The invention concerns a hydraulic device comprising of a housing, a rotor rotatable about a first axis (l), said rotor having a first side and a second side, a plurality of pistons on said first side and said second side of the rotor and coupled to the rotor, the rotor chambers being formed by a cylindrical wall and the pistons whereby the cylindrical walls are rotatable about a second axis (m1, m2) and the first axis intersecting each second axis on either side of the rotor under a first angle (β) causing the volume of the chambers to change between a minimum and a maximum value during rotation of the rotor. Such a device is known from U.S. Pat. No. 3,434,429 Goodwin. In the disclosed hydraulic device the minimum value of the chamber volumes on both sides of the rotor is reached at the same moment causing fluctuations in fluid flow which is similar to fluctuations as observed in hydraulic devices with a number of pistons that is equal to the number of pistons on one side of the rotor. The invention aims to decrease these fluctuations and therefore during rotation of the rotor the volumes of the rotor chambers on said first side of the rotor and said second side of the rotor alternately have a minimum value. In this way the hydraulic device behaves as a device with a number of pistons equal to the total of pistons on both sides with the added advantage that the load on the rotor is more or less balanced.
In accordance with an embodiment of the invention the hydraulic device is designed such that the first axis (l) and the second axes (m1, m2) are in a common plane (V) and the pistons on either side of the rotor are arranged offset to one another. This makes it possible to make the housing completely symmetric, which reduces the number of different parts.
In accordance with an embodiment of the invention the hydraulic device is designed such that a first plane (V1) is formed by the first axis (l) and one of the second axes (m1) and a second plane (V2) is formed by the first axis and the other second axis (m2) and the first plane (V1) and the second plane (V2) make a second angle (α) with one another. This makes it possible to have pistons on both sides of the rotor in line, so that it is possible to mount them easier in the rotor.
In accordance with an embodiment of the invention the hydraulic device is designed such that the number of pistons on either side of the rotor is equal to n, the second angle (α) is equal to (1+2k)*180°/n, where k is equal to 0 or an integer number. In this way the fluctuations in fluid flow are evenly distributed over a rotation.
The invention is explained below with reference to a number of exemplary embodiments and with the aid of a drawing, in which:
a and 4b diagrammatically depict the planes through the axes of the rotor and the drum plate;
The components shown in
On the rotor shaft 2 there is a centering surface 22 about which the drum plate 7 can pivot. The centering surface 22 is convex, the centre of the convexity lying in the plane on which the centre of the convex piston rings 10 lies. The rotation of the drum plate 7 is coupled to the rotation of rotor shaft 2 by means of a key 16 which engages in a keyway. In the plane of the surface of the shaft, the key 16 has a rounding radius which is smaller than the radius of the centering surface 22, so that the key 16 does not become jammed in the keyway when the drum plate 7 rotates. If appropriate, there may be more than one key 16. It is also possible for the key 16 to be mounted in the rotor shaft 2 and for the keyway to be arranged in the drum plate 7.
On the side which faces the pistons 12, the drum plate 7 is provided with drum sleeves 11 which are clamped against the drum plate 7 by a sleeve holder 18. On the inner side, the drum sleeve 11 has a cylindrical wall 23. Each piston 12 is surrounded by a drum sleeve 11, it being possible for the piston ring 10 to move in a sealed manner along the cylindrical wall 23. The piston 12 and the cylindrical sleeve 11 therefore form a chamber 9, the volume of which changes when the rotor shaft 2 rotates. The change in volume causes oil flow into and out of the chamber 9 via a drum sleeve opening 24, a drum port 6 and a drum-plate port 3 to an opening in the housing. The corresponding drum-plate ports 3 are connected to one another in the housing. Since the axes of rotation of the rotor 14 and the drum plate 7 form an angle with respect to one another, the pistons 12 in the plane of the drum plate 7 describe an elliptical path, and the drum sleeves 11 will slide over a contact surface 8 of the drum plate 7. The holder 18 is designed with openings which allow this sliding to take place, and it also ensures that the gap between drum plate 7 and drum sleeve 11 remains limited, so that pressure can build up in the chamber 9 when starting up. In another embodiment, it is also possible for the holder 18 to be secured in such a manner to the drum plate 7 that the rotation of the rotor 14 is transmitted via the pistons 12, the drum sleeves 11 and the holder 18 to the drum plate 7, with the result that the key 16 and the associated keyway can be dispensed with.
The face-plate port 3 is arranged in a face plate 4 which is supported against a surface of the housing.
