The present invention relates to a reciprocating piston engine with rotating cylinder for generating torque. The reciprocating piston engine preferably works as a combustion engine; however, with various minor structural variations and arrangements of the control channels it can also be used in areas of hydraulics. Specifically, it can be used for hydraulic pumps, overpressure pump, and vacuum pumps.
The best known representative of a rotary piston engine in the field of combustion engines is the Wankel engine. It has a moving trochoidal piston that forms a working chamber. The piston moves by means of internal gears and eccentric bearing of the engine shaft in the interior space of an epitrochoid. The corners and lateral surfaces of the piston have sealing elements. Gas exchange occurs by opening and closing slits in a housing enclosing the piston. The Wankel engine is characterized by its total mechanical balance, its compact construction due to the lack of a valve train. However, disadvantages are the low torque and the unfavorable combustion chamber geometry with long combustion paths, resultant high hydrocarbon emissions, and higher fuel and oil consumption and higher manufacturing costs compared to other reciprocating piston engines. In addition, due to the working principle there is not a direct opportunity for realizing a diesel engine with the Wankel principle.
The object of the present invention is to create a reciprocating piston engine whose overall efficiency is increased relative to that of reciprocating piston engines in prior art, whose mass/performance ratio is improved, whose control is structurally simplified, whose production and assembly is less complex, whose smooth running is optimized, and whose pollutant emissions are reduced.
This object is achieved with a reciprocating piston engine that includes a rotor housing for transferring torque to an engine output drive; a contoured guide element in the rotor housing, having a closed, curvilinearly contoured shape, around which the rotor housing is rotatable; at least one compression unit in the rotor housing, each unit including a piston and a cylinder, with the piston having a straight line of action in a plane perpendicular to the axis of rotation of the rotor housing; a connecting rod, rigidly coupled to the piston, movable along a path determined by the contoured guide element, for transferring controlled movement specified by the contoured guide element to the piston; and a guide part, joined to the connecting rod, and movable along a separate guide in the rotor housing, with the connecting rod, the piston, and the guide part each performing a single stroke along a straight line in the rotor housing. Additional embodiments having further advantages are also disclosed.
A reciprocating piston engine with rotating cylinders has at least one compression unit that is arranged in a rotor housing, whereby in an internal area of the rotor housing there is a space that has a contoured guide element about which the piston is arranged such that it can move 360° in the rotatable rotor housing, whereby the piston is coupled to the contoured guide element such that the contoured guide element effects a stroke of the piston during the movement of the cylinder unit about the contoured guide element. This construction of the reciprocating piston engine creates a completely new principle. While in the past with the conventional reciprocating piston engines the cylinder housing was fixed and the reciprocating pistons conveyed torque via a rotating crankshaft, in the present case the piston is arranged such that with the rotor housing it can rotate 360°about a contoured guide element. In addition this makes possible combustion of a combustible medium in a combustion chamber such that pressure builds on the piston. The pressure on the piston is also applied to the rotor housing. Since it is arranged rotatable about the contoured guide element and the piston is coupled to the contoured guide element, torque occurs about the contoured guide element, which leads to a rotary movement of the rotor housing about the contoured guide element. At the same time, the coupling of the contoured guide element and the piston controls the stroke of the piston. This control realizes the cycles of the reciprocating piston engine such as induction, compression, combustion, and exhaust. The 4-cycle principle is preferably applied. However, with a suitable design it is also possible to apply the 2-cycle method. The torque generated depends especially on how many pistons are arranged in the rotor housing. This can be made dependent on the size of the rotor, and vibrations that occur can also be taken into consideration. In particular a plurality of rotor housings can be coupled to one another (in the manner of a radial engine) so that the result is a series of pistons situated one after the other that with the rotor housing are movable about a contoured guide element. Preferably one rotor housing has three, four, or more pistons.
Thus, in accordance with the invention the line of action of the piston of a compression unit (piston stroke direction) is arranged in a plane and lies perpendicular to the axis of rotation of the rotor such that the line of action runs in a straight line and eccentric to the axis of rotation of the rotor.
