The present invention relates to a reciprocating electric shaver.
One of conventionally known reciprocating electric shavers, as disclosed in Patent Literature 1, is provided with a conversion mechanism configured to convert rotating motion of a rotary motor to reciprocating motion, and the conversion mechanism reciprocates a driving element to which an internal blade is attached. Moreover, under the driving element, a balancer is provided to reciprocate at a phase 180 degrees different from that of the driving element.
In Patent Literature 1, the balancer is reciprocated in phase opposite to the driving element to reduce vibration of the driving element in the reciprocating direction.
In the case where two driving elements to which internal blades are attached are arranged side by side, vibration of the driving elements in the reciprocating direction can be reduced by reciprocating the driving elements in phases opposite to each other.
Patent Literature 1: Japanese Patent Laid-open Publication No. 2004-016524
However, if the two driving elements are reciprocated in opposite phases to each other like the aforementioned conventional technique, moments about the rotational axis of the rotary motor at the driving elements are directed in a same rotational direction. This causes great vibration during operation of the reciprocating electric shaver.
In order to solve this problem, it is conceived to perform balance adjustment so as to bring gravity centers of the driving elements close to the rotating shaft of the rotary motor, and to thereby reduce the vibrations in the rotation direction. However, if such balance adjusters are attempted to be attached after the driving elements and the rotary motor are assembled to each other, then the rotary motor becomes an obstacle and makes the assembly difficult. This problem is not limited to the balance adjusters, and occurs in a similar way in the case of attaching some components to the driving elements.
In this connection, an object of the present invention is to obtain a reciprocating electric shaver capable of enhancing ease of the assembly of some components even in the case of attaching the components to the driving elements.
The present invention is a reciprocating electric shaver, including: a rotary motor; a conversion mechanism converting rotating motion of the rotary motor to reciprocating motion; and a driving element coupled to the conversion mechanism and reciprocating, in which a sealed space sealed so as not allow entry of hair is formed, and moreover, an additional component reciprocating integrally with the driving element is arranged in the sealed space, and the additional component is attached to the driving element in a direction orthogonal to a reciprocating direction of the driving element and orthogonal to a direction of pressing an inner blade against an outer blade.
In accordance with the present invention, the sealed space sealed so as not allow the entry of the hair is formed, and moreover, the additional component reciprocating integrally with the driving element is arranged in the sealed space, and the additional component is attached to the driving element in the direction orthogonal to the reciprocating direction of the driving element and orthogonal to the direction of pressing the inner blade against the outer blade. Therefore, the reciprocating electric shaver can be obtained, which is capable of enhancing the ease of assembly of some components even in the case of attaching the components to the driving elements.
a) to 1(c) are views showing a reciprocating electric shaver according to an embodiment of the present invention,
a) and 11(b) show the driving mechanism according to the embodiment of the present invention,
a) and 14(b) are front and plan views, respectively, showing a first driving element according to the embodiment of the present invention.
a) and 15(b) are front and plan views, respectively, showing a second driving element according to the embodiment of the present invention.
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following description, the direction that a plurality of outer blades are arranged side by side is referred to as a front-back direction (shaving direction) X; the direction that the outer blades extend is referred to as a right-left direction Y; and the vertical direction when the head section is placed with the outer blades facing upward is referred to as an up-down direction Z. The side of a reciprocating electric shaver where a switch portion is provided is referred to as a front side in the front-back direction X.
As shown in
The grip section 2 includes a grip body 21 made of synthetic resin. As shown in
Inner blades 54 provided within the outer blades 51 (under the outer blades 51) exposed above the head section 3 are moved relatively to the outer blades 51 (reciprocated in the right-left direction Y) to cut body hair inserted in blade holes of the outer blades in conjunction with the outer blades 51.
Hereinafter, the configuration of the head section 3 is described.
As shown in
In this embodiment, a later-described driving mechanism 100 is accommodated in a driving mechanism accommodation portion 72 formed in a head case 71 opened upward. Moreover, a head case cover 81 is placed over the upper opening portion of the head case 71 with the driving mechanism 100 accommodated in the driving mechanism accommodation portion 72 and is fixed by screws 84 with a driving element water-proof rubber 82 and a rubber holding plate 83 interposed therebetween, thus forming the head section body 70.