This surface is not at right angles to the axis l, but rather forms and angle therewith, thus determining the direction of the axis m1 or m2 and therefore also the rotational position at which the volume in the chamber 9 is at its minimum or maximum. The face plate 4 is secured in the housing in such a manner that it can rotate about the axis m1 or m2 and is provided over part of its circumference with toothing 5 which interacts with a pinion driven by a drive. A centering sleeve (not shown) can be used to centre the rotation of the face plate 4 in the housing in a known way. Rotation of the face plate 4 causes the setting of the hydraulic transformer to change, as described in the patent applications which were cited earlier in the text.
To keep the openings between face plate 4 and drum plate 7 small during starting up, when there is as yet no pressure in the chambers 9, there is a pressure-exerting ring 19 which is supported against the centering surface 22. Between the pressure-exerting ring 19 and a ring 21 secured in the drum plate 7 there are cup springs 20, by means of which the drum plate 7 is always pressed onto the face plate 4. If appropriate, other resilient elements may be used instead of cup springs 20.
The forces acting on the piston ring 10 are also shown in
This frictional force is greatly reduced through the fact that the inner side of the piston ring 10 is designed with a shoulder 25. If this shoulder 25 lies halfway along the width of the piston ring 10, the outwardly directed force is halved. As shown, the inwardly directed force at E is greater than the outwardly directed force. Under the influence of this, the piston ring 10 is supported on the piston 12, while as a result of the displacement of the drum sleeve 11 the seal between piston ring 10 and cylindrical wall 23 is retained all the way around. As a result of the support, the piston ring 10 exerts a resulting force R on the piston 12, and this force R drives the rotor 14.
Obviously, it is also possible for the device to be fitted without piston rings 10, but in this case it will be necessary to take measures to avoid contamination which may cause wear.
The hydraulic transformer is designed in such a manner that the pistons 12 on either side of the rotor 14 alternately move into the top dead centre, i.e. the position where the volume of the chambers 9 is at its minimum, so that in terms of fluctuations in the oil flow and the torque acting on the rotor 14, it is possible to count on the total number of pistons 12, i.e. eighteen pistons 12 in the example shown. In the exemplary embodiment shown, in which the pistons 12 on either side of the rotor 14 lie in line with one another, this is achieved by rotating the top dead centre of the pistons on one side through an angle α with respect to the top dead centre on the other side.
In this case, α is equal to half the rotational angle between two pistons 12. The face plates 4 are also rotated through this angle with respect to one another.
This is shown in
It is preferable for the rotation of the two face plates 4 to be coupled, so that only one drive is required. This is achieved, for example, by rotating the face plates 4 using a gearwheel, coupled to a shaft and coupling the two shafts to a homokinetic coupling, so that the rotation of the two face plates is accurately synchronous. If appropriate, the two face plates 4 may be provided with their own drive, so that for certain operating states a hydraulic preloading can be obtained.
The angle β between the axes l and m determines the displacement of the device. In the embodiment shown, with 9 pistons 12 on each side, the angle is 9 degrees.
If the number of pistons 12 increases, this angle has to be smaller, since otherwise the constriction of piston 12 which is required in order always to remain clear of the drum sleeve 11 becomes too great. In the embodiment shown, calculations have been based on a maximum rotational speed of the rotor 14 of 8000 revolutions per minute. If this speed is greater, a smaller angle β is required in order to prevent the occurrence of unacceptable pressure peaks.
In the exemplary embodiment shown, it is shown that the drum plate 7 is centered by means of the centering surface 22. It is also possible for this centering to be designed in other ways, for example by providing the drum plate 7 with a spherical bearing on its outer circumference, which is secured in the housing. Another embodiment may involve the drum plate 7 being centered with respect to the face plate 4, for example by providing the latter with a conical shape. It is also possible for a centering sleeve to be positioned in the housing in order to centre both the face plate 4 and the drum plate 7.
This makes it possible for the connection in the housing to have an opening to the face plate over a wide angle and enables the face plates to rotate through a large angle, with the result that the control range of the hydraulic transformer is increased in a simple manner through rotation of the face plate. The rotation of the face plates 26 and 28 is coupled in the manner described above.
In the exemplary embodiments given above, the device has been described as a hydraulic transformer. It will be clear to the person skilled in the art that the device can be made suitable for use as a pump or a motor with only minor adjustments, such as, inter alia, to the face plates 4 and the rotor shaft 2. Examples of this are shown in
On the side of the face plate 34, the rotor 14 is provided with chambers 31 which, via a passage 30, are in communication with the chambers 9. The surface area of the chambers 31 is comparable to the sealing surface area of the pistons 12, so that the rotor 14 is balanced in the axial direction.
The face plate 34 may be designed without face-plate ports. In one embodiment, there may also be face-plate ports 33, which are in communication with passages in the housing. This makes it possible to reduce pulses in the liquid flow and liquid pressure, because the flow of liquid to and from the chamber 9 take place via two face plates.