Preferably the contoured guide element is designed such that during a cycle a combustion chamber limited by the piston is largely isochoric, that is, it has a constant volume. The combustion chamber does not change over a certain period of time of the cycle. This achieves particularly high torque generation about the contoured guide element since the combustion chamber itself remains largely constant. In contrast to a different reciprocating piston engine, this results in complete combustion of the combustion gas in the combustion chamber, and also the temperature that occurs during combustion, and thus the increase in pressure in the combustion chamber, can be taken advantage of for a long time. Such a period of an isochoric combustion chamber is adjusted using the rotational speed. Another deciding factor is the length of the cycle. This is preferably at least 90°, however in particular it is through a 100° rotation about the contoured guide element. In a corresponding adaptation of the exhaust of the combusted gas, it is possible for a largely isochoric combustion chamber to be realized through approximately 120° and more.
Preferably a rotor has four compression units each including a piston and corresponding cylinder that are arranged offset to one another by 90°. It is possible during the cycle for the piston to perform one stroke due to the geometry of the contoured guide element, which is preferably closed. This especially makes sense when the intent is to ensure improved flow, and thus combustion, in the combustion chamber. The stroke that is controlled by the contoured guide element is preferably such that an induction stroke is clearly longer than an exhaust stroke. Preferably the contoured guide element for this reciprocating piston engine has a path shape that has a first, a second, a third, and a fourth segment, all of which are convex, concave, or linear. Each stroke cycle of the piston is thus uniform. In particular the segments are connected to one another such that largely uniform (negative or positive) acceleration of the piston is produced so that material load is kept low. In particular in the area of the reversal points the contoured guide element is designed such that compressive loads that occur due to the coupling of piston and contoured guide element remain as low as possible. One embodiment of the contoured guide element provides that this is realized in a cam disk. The cam disk has a slot. The slot is designed such that it provides the contoured guide element along which the piston travels according to the coupling. Preferably the contoured guide element/curve guide is embodied such that they perform at least one cycle during one complete rotation of the cylinder units.
Preferably the reciprocating piston engine has an eccentric disk and a first and a second cam disk. The two cam disks are arranged opposite the eccentric disk and each has a congruent contoured guide element. Between the two cam disks and the eccentric disk a connecting rod of the piston is guided into the slot via a corresponding guide. The controlled movement provided by the contoured guide element via the connecting rod is transferred to the piston, which completes its stroke along the cylinder chamber and its guide.
The piston is preferably guided via a needle-borne spacer shaft in the fixed cam mechanism. The spacer shaft is preferably a single piece, for instance cast or forged. In one further design, however, it is made of individual components that have been combined into a whole. The cam mechanism is formed by the two cam disks and the eccentric disk. Offsetting the two flanks of the slot curve provides play-free guidance for the piston. Each flank has its own roller that is situated on the spacer shaft. The rollers run therethrough in opposing rotational directions and are constantly held in place.
One further development of the reciprocating piston engine provides that a guide part that is arranged on the piston is separated from the piston by a sealing part. The sealing part and the guide part are coupled to the piston and are rotatably carried with it. The rotatably carried coupling transfers the force acting on the piston to the rotor housing. The guide part is movably arranged along a separate guide in the rotor housing. The guide part is preferably disposed at least in part in the rotor housing. The sealing part, for instance formed via the piston with its piston rings and the connecting rod connected thereto, thus forms a first arm, while the guide part forms a second arm separated therefrom. These two arms are preferably connected to one another again at a connecting rod bearing. Thus the sealing and guide part form a lever system. It is preferred that the lever arm of the guide part is shorter than the lever arm of the sealing part. In this manner it is possible to obtain particularly high torque generation on the rotor housing via the connecting rod bearing, to which preferably both arms are attached. In particular the piston with sealing part and guide part is matched to the contoured guide element such that the guide part and the sealing part can each perform one stroke along a straight line in the rotor housing. This means that in particular the guide part ensures that the pressure force acting on the piston is transferred to the rotor housing. One stroke of the guide part is then preferably performed by means of a bearing, in particular a rolling bearing. This is in particular designed such that it is in a position to be able to transfer continuously a pressure force from the guide part to the rotor housing. The sealing and guide part thus form a lever system for transferring a pressure force acting on the piston via the guide part to the rotor housing. The piston with the sealing part and the guide part can be made of one piece, for instance cast or forged. In a further embodiment, however, these are made of individual components that have been combined into a whole. The axis of the guide part perpendicularly intersects the axis of rotation of the rotor.