At this time, the driving mechanism accommodation portion 72 accommodates portions of the driving mechanism 100 other than attachment portions to which the inner blades 54 are attached. In this embodiment, the attachment portions include inner blade attachment portions 132a and 142a of the first and second driving elements 130 and 140 and driving rods 134 and 144 attached to the inner blade attachment portions 132a and 142a. In other words, only the attachment portions out of the driving mechanism 100 to which the inner blades 54 are attached are exposed above the head section body 70.
To be specific, first, the head case cover 81 is put on the upper opening portion of the head case 71 in such a manner that the inner blade attachment portions 132a and 142a of the first and second driving elements 130 and 140 are respectively inserted into through-holes 81a and 81b formed in the head case cover 81 to be exposed above the head case cover 81.
Next, the inner blade attachment portions 132a and 142a exposed above are respectively inserted into through-holes 82a and 82b formed in the driving element water-proof rubber 82 to be exposed above the driving element water-proof rubber 82. At this time, neck portions of the inner blade attachment portions 132a and 142a are tightened by the driving element water-proof rubber 82 to seal internal space of the driving mechanism accommodation portion 72.
The inner blade attachment portions 132a and 142a exposed above the driving element water-proof rubber 82 are respectively inserted into the through-holes 83a and 83b formed in the rubber holding plate 83 to be exposed above the rubber holding plate 83. Simultaneously, the inner blade attachment portions 132a and 142a exposed above the rubber holding plate 83 are attached to the driving rods 134 and 144, respectively. The driving mechanism 100 is thus accommodated in the driving mechanism accommodation portion 72 in a state where the attachment portions for attachment of the inner blades 54 are exposed above the head section body 70.
As described above, in this embodiment, the head case 71, head case cover 81, driving element water-proof rubber 82, and rubber holding plate 83 constitute a substantially box-shaped water-proof space (sealed space) 80. It is therefore prevented that body hair cut by the inner blades 54 or water used to wash the inner blades 54 or the like enters in the water-proof space 80 accommodating the rotary motor 110 and the like.
As shown in
The outer blade cassette 50 includes a plurality of outer blades 51 arranged side by side in the front-back direction X. This embodiment includes four outer blades 51 including a first net blade 51a, a finishing net blade 51b, a slit blade 51c, a second net blade 51d arranged side by side in the front-back direction X (see
As shown in
In the net blades 51a, 51b, and 51d, a number of blade holes (not shown) are defined. In this embodiment, as shown in
As shown in
In other words, in the slit blade 51c, the number of slits (blade holes) are defined by bars provided from the flat upper wall to the side walls and bars extending at bottoms of the side walls in the longitudinal direction (right-left direction) Y.
The net blades 51a, 51b, and 51d constituting the outer blades 51 are attached to specialized outer blade flames 53a, 53b, and 53d to form outer blade units 52a, 52b, and 52d, respectively.
A skin guard member 58 is attached to the first net blade 51a side of the outer blade frame 53b. The slit blade 51c and skin guard member 58 sandwiching the finishing net blade 51b at the front and rear effectively prevent skin from being strongly pressed against the finishing net blade 51b having a small curvature radius.
The outer blade units 52a, 52b, 52c, and 52d are independently engaged with the outer blade frame 59 so as to move up and down, thus forming the outer blade cassette 50. This outer blade cassette 50 is detachably attached to the peripheral frame 60 and is detachably attached to the head section body 70.
The inner blades 54 are dedicatedly provided corresponding to the net blades 51a, 51b, and 51d and slit blade 51c constituting the outer blades 54. Specifically, under (inside) the net blades 51a, 51b, and 51d, inverted U-shaped inner blades 54a, 54b, and 54d along the curves of the net blades 51a, 51b, and 51d are provided, respectively (see
These inner blades 54a, 54b, and 54d and inner slit blade 54c are attached to the driving mechanism 100 (the inner blade attachment portions 132a and 142a and driving rods 134 and 144 of the first and second driving elements 130 and 140). When the driving mechanism 100 is driven, the inner blades 54a, 54b, and 54d and inner slit blade 54c are configured to individually reciprocate in the right-left direction (longitudinal direction) Y.
