100 in accordance with aspects of the present disclosure is shown in
The recipient verification system 100 transitions from an initial state, in which the strap 108 shown in
As shown in
In some embodiments, the base 106 also defines an optional recipient information portion 122 sized to receive a recipient information label (e.g., a hospital label). For reference, the recipient information label is absent from
As shown in
A replacement strap 384 is then provided and assembled to the base structure 382 as shown in
The strap 108 shown in
The closure 111 is used to secure the strap 108 around the recipient's appendage. The closure 111 shown in the embodiment of
As shown in
The shield 110 can be made of a clear material that facilitates legibility of the predetermined band identifier 112 code and scanning/reading of barcodes or other communication means (RFID, etc.) In one embodiment, the shield 110 is a single piece of material attached to the base 106 via the exposed adhesive area 150 as described above. Upon application, the shield 110 in this embodiment simultaneously protects both the recipient information portion 122 and the permanent label 160. In embodiments where the permanent label 160 is sufficiently durable, the shield 110 may be sized to protect only the recipient information portion 122.
In further embodiments, the shield 110 may be comprised of two separate pieces to separately protect the recipient information area 122 and the permanent label 160. In these constructions, each piece of the shield 110 has its own adhesive attachment area 150. In alternate embodiments, the adhesive attachment area 150 that attaches the shield 110 to the base 106 can be replaced with an ultrasonic weld, solvent bond, or other attachment means. In other embodiments, the shield 110 has points or lines of weakness at its leading end 142a to promote tamper evidence if the shield 110 is removed after application.
The band 102 can be formed and assembled in a variety of manners. In some embodiments, the band 102 is initially defined as a die-cut, single or multi-layer laminate structure, formed apart from the label strip 104 (i.e., the band 102 and the label strip 104 are not commonly defined in a single contiguous form-like structure). The strap 108 is integrally formed with the base 106 such that the base 106 and the strap 108 form a contiguous, homogeneous body. The laminate material(s) are selected to be flexible, resistant to tearing, durable, acceptable for contact with human skin, and take into account patient comfort. For example, acceptable laminate material(s) include polyethylene, polyester, vinyl, nonwoven foams, low-density polyethylene/COC blends, Tyvek™, etc. Alternatively, the base 106 and the strap 108 can be formed of differing materials. For example, the strap 108 can be Tyvek™ to allow for comfort, while the base 106 can be polyethylene to provide a more structured support for the label strip 104.
As shown in
The label strip 104 is formed separately from the band 102. In some embodiments, the label strip 104 is subsequently adhered to the base 106 by the permanent label 160 at the band identification portion 118. In general, the remaining portions of the label strip 104 may move independently of the band strap 108. This independence allows the band strap 108 to be sized and secured around a patient while allowing the label strip 104 to remain secured to the base 106 and fully intact. This attachment of the label strip 104 to the base 106 creates a physical link between the two components 104, 106 and minimizes the likelihood that either component will be separated and misplaced during band application. In alternative embodiments, the label strip 104 may be positioned on various other locations along the band 102. The location of the label strip 104 relative to the band 102 is not limited by what is described herein. In general, the label strip 104 may be divided into two regions by a line or area of weakness 172: a removable label region 184 and a detachable label region 186. The functions of each region are detailed in later paragraphs.
The removable labels 162 are positioned or formed on or by the label strip 104 in a section noted as the removable label region 184. Because this region 184 is a section of the label strip 104, the region 184 may move independently of the band strap 108 prior to application of the band 102 to a recipient as described above. By allowing this independent motion of the removable label region 184, obstruction of the strap 108 by the region 184 is avoided during band application. Once the strap 108 is secured to the closure 111 during band application, the removable label region 184 may be secured to the strap 108 by removing the adhesive liner 175 from the trailing segment 180b of the adhesive strip 176 and effectuating a bond between the thusly exposed adhesive and the strap 108. Notably, the leading segment 180a may continue to be covered by a remaining portion of the liner 175. By securing the removable label region 184 to the strap 108 in the worn state, the removable labels 162 are more robustly connected to the band 102 and more readily remain with the band 102 while it is worn by the recipient.