The piston limiting the combustion chamber is preferably designed such that a mixture rotation is supported in the combustion chamber during the induction process. This occurs for instance using a conical piston head arranged approximately central symmetrically that amplifies swirling by creating a circular squeeze zone. Preferably an inlet angular momentum is obtained for producing swirling in the combustion space by means of angular admission into the combustion chamber. For this, an admission aperture is arranged inclined to the longitudinal axis of the piston (stroke axis), for instance.
Furthermore the reciprocating piston engine has a rotor housing that has a rotationally symmetrical exterior cover. First, this has the advantage that an imbalance on the rotor housing is avoided thereby. This is why it is also preferred that corresponding components of the reciprocating piston engine oppose one another and are thus arranged in pairs in order to avoid corresponding unbalance torque at high rotational speeds, for instance from 5000 to 8000 min−1, in particular of 12000 min−1 (revolutions per minute). Preferably desired is an arrangement of the components such that the forces that are generated based on the rotation of the rotor housing compensate one another. Also, a rotationally symmetrical exterior cover makes it possible for gas supply and gas discharge in the combustion chambers in the rotor housing to be designed particularly gas tight. One embodiment of the reciprocating piston engine has on the exterior cover of the rotor housing a rotating gas exchange/sealing system, the surface of which radially closes with, that is, is sealingly adjacent to, the exterior cover of the rotor housing. If the rotor housing is arranged in a cover housing, the rotatably carried gas exchange/sealing system is in a position to produce a seal between the cover housing and the rotor housing.
The rotor housing is preferably arranged in a cover housing that has at least a concave surface that is arranged opposing an exterior cover of the rotor housing. The gas exchange/sealing system is designed such that the combustion chamber(s) in the rotor housing are correspondingly sealed during each of the cycles/phases: induction, compression, combustion, and exhaustion. In addition, the sealing system ensures the most complete possible filling/evacuation of the combustion chamber via a corresponding supply/discharge of the inflowing and outflowing gas. For this, for instance arranged in the cover housing, are corresponding control channels or corresponding apertures along which the combustion chamber is filled and discharged. The control channels can be arranged along the surface opposing the exterior cover of the rotor housing or even lateral thereto along the side surface of the rotor housing. This is also true for the gas exchange/sealing system. Due to the rotating gas exchange/sealing system, the control channels, preferably in the form of slits, can be relatively long, for instance they can extend across a 10° to 30° angle of rotation via discharge channel or for instance up to 120° angle of rotation via inlet channel or more; the inlet channel is preferably substantially longer than the discharge channel. The depth and the width of the control channels and the distance between the control channels depends on the size of the reciprocating piston engine. The control channels can be appropriately adapted to the inflow conditions and to the respective pressures during inflow and outflow.
Preferably the gas exchange/sealing system has a radially movable and preferably rotatable slide element that is under pressure that is attached eccentrically on the exterior cover of the rotor housing. This slide element is for instance held in a slot that is arranged eccentrically on the exterior cover of the rotor housing. The slide element, which is preferably roller-borne, seals the rotor chamber against the opposing cover chamber. For this, the roller-borne sliding ring preferably also has a surface corresponding to that of the opposing cover housing. This is preferably spherical. In addition, the sliding ring has at least one sealing lip, preferably two sealing lips. The sealing lip touches the cover housing and thereby triggers a sealing effect. In this manner it is ensured that the system is leak-tight, even if there is an overflow of an ignition channel with a spark plug arranged therein. When for instance two sealing lips are arranged on a circular sliding ring, the first sealing lip encloses the second sealing lip. Both sealing lips are arranged circular in one another. The sliding ring also preferably performs an axial movement in addition to the radial movement. The axial movement is an axial rotational movement. For this, the sliding ring is attached eccentrically and is arranged with respect to the surface of the cover housing such that the latter produces a rotational movement on the sliding ring. The rotational movement has the advantage for instance that, due to it, any foreign bodies present are transported out due to the radial force and are thus removed from the path of travel.