The inner blades 54a, 54b, and 54d and inner slit blade 54c provided under (inside) the net blades 51a, 51b, and 51d and slit blade 51c are respectively moved relatively to the net blades 54a, 54b, and 54d and inner slit blade 54c (reciprocated in the right-left direction Y) to cut body hair inserted in the blade holes of the net blades 51a, 51b, and 51d and the slits of the inner slit blade 54c in conjunction with the net blades 51a, 51b, and 51d and slit blade 51c.
In this embodiment, the finishing inner blade 54b attached to a base 56b is attached to the outer blade cassette 50 so as to reciprocate relatively to the finishing net blade 51b, and the inner slit blade 54c attached to a base 56c is attached to the outer blade cassette 50 so as to reciprocate relatively to the slit blade 51c (see
To be specific, as shown in
The outer blade frame 53b attached to the finishing net blade 51b is attached to the skin guard member 58, and the finishing inner blade 54b attached to the base 56b is provided under the finishing net blade 51b and is energized by inner blade lifting springs 55b, thus forming the outer blade unit 52b (see
As described above, in this embodiment, the outer blade cassette 50 is attached to the head section body 70 with the inner blades 54a and 54d respectively attached to the inner blade attachment portions 132a and 142a exposed above the head section body 70, and the driving rods 134 and 144 are respectively attached to the inner blade attachment portions 132a and 142a. The outer blade cassette 50 is attached to the head section body 70 so that the inner blades 54a and 54d are placed under the outer blade units 52a and 52d. When the outer blade cassette 50 is attached to the head section body 70, the bases 56b and 56c attached to the outer blade cassette 50 are coupled with the driving rods 134 and 144, respectively. In other words, by attaching the outer blade cassette 50 to the head section body 70, the finishing inner blade 54b and inner slit blade 54c can be operated in conjunction with the movement of the driving mechanism 100.
Moreover, as shown in
In the cylindrical outer frame 60 open at the top and bottom ends, recessed portions 61 are formed at both right and left sides of the bottom edge, and hooks 62 are individually protruded inward from the bottoms of the recessed portions 61 (see
In this embodiment, in the outer frame 60, a top opening 60a is smaller than the profile of the outer blade frame 59 of the outer blade cassette 50 and larger than the profile of the entire blade faces of the outer blades 51. A lower opening 60b is larger than the profile of the outer blade frame 59 other than the release buttons 59c.
As the outer blade cassette 50 is inserted from the lower opening 60b into the outer frame 60 with the release buttons 59c at the both right and left ends being inserted into the recessed portions 61, the top ends of the hooks 62 protruded inward from the outer frame 60 are externally engaged with the through holes 59b of the both elastic pieces 59a of the outer blade frame 59 (see
As shown in
As shown in
If the blade frame unit 30 is placed over the head section body 70 while the release buttons 90 are inserted through the recessed portions 61 of the outer frame 60 at the both right and left ends, the engagement protrusions 90a energized outward in the right-left direction Y are engaged with not-shown engagement recesses formed in the inner periphery of the outer blade frame 59. The outer blade frame 90 (the outer blade cassette 50 or the entire blade flame unit 30) is thus attached to the upper end of the head section body 70.
If the release buttons 90 are depressed inside against the energization force of the springs 91, the engagement of the engagement protrusions 90a and engagement recesses (not shown) is released, and the outer blade frame 59 is then detached from the head section body 70.
Next, the driving mechanism 100 is described.
In this embodiment, as shown in
The rotary motor 110 is attached to the support 120 so as to hang downward. The support 120 includes: a bottom wall 121; and fixed side walls 122 integrally stood from right and left edges of the bottom wall 121. In each fixed side wall 122, a threaded hole 122a is formed. Fixing screws 190 are screwed into the treaded holes 122a to fix the support 120 to the head case 71 together with the first and second driving elements 130 and 140.