In some embodiments, the removable labels 162 are configured such that the label perimeter is not adjacent to the border of the removable label region 184. That is to say, while a width of the removable label region 184 may or may not be the same as the width of the band base 106, a perimeter of each individual removable label 162 (for example as conventionally cut into the facestock layer 173 of the label strip 104) terminates interior of the base 106 width or border. This configuration can render the removable labels 162 much more resistant to falling off while the system 100 is worn on a recipient (during showers, etc.).
The detachable labels 166 are positioned or formed on or by the label strip 104 in a section noted as the detachable label region 186. During use, the detachable label region 186 is first detached along the area of weakness 172 after attachment of the band 102 to the recipient. The detachable label region 186 can then be adhered to various articles (e.g. specimen tubes, etc.) by removing the adhesive liner 175 beneath the leading end 180a of the adhesive strip 176.
It is desirable that the permanent label 160, removable labels 162, test tube label 164, and detachable labels 166 are identical in their markings to ensure patient safety. Removable labels 162 and detachable labels 166 can be provided in any quantity or format (e.g. machine-readable, human-readable) desired by the user. In one embodiment shown in
The predetermined band identifier 112 displayed on the label strip 104 is created on a variable basis by a manufacturer of the recipient verification system 100 (as opposed to a caregiver institution user of the recipient verification system 100 or the recipient). The predetermined band identifier 112 can be indicia in one or more formats or configurations depending on the situation and process needs. For example, in some exemplary embodiments, the predetermined band identifier 112 includes a unique band code that is generated in one or more forms such as alphanumeric, barcode, magnetic stripe, RFID, etc. Alternatively, the predetermined band identifier 112 indicia can assume other forms (such as prompts, instructions, icons, etc.) or be omitted. The recipient verification system 100 can contain colors, icons, or other means that aid caregivers and patients in identifying the purpose/intent of the recipient verification system 100.
A different, predetermined band identifier 112 code can be created for each new recipient verification system 100 supplied to an institution. In practice, the institution optionally maintains an electronic database (or written record) that assigns the predetermined band identifier 112 code to a particular recipient to whom the recipient verification system 100 is applied. Subsequently, that same, predetermined band identifier 112 code is then correlated in the database with relevant recipient information. For example, the recipient can be a patient admitted to a hospital and submitting test specimen(s) at a laboratory.
In general, the process for the application and use of the recipient verification system 100 can proceed as follows. First, any hospital label, card, tab, or other carrier mechanism will be transcribed with desired information, for example recipient, caregiver, and/or other hospital related information. The resultant recipient information label, which can come in any format or material per the specific hospital's procedure, is placed in, and bonded to, the recipient information portion 122. The shield 110 is then sealed down over the so-applied recipient information label and the permanent label 160 by first removing the release liner 146 and then sealing the shield 110 to the base 106. This provides protection to the applied recipient information label and permanent label 160.
The recipient verification system 100 is connected to a recipient by wrapping the strap 108 about the recipient's appendage and securing the band closure 111. Once the recipient verification system 100 is attached to the recipient, the remaining length of the strap 108 can be stored by inserting it into the first passage 126. In other embodiments, the excess strap 108 material can be removed (if desired) using a scissor or equivalent means.
Once the recipient verification system 100 is attached to the recipient, the test tube label 164 can be removed and placed on any number of specimen carrying vehicles. Then, the detachable label region 186 can be removed at the area of weakness 172. The detachable label region 186 travels with the specimen (or specimen carrying vehicles), and the detachable labels 166 can be attached to the specimen or any paperwork, etc., via the adhesive strip 176 leading segment 180a (that otherwise remains with the detachable label region 186 upon detachment of the detachable region 186 from the removable label region 184). In some embodiments, the leading segment 180a of the adhesive strip 176 is attached to the recipient sample tube prior to applying the recipient verification system 100 to the patient and/or drawing the patient sample.
The removable labels 162 remain with the recipient in case they are needed to label anything related to the recipient (another specimen, paperwork, etc.) at a later time. The permanent label 160, removable labels 162, test tube label 164, and detachable labels 166 all display the same predetermined band identifier 112. Subsequently, when the labels 162-166 are placed on any specimen, order form, paperwork, drugs, organs, tissues, or blood being delivered to the recipient, the labels 162-166 can be compared against the band identifier 112 on the permanent label 160 to enable recipient verification.