In order to be able to reduce the torque on the rotor housing, an output drive is preferably flange-mounted to the rotor housing. This is done for instance by means of a speed-transforming gear, preferably by means of a planetary gear. This makes it possible to increase the number of rotations and also to decrease the number of rotations. Particularly smooth running can be obtained when, in addition to the reciprocating piston engine, at least one additional reciprocating piston engine is additionally arranged in a multiple arrangement one after the other on one shaft. For instance this makes it possible for a first reciprocating piston engine to be offset 180° from a second reciprocating piston engine with respect to the phase of the cycle segment. This improves running smoothness when there is simultaneous ignition of the first and second reciprocating piston engines. One further embodiment provides that a plurality of reciprocating piston engines present in multiple arrangement on one shaft or separate from one another can each be turned on and off individually. It is also possible for ignition of a reciprocating piston engine to be triggered for one cylinder. This is possible for instance when using the reciprocating piston engine when decelerating to save fuel, as is known for motor vehicles. Another embodiment again has modifiable inlet and outlet apertures for the inflow and outflow of the medium to be ignited and for any air to be supplied. This modification is possible for instance by means of a throttle cross-section. The throttle cross-section is preferably controlled or regulated by means of an engine control unit corresponding to the required output.
For ensuring the most frictionless possible running of pistons and other movable components, the reciprocating piston engine has a lubricating system that is independent of the installation position of the reciprocating piston engine, that is, it is position insensitive. The lubricating system is embodied as position-insensitive circulating forced-oil lubrication. The oil is drawn in from the oil ring by the annular gear pump. A pressure relief valve within the pump housing limits the oil pressure and conducts the excess oil back into the intake channel of the pump. From the pressure channel the oil is conducted through the oil filter to the oil force-feed nozzles. From there, the lubricating oil travels into the rotor housing. The rotor housing has a plurality of rotatably carried lubricating channels. These distribute the lubricating oil to the lubrication points. Due to centrifugal forces, the lubricating medium, generally oil, is pressed outward so that preferably the moving components are lubricated from the interior of the rotor housing outward. In this manner it is possible to take advantage of the rotational speed of the reciprocating piston engine in another manner.
The oil is returned via the rotor housing, which has a plurality of rotatably carried spin channels. The centrifugal force presses the lubricating oil out through the spin channels. The oil is thrown against the opposing oil ring aperture, drips down, and travels into the closed part of the oil ring. There it is fed back into the lubrication cycle. This process is repeated continuously in order to assure reliable position-insensitive lubrication. Preferably the oil ring can be rotated 360°, is roller-borne, and is arranged on the front of the cover housing. Two sealing rings seal the oil ring to the intake channel; these are securely joined to the cover housing. Sealing of the side opposing the intake channel is performed by a sealing ring, axially movable and provided with a compression spring, that continuously holds the oil ring in place. The cover housing has apertures on the circumference through which the thrown oil travels into the oil ring aperture. The oil ring is divided into two parts, whereby a first oil ring housing is joined to a second oil ring end housing. However, the oil ring can also comprise one part, for instance a cast part. A float needle valve is arranged in the oil ring, whereby the float needle valve and the oil return bores located in the cover housing return the excess oil to the lubrication cycle. The volume content of the closed part of the oil ring should be less than, but no more than equal to, the volume content of half of the oil ring aperture. This avoids unnecessary excess oil and minimizes losses of all types. Inspection windows for checking the oil level are attached to the oil ring and to the oil ring cover; the windows have markings. The oil level itself is regulated by an oil fill plug and a drain plug arranged in the oil ring.
The reciprocating piston engine in accordance with the invention makes it possible to convert energy contained in a combustible medium into mechanical energy. Through combustion, the medium releases energy in the combustion chamber in which a movable piston is arranged, via which piston the pressure energy occurring from combustion is converted to mechanical energy. The pressure energy produces torque about a fixed axis, which leads to rotation of a combustion space with the combustion chamber and the piston about the fixed axis, whereby mechanical energy is removed via this rotation. This principle has the advantage that it can take advantage of a circular motion or acceleration with a long lever arm, whereby high torques occur about the fixed axis.
The following drawings illustrate one exemplary embodiment of a reciprocating piston engine in accordance with the invention. These explain in detail how the energy contained in a combustible medium is converted into mechanical energy by means of the inventive reciprocating piston engine.
The reciprocating piston engine 1 can also be employed for a multifuel engine. Due to high compression of the reciprocating piston engine 1, which can be ε=14 to ε=25 and greater, it is possible to be able to process fuels of very different quality without damaging the engine. An internal mixture formation is used, for instance, in which for supporting ignition an additional fuel stream, injected directly into the combustion chamber, of 5-10% of the full fuel load quantity ensures firing. In this latter case, an external mixture formation can also be used. Thus, the reciprocating piston engine 1 can be used for a wide variety of fuels. These include alcohol or gas, especially hydrogen, in addition to conventional gasoline or diesel fuels. The components needed for the combustion process are arranged in a cover housing (not illustrated in greater detail) in which the rotor housing 6 is situated.