In the exemplary embodiment shown in
In the exemplary embodiments discussed above, the angles between the axes are constant and the displacement is varied through rotation of the face plates. Obviously, the design of the rotor with the fixedly mounted pistons and the drum plate with the drum sleeves which can be displaced perpendicular to the axis of the drum plate can also be used in embodiments in which the axis of the drum plate can pivot with respect to the axis of the rotor.
In the sealing surface 47, there is a groove 44 which, via a passage 46, is in communication with the outer circumference of the drum sleeve 11. This allows a film of oil to form between the drum sleeve 11 and the drum plate 7 as discussed in connection with
If appropriate, a groove 45 with a smaller diameter than the groove 44 may be arranged in the sealing surface 47. As a result, the surface area over which ++the decreasing pressure between the drum sleeve 11 and the drum plate 7 is active is accurately defined.
In the embodiments of the drum sleeve 11 discussed above, the drum sleeve 11 is designed as a component made from one material. If appropriate, the drum sleeve 11 may be made form two materials which are joined to one another, in which case that part of the drum sleeve 11 which forms the sealing surface 47 is made from a bronze-containing material, in order to reduce the friction. This friction results from the rotation and sliding of the drum sleeve 11 with respect to the drum plate 7. In this case, the shape of the join between the two components of the drum sleeve 11 and the elasticity of the materials are selected in such a manner that the join is closed up under the influence of the liquid pressure prevailing in the chamber 9.
In the embodiment shown in
There are two face-plate ports arranged in each face plate 4: a low-pressure port, which is connected via a connection passage 54 and a low-pressure line 59 to a low-pressure connection T, and a high-pressure port, which is connected via a connection passage 54 and a high-pressure line 62 to a high-pressure connection P.
In the embodiment shown, the connection passages 54 are of approximately equal length before they meet at 60 and pass into the low-pressure line 59 or the high-pressure line 62. The chambers 9 in the drum sleeves 11 on either side of the rotor 14 are alternately connected to the two converging connection passages 54, and therefore, in the event of unfavorable conditions, it is possible that the oil may start to resonate at 60, which can lead to pressure peaks and excessive noise in the low-pressure line 59 and/or the high-pressure line 62. There is also a risk of excessive noise when using hydraulic transformers with three pressure lines.
To limit this excessive noise, there are resonance dampers, as shown in
The pressure pulses are likewise limited in this way, albeit to a lesser extent, for example the pulses which occur in the pressure line 62 of a pump are reduced from 50 bar to pulses of 1-3 bar. However, this method has the advantage that the influence of the properties of the liquid is reduced. If appropriate, it is also possible for the resonance dampers as shown in
The designs for reducing excessive noise in the case of a double hydraulic pump or motor may, of course, also be used where necessary to reduce the pulses which may arise in a double hydraulic transformer.
In the exemplary embodiments of the hydraulic device which have been discussed above, the figures have always shown a device with drum sleeves 11 which, during rotation, describe an elliptical path and pistons 12 which describe a circular path. It will be clear to the person skilled in the art that a number of the design details discussed can also be used in other known designs, such as designs in which the drum sleeves are assembled to form a drum and the pistons are arranged in such a manner that they can be pivoted or displaced into or onto a drum, or designs in which the drum sleeves 11 can move over the face plate 4 and a drum plate 7 is not used. Other designs which can also be combined with the exemplary embodiments described here are designed with a variable displacement, for example achieved by making the angle β variable.
This application is a continuation-in-part of pending U.S. application Ser. No. 10/889,288 filed Jul. 12, 2004 which is a continuation of International Patent Application No. PCT/NL2003/000015 filed Jan. 10, 2003 which designates the United States and claims priority of Dutch Patent Application Nos. 1019736 filed Jan. 12, 2002 and 1020932 filed Jun. 24, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3434429 | Goodwin | Mar 1969 | A |
3648567 | Clark | Mar 1972 | A |
3958496 | Wallin | May 1976 | A |
4361077 | Mills | Nov 1982 | A |
4703682 | Hansen | Nov 1987 | A |
5415530 | Shilling | May 1995 | A |
5636561 | Pecorari | Jun 1997 | A |
5794514 | Pecorari | Aug 1998 | A |
6293768 | Shintoku et al. | Sep 2001 | B1 |
Number | Date | Country |
---|---|---|
2 130 514 | Dec 1972 | DE |
35 19 783 | Dec 1986 | DE |
Number | Date | Country | |
---|---|---|---|
20060222516 A1 | Oct 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/NL03/00015 | Jan 2003 | US |
Child | 10889288 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10889288 | Jul 2004 | US |
Child | 11355031 | US |