The conversion mechanism 180 includes: a base 181 rotatably attached to a rotating shaft 111 of the rotary motor 110 protruded from the bottom wall 121 of the support 120; and a lower eccentric shaft 182 provided eccentrically away from the rotating shaft 111. The conversion mechanism 180 further includes: a lower coupling arm 183 which is attached to the lower eccentric shaft 182 and couples the lower eccentric shaft 182 and the second driving element 140; and a base 184 attached to the lower eccentric shaft 182. The conversion mechanism 180 further includes: an upper eccentric shaft 185 provided for the base 184 eccentrically away from the rotating shaft 111; and an upper coupling arm 186 which is attached to the upper eccentric shaft 185 and couples the upper eccentric shaft 185 and the first driving element 130.
In this embodiment, the upper and lower eccentric shafts 182 and 185 are provided with a phase difference of 180 degrees around the rotating shaft 111 of the rotary motor 110 and converts rotating motion of the rotary motor 110 to reciprocating motion of the first and second driving elements 130 and 140 in opposite phases.
As described above, the first and second driving elements 130 and 140 include the inner blade attachment portions 132a and 142a to which the inner blades 54a and 54d are detachably attached, respectively. As shown in
The fixing blocks 131 and 141 are respectively provided with threaded holes 131a and 141a and engagement portions engaged with each other (engagement protrusions 131b and 141b in this embodiment). When the fixing block 131 is placed on the fixing block 141 with the engagement protrusions 131b and 141b engaged with each other, the threaded holes 131a and 141a communicate with each other. The screws 190 are inserted into the threaded holes 131a and 141a communicating with each other to fix the first and second driving elements 130 and 140 to the head case 71 with the support 120 interposed therebetween.
The support frames 132 and 142 each have a rectangular plate shape substantially horizontally extending, and on the support frames 132 and 142, the inner blade attachment portions 132a and 142a are protruded, respectively. At both ends of the support frame 142 in the width direction, side walls 142i are extended downward, and at the lower end of each side wall 142i, a horizontal wall 142j is extended outward in the width direction (see
Each of the elastic legs 133 has a folded sheet-like shape. An end thereof is connected to the upper inner end of the corresponding fixing block 131, and the other end is connected to one of the outer ends of the support frame 132. On the other hand, each of the elastic legs 143 has a folded sheet-like shape. An end thereof is connected to the upper inner end of the corresponding fixing block 141, and the other end is connected to one of the outer ends of the horizontal wall 142j. In other words, the elastic leg 143 connects the fixing block 141 and the support frame 142 with the horizontal wall 142j and side wall 142i interposed therebetween.
The inner blade attachment portions 132a and 142a are provided with lifting springs (energizing members) 132b and 142b, respectively. The lifting springs 132b and 142b press (energize) up the inner blades 54a and 54d attached to the inner blade attachment portions 132a and 142a (in the direction of attachment or detachment of the inner blades), respectively.
In this embodiment, the outer part of each of the elastic legs 133 and 143 is thinner than the inner part thereof. By making the outer parts of the elastic legs 133 and 143 thinner, the support frames 132 and 142 (including the inner blade attachment portions 132a and 142a and the inner blades 54) can be easily swung in the right-left direction Y. Moreover, by making thick the inner parts which are subject to reaction force from the inner blades 54a and 54d energized upward, it can be prevented that the first and second driving elements 130 and 140 are deformed by the reaction force due to the inner blades 54a and 54d.
The elastic legs 133 and 143 can be formed as shown in
As shown in
Furthermore, in this embodiment, a driving rod 42 driving the trimmer blade 41a (see
The first driving element 130 reciprocates the inner blade 54a and the finishing inner blade 54b attached to the driving rod 134 together, and the second driving element 140 reciprocates the inner blade 54a, the inner slit blade 54c attached to the driving rod 144, and the driving rod 42 together.
In this embodiment, the inner blade (including the base 56a) 54a, driving rod 134, finishing inner blade (including the base 56b) 54b, and a later-described balance adjuster 150 serve as a coupling member which is coupled with the first driving element 130 to operate in conjunction with the first driving element 130 reciprocating. The coupling member and first driving element 130 constitute a first driving block 200.