The recipient information label (e.g., hospital label or other applied information) secured to the recipient information portion 122 can be accessed for further recipient identification by comparing applied information on the recipient information label to medical records, for instance. In some embodiments, the predetermined band identifier 112 on the permanent label 160 is read and/or used to ensure proper delivery of recipient intended products using a bedside scanning device. Additionally, a printer system and label stock can be used to make more of the detachable labels 166 at the point of use as needed.
In some institutions or applications, preprinted hospital labels are not available, and/or handwritten label formats are preferred. Under these circumstances, the recipient information portion 122 can be formatted to be ink-receptive for receiving hand-written information. It is desirable to avoid transcription errors and ensure that the information on the patient-attached portion of the recipient verification system 100 is identical to that on the specimen or other recipient related vehicle.
During manufacturing, the write-on label construction 200 may be adhered over the recipient information portion 122. A label/face stock layer 204 displays prompts that suggest desirable information that can be written on to the label/face stock layer 204 using, for example, a ballpoint pen. Desired information is written onto the label/face stock layer 204 and is transferred via image transfer paper, carbon paper or similar material layer(s) 206 to the desired surface. The label layer 204 that is intended for the recipient specimen or other recipient-related items is removed from a corresponding release liner 208 and applied as desired. In some embodiments, a liner layer 202 may protect image material carried by the write-on label construction 200 from premature transfer. The liner layer 202 is removed prior to writing. In some embodiments, the liner layer 202, label/face stock layer 204 and the image transfer paper layer 206 are attached to one another for convenience of use by a connector piece 210. Layers such as the liner layer 208 can be removed via a weakened area 212 located between the layers 202-208 and the connector 210. This information write-on label construction 200 can stand alone, or be attached to the recipient information portion 122 in a variety of ways, including during the initial manufacturing of the recipient verification system 100.
In other embodiments, the band 102 may be comprised of some or all of the layers 202-208 shown on the write-on label construction 200. By using the same layers between the write-on label construction 200 and the band 102, the manufacturing of the subsequent recipient verification system 100 would be simplified. In alternative embodiments, said layers 202-208 of the write-on label construction 200 may comprise only a section of the band 102 rather than the whole band.
In further embodiments, the label strip 104 may also be comprised of some or all the layers 202-208 shown on the write-on label construction 200. In these embodiments, some or all of the layers 202-208 could extend into the recipient information portion 122 and be configured to receive patient-related information.
The recipient verification systems, methods of manufacture, and methods of use of the present disclosure provide marked improvements over previous designs. In contrast to conventional “all-in-one” or form-based systems in which the band and the label strip are simultaneously formed from the same stock material sheet, by forming the band and the label strip as separate components, the systems of the present disclosure permit the use of desired materials for each discrete component (e.g., the material use for the band can be strong, tamper evident and durable, while the material used for the label strip can be soft, easy to process and print on). With embodiments in which the label strip and the band are not coextensive (e.g., the two components do not fully overlap), the label strip is secured to the band in a small section and the remaining portion of the label strip hangs freely. This independence between the label strip and the band allows the band strap to be more easily sized and secured to the recipient while the label strip is still physically linked to the band.
Although the present disclosure has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the present disclosure.
This application is a continuation of U.S. application Ser. No. 13/352,108, filed Jan. 17, 2012, which claims priority under 35 U.S.C. §119(e)(1) to U.S. Provisional Patent Application Ser. No. 61/433,009, filed Jan. 14, 2011, the entire teachings of which are incorporated herein by reference, and which is a continuation-in-part of U.S. application Ser. No. 12/465,449, filed May 13, 2009, now U.S. Pat. No. 8,099,889, which claims priority under 35 U.S.C. §119(e)(1) to U.S. Provisional Patent Application Ser. No. 61/052,811, filed May 13, 2008.