In addition to different combustion methods, the manner in which the reciprocating piston engine 1 works can also be supported by various supercharging methods. Suitable for this are pressure pulsation intake manifold supercharging, resonance charging, and switch-over flap supercharging systems, whose induction pipe length can be changed depending on number of rotations by opening or closing flaps. In addition to using these supercharging systems, which exploits the dynamics of the air inducted (fluctuation in the air column), mechanical supercharging systems such as for instance positive displacement superchargers can also be used in piston, vane, or Roots types. Exhaust gas turbocharging can also be used, whereby the exhaust gas turbine to be used can be switched on or off depending on the number of rotations of the reciprocating piston engine 1. In addition to exhaust gas turbocharging, pressure wave supercharging with a pressure wave supercharger is also possible. Appropriate supercharging is furthermore supported by the use of charge-air cooling for the reciprocating piston engine 1. In this manner it is possible to obtain even higher compression. A corresponding supercharging unit is connected for instance directly or indirectly to the rotor housing 6 in order to be able to use its rotation energy.
The piston 2, 3, 4, 5 illustrated in
Furthermore, it can be seen from
Furthermore illustrated in
Furthermore, it can be seen from
Via a corresponding supply and discharge of the inflowing gas, the sealing system 23 ensures the most complete possible filling/evacuation of the combustion chamber. For this, arranged for instance in the cover housing 30 are corresponding control channels 33, 34 along which the combustion chamber is filled and evacuated. The control channels 33, 34 are arranged along the surface opposing the exterior cover 23a of the rotor housing 6. This also applies to the gas exchange/sealing system 23. Due to the rotating gas exchange/sealing system 23, the control channels 33, 34 can be relatively long. Preferably the inlet channel 33 is substantially longer than the outlet channel 34. The depth of the control channels 33, 34 and the width of the control channels 33, 34 and the distance between the control channels 33, 34 depends on the size of the reciprocating piston engine.
The reciprocating piston engine 1 has a cover housing 30 that is divided into two parts. A first partial cover housing 39 is joined to a second partial cover housing 40. The rotating rotor housing 6 is arranged in the cover housing 30. The rotor housing 6 is preferably also divided into two parts. A first partial rotor housing 41 is joined to a second partial rotor housing 42. The surface of the cover housing 30 that opposes the exterior cover 23a of the rotor housing 6 is curved, in fact, it is concave. With regard to sealing, this spherical design of the surfaces has the advantage that it is easier to obtain a gas-tight seal by means of the gas exchange/sealing system 23, whereby the production tolerances for the gas exchange/sealing system 23 are selected such that the functional spaces are adequately sealed, even despite the freedom of movement the movable parts have. Furthermore, a port 43 is arranged on the cover housing 30. This is the port for the discharge channel 34. The inlet channel 33, which is illustrated only in FIG. 1 and which runs farther in the cover housing 30, is arranged opposing the piston such that gas is supplied eccentrically. In this manner a swirling effect is generated when the gas flows in. The degree of eccentricity is again indicated by the angle α.
In addition, the guiding of the connecting rod or the piston along the contoured guide element 8 can be seen in FIG. 2. The contoured guide element 8 is formed by one eccentric disk 44 and by two slots 47 that are congruent in terms of course and that are arranged in mutually opposing cam disks 45, 46. Arranged in the slots 47 is a spacer shaft 18, the ends 48, 49 of which each have one rolling bearing 50. Rollers 51 are allocated to the rolling bearings 50. The rollers 51 and the spacer shaft 18 run along the contoured guide element 8. A needle bearing 17 is arranged on the spacer shaft 18 as connecting rod bearing. It is characterized especially in that it can receive and transfer high bearing forces. This is advantageous for the forces and torques that occur from the sealing part and guide part 19 because of the lever system. The external flank of the slot 47 receives the centrifugal forces of the pistons 2, 3, 4, 5, whereby the curve flank of the eccentric disk 44 receives the gas forces. The roller-borne roller 51 has play against the internal curve flank of the slot 47. Since it performs one rotation about its own axis when rolling on the external curve flank, which has the wrong direction relative to the other curve flank. This play is avoided using the eccentric disk 44, since the two flanks of the slot curve 47 are offset to one another and each flank has its own roller 51 on the spacer shaft 18. The rollers 51 then run in opposing directions of rotation and can be kept permanently in place. The cam disks 45, 46 are arranged opposing the eccentric disk 44, whereby the contoured guide element are bolted to one another congruent and immovable. The cam disks 45, 46 and the eccentric disk 44 are themselves rigidly joined via the housing cover 52 to the cover housing 30. The cam disks 45, 46 and the eccentric disk 44 further support a rotor housing bearing, embodied in this case as a rolling bearing 53.