On the other hand, the inner blade (including the base 56d) 54d, inner slit blade (including the base 56c) 54c, driving rod 144, driving rod 42, and a later-described balance adjuster 160 serve as a coupling member which is coupled with the second driving element 140 to work in conjunction with the second driving element 140 reciprocating. The coupling member and second driving element 140 constitute a second driving block 210.
In this embodiment, the inner blades 54 are arranged two by two at the front and rear sides of a rotation axis C of the rotary motor 110, and the front two inner blades are reciprocated in the phase opposite to the rear two inner blades. By reciprocating the first and second driving elements 130 and 140 in opposite phases in such a manner, vibration due to inertia force in the direction of reciprocation (moment produced about the X axis) is reduced.
Such reciprocating motions in opposite phases can reduce the moment about the X axis but produces moments (M1 and M2 in
Accordingly, in this embodiment, the first and second driving blocks 200 and 210 are configured to include balance adjustment portions 220 and 230 placed on the opposite sides of the rotation axis C of the rotary motor 110 from the first and second driving elements 130 and 140, respectively.
Specifically, the balance adjusters 150 and 160 are attached to the first and second driving elements 130 and 140 with holding arms 132c and 142c interposed therebetween, respectively.
By attaching the balance adjusters 150 and 160 to the first and second driving elements 130 and 140 as described above, gravity centers G1 and G2 of the first and second driving blocks 200 and 201 can be set closer to the rotation axis C of the rotary motor 110 than in the absence of the balance adjusters 150 and 160, thus reducing vibration about the rotation axis C. Furthermore, when the first and second driving blocks 200 and 210 are reciprocated in opposite phases in the state where the balance adjusters 150 and 160 are attached to the first and second driving elements 130 and 140, moments about the rotation axis C are produced at the first and second driving elements 130 and 140 so as to be opposite to the moments M1 and M2 (M3 and M4 in
The balance adjusters 150 and 160 are formed separately from the first and second driving elements 130 and 140, respectively.
In this embodiment, the balance adjustment portions 220 and 230 are provided so that the gravity centers G1 and G2 of the first and second driving blocks 200 and 210 are located between the elastic legs 133 and 143 (in a range indicated by d3 in
In such a manner, the gravity centers G1 and G2 of the first and second driving blocks 200 and 201 can be therefore set closer to the rotation axis C of the rotary motor 110. This can reduce the moment to be produced about the rotation axis C of the rotary motor 110 at driving, thus reducing the vibration.
If the first and second driving blocks 200 and 210 are designed in particular so that the gravity centers G1 and G2 thereof correspond to the rotation axis C of the rotary motor 110, respectively, the moment about the rotation axis C of the rotary motor 110 can be made zero, and the occurrence of vibration can be further reduced.
In this embodiment, the balance adjuster 150 is attached to holding arms (arm portions) 132c which are horizontally extended from both ends of the support frame 132 in the width direction (right-left direction Y) toward the opposed second driving element 140 (backward in the front-back direction).
On the other hand, the balance adjuster 160 is attached to holding arms (arm portions) 142c which are horizontally extended from both ends of the horizontal wall 142j of the support frame 142 in the width direction (right-left direction Y) toward the opposed first driving element 130 (forward in the front-back direction).
In such a manner, the holding arms (arm portions) 132c extended from the first driving element 130 and the holding arms (arm portions) 142c extended from the second driving element 140 are located at different positions in the up-down direction Z (direction orthogonal to the direction X that the first and second driving elements 130 and 140 are arranged and the direction Y of reciprocation thereof). In this embodiment, the holding arms (arm portions) 132c and 142c are extended in the front-back direction X at different heights in the up-down direction. By arranging the holding arms (holding portions) 132c and 142c at different heights in the up-down direction in such a manner, the first and second driving blocks 200 and 210 are miniaturized.
In this embodiment, furthermore, the holding arms (arm portions) 142c out of the holding arms (arm portions) 132c and 142c are configured to sit above the conversion mechanism 180 in the up-down direction Z. By allowing at least one of the pair of holding arms (arms portions) 132c and the pair of holding arms 142c to sit above the conversion mechanism 180 in the up-down direction Z in such a manner, the first and second driving blocks 200 and 210 can be further miniaturized (in the height direction).