Number | Name | Date | Kind |
---|---|---|---|
3106028 | Baumgartner | Oct 1963 | A |
3323208 | Hurley | Jun 1967 | A |
3416200 | Daddona, Jr. | Dec 1968 | A |
3586220 | Reinsberg | Jun 1971 | A |
3645023 | Larson | Feb 1972 | A |
3656247 | Bushnell et al. | Apr 1972 | A |
3660916 | McDermott et al. | May 1972 | A |
3698383 | Baucom | Oct 1972 | A |
3715570 | Weichselbaum et al. | Feb 1973 | A |
3744104 | Ford | Jul 1973 | A |
3744691 | Shears | Jul 1973 | A |
3751835 | Smith | Aug 1973 | A |
3965589 | McDermott | Jun 1976 | A |
4164320 | Irazoqui et al. | Aug 1979 | A |
4226036 | Krug | Oct 1980 | A |
4233715 | McDermott | Nov 1980 | A |
4377047 | Adams, Jr. et al. | Mar 1983 | A |
4914843 | DeWoskin | Apr 1990 | A |
5002212 | Charleton | Mar 1991 | A |
5088159 | Lafleur | Feb 1992 | A |
5092067 | Prout | Mar 1992 | A |
5164575 | Neeley et al. | Nov 1992 | A |
5166498 | Neeley | Nov 1992 | A |
5226809 | Franco | Jul 1993 | A |
5283969 | Weiss | Feb 1994 | A |
5311689 | Lindsey | May 1994 | A |
5323554 | MacDonald | Jun 1994 | A |
5343608 | MacDonald | Sep 1994 | A |
5401110 | Neeley | Mar 1995 | A |
5423574 | Forte-Pathroff | Jun 1995 | A |
5488846 | Green | Feb 1996 | A |
5499468 | Henry | Mar 1996 | A |
5581924 | Peterson | Dec 1996 | A |
5615504 | Peterson et al. | Apr 1997 | A |
5740623 | Juhan et al. | Apr 1998 | A |
5758443 | Pedrazzini | Jun 1998 | A |
5979941 | Mosher, Jr. et al. | Nov 1999 | A |
6092321 | Cheng | Jul 2000 | A |
6255951 | De La Huerga | Jul 2001 | B1 |
6349493 | Newman et al. | Feb 2002 | B1 |
6421920 | Jensen | Jul 2002 | B1 |
6655063 | Goodin et al. | Dec 2003 | B2 |
6748687 | Riley | Jun 2004 | B2 |
6922148 | Despotis | Jul 2005 | B2 |
6948271 | Helgeson et al. | Sep 2005 | B2 |
6976327 | Goodin et al. | Dec 2005 | B2 |
7017293 | Riley | Mar 2006 | B2 |
7017294 | Riley | Mar 2006 | B2 |
7137216 | Ali et al. | Nov 2006 | B2 |
7188764 | Penuela | Mar 2007 | B2 |
7197842 | Ali | Apr 2007 | B2 |
7222448 | Riley | May 2007 | B2 |
7240446 | Bekker | Jul 2007 | B2 |
7286055 | Girvin et al. | Oct 2007 | B2 |
7481370 | Davis et al. | Jan 2009 | B2 |
8028450 | Landsman et al. | Oct 2011 | B2 |
20040060216 | Riley | Apr 2004 | A1 |
20040148836 | Riley | Aug 2004 | A1 |
20040244251 | Riley | Dec 2004 | A1 |
20050091896 | Kotik et al. | May 2005 | A1 |
20050108912 | Bekker | May 2005 | A1 |
20050184508 | Verden et al. | Aug 2005 | A1 |
20060174527 | Henley | Aug 2006 | A1 |
20060230661 | Bekker | Oct 2006 | A1 |
20060242875 | Wilson et al. | Nov 2006 | A1 |
20060254105 | Chang | Nov 2006 | A1 |
20070028495 | Kotik et al. | Feb 2007 | A1 |
20070120358 | Waggoner et al. | May 2007 | A1 |
20070172291 | Yokoyama | Jul 2007 | A1 |
20080028654 | Cardon et al. | Feb 2008 | A1 |
20080301990 | McDermott | Dec 2008 | A1 |
20100024268 | Landsman et al. | Feb 2010 | A1 |
20110107637 | Bekker | May 2011 | A1 |
20120180351 | Kalyankar et al. | Jul 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20130305577 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
61433009 | Jan 2011 | US | |
61052811 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13352108 | Jan 2012 | US |
Child | 13946474 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12465449 | May 2009 | US |
Child | 13352108 | US |