1. Technical Field
The invention relates generally to combustion engines, and particularly to mechanism which extract energy from the exhaust gas and control the exhaust gas recirculation. The mechanism, consisting of an exhaust gas driven, reciprocating piston, pumping pressurized fluid into an accumulator and exhaust gas to the combustion chamber, improving engine efficiency and emissions.
2. Background Art
Currently, exhaust gas driven rotational mechanisms as turbo and pressure wave chargers are utilized to charge the combustion chamber with pressurized air, increasing the power density and efficiency of the engine. Belt or gear driven compressors overcome the shortcomings of the chargers but reduce the gains in efficiency.
Turbo chargers, where the exhaust driven turbine drives an impeller to charge fresh air into the combustion chamber, operate at very high speeds to obtain sufficient efficiencies. Their reaction to load changes is slow (turbo lag) and the operating profiles of engine and charger overlap only partly. Extended air flow circuits or additional turbo chargers overcome the shortcomings in operating profiles, but increase the weight, size and costs. Compressors fulfill the requirements, but consume power for driving them.
Compound charge mechanisms transfer power from the exhaust turbine mechanically to the crankshaft, improving power output and efficiency, but increase the complexity and costs of the engine noticeably.
Pressure wave chargers, utilizing a belt driven rotating cell structure, transfer the exhaust pressure wave directly into the intake pressure wave. The charger fulfills the operating requirements of the engine, but the uncontrollable mixing of exhaust and fresh air within each cell and the heat transfer between the gases are drawbacks. Wave chargers with a reciprocating piston separate the exhaust and intake wave physically, but are not utilized to transfer mechanical power to the drive system to increase power output and efficiency.
EGR mechanisms utilize tubes and valves, actuated by the engine management system, to control the flow of exhaust gas to the combustion chamber utilized for reducing the emissions. The mechanisms are space consuming and costly.
In a known combustion engine with a reciprocating pressure wave charger, disclosed in U.S. Pat. No. 6,293,231 B1, utilizes a charger piston for providing charge air for the combustion chamber. The displacements at the engine exhaust and intake air end of the piston are of the same size, and the intake air end consists of one charge section only.
Although advantageous where a reciprocating exhaust pressure wave charger is utilized, concepts for extracting mechanical energy from the exhaust gas through a mechanical compound mechanism and a charger piston with a separate section for exhaust air for providing exhaust gas for improved combustion conditions (EGR) have not been utilized.
It is therefore an object of the invention to provide simplified mechanisms for extracting mechanical power from the exhaust gas and for controlling the recirculation of exhaust gas for the combustion chamber (EGR) for increased engine efficiency and reduced emissions.
Typically, pressure wave charger having a piston bore with a centrally mounted reciprocating charger piston. Typically, the first piston end is driven by exhaust gas energy, and the opposing air end charges the combustion chamber with pressurized air. In accordance with the present invention, the charger piston has a second opposing air end for charging the combustion chamber with exhaust gas (EGR) and a third opposing hydraulic end for extracting mechanical energy from the charger piston.
The piston chamber of the second air end is in fluid communication with the exhaust and the combustion chamber of the engine. Valves control the ingress from the exhaust and egress to the combustion chamber, and the amount of EGR provided.
The hydraulic end is in fluid communication with a low pressure and high pressure section of the hydraulic circuit, controlled by valves. During the expansion stroke of the charger piston, fluid is provided to the high pressure section of the hydraulic circuit. The force for returning the piston into TDC position is provided by fluid from the low pressure section or a bias structure (spring).
For increased utilization of the exhaust energy, the hydraulic end has a smaller inner and a larger outer face in fluid connection with the low pressure and high pressure section of the circuit. Directional control valves determine the flow of fluid between the sections of the hydraulic system and the faces at the hydraulic end. During the period of high exhaust gas pressure and high piston forces, the larger outer face is in fluid communication with the high pressure section of the hydraulic circuit. With declining exhaust pressure at the end of the expansion stroke, fluid communication between both faces requiring less piston force to advance high pressure fluid into the hydraulic circuit, increasing the recuperation of exhaust gas energy.
The structures of the second air and hydraulic ends are expected to minimize heat, friction and leakage losses, and to reduce space requirements and weight when compared to current systems.
The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with the further objects and advantages thereof, may be best understood by reference to the following description taken in conjunction with the accompanying drawings, wherein like reference numerals identify like elements, and wherein:
The exhaust mechanism, shown in
Piston 4 opens exhaust port 8 providing exhaust gas to chamber 11 and face 12 at air end 13 of charger piston 6 transfers the exhaust gas pressure directly into pressurized fresh air at face 14, pressurized exhaust air at face 15 for charging combustion chamber 10, and pressurized fluid at hydraulic end 16 to be stored in accumulator 17, thus reducing the losses of exhaust gas energy and frictional, and the size and cost of the compound charge mechanism 5.
Air end 13 having exhaust chamber 18 with face 15 is in fluid communication with exhaust port 19 (muffler) through non-return valve 20, and with combustion chamber 10 through air intake port 9 and non-return valve 21. Fresh air chamber 22 at face 14 is in fluid communication with the air intake 23 (air filter) through non-return valve 24 and intake port 9 through non-return valve 25.
Hydraulic end 16 having chamber 26 with outer piston face 27 is in fluid communication with reservoir 28 through non-return valve 29 and to accumulator 17 through non-return valve 30.
More specifically, the charger piston 6 reciprocates within charger piston bore 7 between top-end position 31 and bottom-end position 32 (represented by dashed lines) by the forces of the exhaust gas pressure wave from the combustion chamber 10. Initially, spring 50, acting in opposite direction of the exhaust gas force at face 12, advance charger piston 6 into top end position 31, drawing fresh air from air intake 23 through non-return valve 24 into chamber 22, exhaust gas from port 19 through non-return valve 20 into chamber 18, and hydraulic fluid from reservoir 28 through non-return valve 29 into chamber 26 of hydraulic end 16.
After combustion, pistons 4, 4′ advance towards their bottom end position 34, 34′, providing pressurized exhaust gas to face 12, driving charger piston 6 towards bottom end position 32, pumping fresh air from chamber 22 through valve 25, and exhaust air from chamber 18 through valve 21 into combustion chamber 10. Simultaneously, hydraulic fluid is pumped from chamber 26 through valve 30 into accumulator 17, storing the recuperated exhaust gas energy.
Referring to
In addition to the configuration in
opens providing high fluid pressure from chamber 26 to chamber 39, reducing the required gas pressure at face 33 to advance high pressure fluid into accumulator 17 for extracting the reduced amount of exhaust gas energy when approaching bottom end position 32. During suction stroke, hydraulic end 38 draws fluid from reservoir 28 through no return valve 29 and from chamber 39 through control valve 42.
Referring to
Referring to
While preferred embodiments have been illustrated and described, it should be understood that changes and modifications can be made without departing from the invention in its broadest aspect. Various features of the invention are defined in the following claims.