The holding arms (arm portions) 132c and the holding arms (arm portions) 142c serve as the balance adjustment portions 220 and 230 by themselves, respectively. In this embodiment, the balance adjustment portions 220 and 230 include the holding arms 132c and 142c extending from the first and second driving elements 130 and 140 toward the opposite sides across the rotation axis C of the rotary motor 110 from the first and second driving elements 130 and 140, respectively.
Accordingly, if the first and second driving elements 130 and 140 are not provided with the balance adjusters 150 and 160 but provided with the holding arms 132c and 142c, respectively, the gravity centers G1 and G2 of the first and second driving blocks 200 and 210 can be set closer to the rotation axis C of the rotary motor 110 than in the absence of the balance adjustment portions 220 and 230. In other words, the occurrence of vibration can be reduced even without the balance adjusters 150 and 160 by properly setting the lengths and weights of the holding arms 132c and 142c.
At the end faces of the holding arms 132c of the first driving element 130, threaded holes 132e are formed, and in the balance adjuster 150, attachment holes 151 are formed at the positions corresponding to the threaded holes 132e. The threaded holes 132e of the first driving element 130 are caused to communicate with the attachment holes of the balance adjuster 150, and screws 171 are then screwed into the threaded holes 132e of the first driving element 130, thus fixing the balance adjuster 150 to the first driving element 130. In short, the balance adjuster 150 is attached to the first driving element 130 from the front in the arrangement direction X of the first and second driving elements 130 and 140.
At the front end of the holding arm 142c of the second driving element 140, a connecting arm 142k connecting the holding arms 142 is provided to extend in the right-left direction Y. At the center of the coupling arm 142k in the width direction, a threaded hole 142e is provided. At the position corresponding to the threaded hole 142e in the balance adjuster 160, an attachment hole 161 is formed. The threaded hole 142e of the second driving element 140 is caused to communicate with the attachment hole 161, and a screw 172 is then screwed into the threaded hole 142e, thus fixing and retaining the balance adjuster 160 onto the second driving element 140.
Since the balance adjuster 160 is attached to the second driving element 140 from behind the first driving element 130 (from the front side in the front-back direction X) and the balance adjuster 150 is attached to the first driving element 130 from behind the second driving element 140 (from the rear in the front-back direction X), the balance adjusters 150 and 160 can be attached after the first and second driving elements 130 and 140 and the rotary motor 110 are assembled. Accordingly, this can facilitate the attachment of the balance adjusters 150 and 160 and the ease of assembly can be enhanced.
Here, the description is made of the case of attaching the balance adjusters 150 and 160; however, the present invention is not limited to this. Specifically, in the case of attaching not only the balance adjusters but also some components (additional components) reciprocating integrally with the driving elements, the additional components are attached in the direction that the driving elements are arranged side by side, whereby the ease of assembly thereof can be enhanced. As the additional components, for example, there can be mentioned components aimed at enhancing rigidity of the driving elements and enhancing slidability thereof.
Moreover, here, the additional components are attached in the direction that the driving elements are arranged side by side; however, the present invention is not limited to this. Specifically, in the case where the number of the driving elements is one, then the additional component is attached to the driving element in “the direction orthogonal to the reciprocating direction of the driving element and orthogonal to the direction of pressing the inner blade against the outer blade”. As a matter of course, “the direction orthogonal to the reciprocating direction of the driving element and orthogonal to the direction of pressing the inner blade against the outer blade”, which is mentioned here, corresponds to “the direction that the driving elements are arranged side by side”, which is mentioned in the case where the number of the driving elements is two or more.
The balance adjusters 150 and 160 are provided at the outermost portions of the driving elements 130 and 140 (at both ends in the front-rear direction X), respectively. In this embodiment, as shown in
As shown in
Since the balance adjusters 150 and 160 are located at the outermost portions of the driving elements 130 and 140, the balance adjusters 150 and 160 can be attached without any restriction due to the shapes of the first and second driving elements 130 and 140. It is therefore possible to increase the flexibility in the shapes of the first and second driving elements 130 and 140.
Furthermore, in this embodiment, the balance adjusters 150 and 160 have different shapes so as to have the gravity centers at the positions optimal to the first and second driving blocks 200 and 210.
To be specific, the balance adjuster 150 is formed by folding a substantially Y-shaped plate member, and the aforementioned attachment holes 151 are formed at both ends of upper part in the width direction.
On the other hand, the balance adjuster 160 is a plate member having a substantially T-shaped front profile, and the aforementioned attachment hole 161 is formed at the substantially center. In such a way, the balance adjusters 150 and 160 can be formed into optimal shapes for the first and second driving elements 130 and 140.
Moreover, the height positions of the individual attachment holes 151 and 161 are differentiated from each other, whereby the flexibility in the fixing structures to the first and second driving elements 130 and 140 is enhanced. In such a way, the first and second blocks 200 and 210 are designed so that the height positions of the balance adjusters 150 and 160 can be substantially the same in the event of being attached to the first and second driving elements 130 and 140, whereby the miniaturization of the first and second driving blocks 200 and 210 is achieved.
Furthermore, at least one or more of the balance adjusters (balance adjusters 150, 160) is attached to each of all of the driving elements (first and second driving elements 130, 140). In such a way, the volume per the balance adjuster can be reduced.
Moreover, the balance adjuster 160 as one of the pair is attached from the rear side of the first driving element 130 (that is, from the front in the direction that the drive elements are arranged side by side), and the balance adjuster 150 as the other of the pair is attached from the rear side of the second driving element 140 (that is, from the rear in the direction that the driving elements are arranged side by side). In such a way, the balance adjusters 150 and 160 can be surely fixed without restricting the structures of the first and second driving elements 130 and 140.
Furthermore, in this embodiment, the balance adjusters 150 and 160 are formed of the metal (material denser than the first and second driving elements 130 and 140). Therefore, further miniaturization of the balance adjusters 150 and 160 can be achieved. In such a way, it becomes possible to achieve the miniaturization of the whole of the head section 3, and moreover, it becomes possible to reduce the vibrations generated by the reciprocation of the first and second driving elements 130 and 140.
Moreover, the balance adjusters 150 and 160 are attached to the first and second driving elements 130 and 140 by the screws 171 and 172. In such a way, the balance adjusters 150 and 160 can be surely fixed, and moreover, the weight of the balance adjusters 150 and 160 can be reduced since the weight of the screws 171 and 172 can also be included in the balance adjusters.
In this embodiment, the balance adjusters 150 and 160 are attached to the first and second driving elements 130 and 140 so that the thickness directions of the plate-shaped balance adjusters 150 and 160 match the front-rear direction X, respectively. It is therefore possible to maximize the distance between the points of action of the balance adjusters 150 and 160 (distance between each gravity center and the rotation axis C) while preventing an increase in dimension in the front-rear direction X, thus miniaturizing the first and second blocks 200 and 210.
Furthermore, in this embodiment, notches 152 are formed at both right and left sides of the balance adjuster 150, and notches 162 are formed at both right and left sides of the balance adjuster 160.
On the other hand, protrusions 132d are formed in the holding arms 132c of the first driving element 130 and are configured to be engaged with the notches 152 of the balance adjuster 150. Moreover, protrusions 142d are formed in the holding arms 142c of the second driving element 140 and are configured to be engaged with the notches 162 of the balance adjuster 160. These engagements allow the balance adjusters 150 and 160 to be respectively positioned and fixed to the driving elements 130 and 140 so as not to move up, down, right, and left.
As shown in
In this embodiment, the balance adjustment portions 220 and 230 provided for the first and second driving elements (one driving element) 130 and 140 are arranged so that the holding arms 132c and 142c and the balance adjusters 150 and 160 (at least apart of each of the balance adjustment portions 220 and 230) are slightly sit in spaces formed in the second and first driving elements (the other element) 140 and 130, respectively. This prevents the holding arms 132c and 142c from interfering with the driving elements 140 and 130 facing the same and prevents the pair of driving elements 130 and 140 from increasing in size, respectively.
Specifically, the first and second driving elements 130 and 140 are assembled to each other in such a way that the holding arms 132c of the first driving element 130 pass through shoulder spaces of the second driving element 140 (above the horizontal wall 142j) and the holding arms 142c of the second driving element 140 pass through space under the first driving element 130 (space between the pair of elastic legs 133: corresponding to a later described window 132h in this embodiment).
Furthermore, in this embodiment, the window 132h which allows the conversion mechanism 180 to be visible is provided.
Specifically, the pair of elastic legs 133 and the support frame 132 of the first driving element 130 are formed in a gate shape to provide the window 132h surrounded by the pair of elastic legs 133 and support frame 132 on three sides, thus allowing the inside (conversion mechanism 180) to be visible in the front-back direction X. Providing the window 132h in such a manner facilitates the work to assemble the driving blocks and the work to check the joint of the conversion mechanism 180.
Still furthermore, in this embodiment, the first driving element 130 is provided with a window 132g. The window 132g is composed of the support frame 132 and holding arms 1320 to allow the inside (conversion mechanism 180) to be visible in the up-down direction Z. Moreover, the second driving element 140 is provided with a window 142g which is composed of the holding arms 142c and connecting arm 142k and allows the inside (conversion mechanism 180) to be visible in the up-down direction Z. By allowing the inside (conversion mechanism 180) to be visible in the up-down direction Z, the assembling and checking works are further facilitated.
In this embodiment, the balance adjusters 150 and 160 are made of metal (a material denser than the first and second driving elements 130 and 140). The balance adjusters 150 and 160 can be therefore miniaturized, and the head section 3 can be miniaturized as a whole. In this embodiment, as described above, the balance adjusters 150 and 160 are provided in a water-proof space (sealed space) 80 sealed so as to prevent body hair cut by the inner blades 54 or water used to wash the inner blades 54 from entering. This can prevent the balance adjusters 150 and 160 made of metal from rusting.
In this embodiment, the elastic legs 133 and 134 are placed so that central portions of the elastic legs 133 and 134 in the front-back direction X (an intermediate line in the direction orthogonal to the direction of reciprocation and the direction of attachment: a centerline D shown in
In the driving elements 130 and 140, walls 132f and 142f for reinforcement are formed, respectively. In this embodiment, the wall 132f is formed inside the line E of action of the reaction force due to the lifting spring 132b (rearward of the line E of action in the front-back direction X). The wall 142f is formed inside the line E of action of the reaction force due to the lifting spring 142b (forward of the line E of action in the front-back direction X).
By forming the walls 132f and 142f inside the lines E of action of reaction forces due to the lifting springs 132b and 142b in such a manner, it is possible to reduce the influence of the moment about the Y axis due to the walls 132f and 142f while preventing the driving elements 130 and 140 from being deformed by the reaction forces due to the lifting springs 132b and 142b.
The wall 132f is shorter than the elastic legs 133 so as not to block the window 132h. The window 132h is closed by attaching the balance adjuster 160. This can prevent that sound produced by the driving elements leaks out.
As described above, in this embodiment, the first and second driving blocks 200 and 210 are configured to include the balance adjustment portions 220 and 230 arranged on the opposite sides of the rotation axis C of the rotary motor 110 from the first and second driving elements 130 and 140, respectively.
Accordingly, the gravity centers G1 and G2 of the first and second driving blocks 200 and 210 can be set closer to the rotation line C of the rotary motor 110 than in the absence of the balance adjustment portions 220 and 230. In other words, it is possible to shorten the distance between the rotation axis C of the rotary motor 110 and the gravity center of each driving block and therefore reduce the moment about the rotation axis C at each driving element. This can reduce the vibration of the reciprocating electric shaver 1 including a plurality of driving elements arranged side by side.
Hereinabove, the preferred embodiment of the present invention is described. However, the present invention is not limited to the aforementioned embodiment, and various modifications thereof can be made.
In accordance with the present invention, the reciprocating electric shaver can be obtained, which is capable of enhancing ease of the assembly of some components even in the case of attaching the components to the driving elements.
Number | Date | Country | Kind |
---|---|---|---|
2010-156134 | Jul 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/063479 | 6/13/2011 | WO | 00 | 1/2/2013 |