The rotor housing 6 has a plurality of rotably carried lubricating channels 59; these distribute the lubricating oil to the lubrication points. Due to centrifugal forces, the lubricating medium, generally oil, is pressed outward so that preferably the moving components are lubricated from the interior of the rotor housing 6 outward. In this manner it is possible to take advantage of the rotational speed of the reciprocating piston engine in another manner. The oil is returned via the rotor housing 6, which has a plurality of rotatably carried spin channels 60. Centrifugal force presses the lubricating oil out through the spin channels 60. The oil thrown against the opposing oil ring aperture 61, drips down, and travels into the closed part of the oil ring 57. There it is fed back into the lubrication cycle. This process is repeated continuously in order to assure reliable position-insensitive lubrication.
Preferably the oil ring 57 can be rotated 360°, is borne on rollers 62, and is arranged in the first partial cover housing 39. Two sealing rings 64 seal the oil ring 57 to the intake channel 63; these are securely joined to the first partial cover housing 39. Sealing of the side opposing the intake channel 63 is performed by a sealing ring 66, axially movable and provided with a compression spring 65, that is fixed in a slot 67 and that continuously holds the oil ring 57 in place. The first partial cover housing 39 has apertures 68 on the circumference through which the thrown oil travels into the oil ring aperture 61. The oil ring 57 is divided into two parts, whereby a first oil ring housing 69 is joined to a second oil ring end housing 70. However, the oil ring 57 can also comprise one part, for instance a cast part. A float needle valve 71 is arranged in the oil ring 57. The float needle valve 71 and the oil return bores 72 located in the first partial cover housing 39 return the excess oil/leaks to the lubrication cycle.
In order to have adequate oil pressure present when the reciprocating piston engine 1 is started, it is furthermore possible to also have for instance an oil accumulator container present. This is always maintained under pressure when the reciprocating piston engine 1 is being operated. This pressure does not decrease even when the reciprocating pressure engine 1 is turned off. On the contrary, it does not release this pressure until the reciprocating piston engine 1 is to be started. It is also possible to provide an oil pump separate from the rotor housing 6. This can be supplied for instance via an external energy source such as a battery. Another embodiment provides that an oil pump is itself supplied via an external energy source and also via the reciprocating piston engine 1 itself. It is possible to switch from the one energy source to the other energy source at a pre-definable time.
The reciprocating piston engine 1 is then in a position to be operated at a constant speed. The required speed of the device receiving the energy is then adjusted by means of the infinitely variable speed transmission. In this manner it is also possible to change the torque that is taken. In addition to using an infinitely variable speed transmission, it is also possible to use a gear with gear steps.
A consumer 93 can be connected to the reciprocating piston engines 1a, 1b, 1c; it converts energy that originates in the engines. An intermediate member 94 is preferably also arranged between the consumer 93 and the reciprocating piston engines 1a, 11b, 1c. The intermediate member is for instance a coupling, a gear, or something else.
The reciprocating piston engine 1a, 1b, 1c can also be employed in an interconnection with one or a plurality of other energy supply devices 95. This can be a fuel cell, a battery, or the like. The energy supply device 95 also supplies the consumer 93 with energy. The energy supply device 95 can be turned on and off via the electronics unit 89, just like one or more of the reciprocating piston engines 1a, 1b, 1c. The reciprocating piston engines 1a, 1b, 1c can for instance act as the basic supplier. The energy supply device 95 is only turned on as needed. The reverse is also possible. The two can also supplement one another.
The reciprocating piston engine as described above is preferably operated either alone or with other units. For instance, the reciprocating piston engine can be used for the energy generator in a stationary application. For instance, this is possible for block heating and power stations. Other stationary applications are small energy suppliers or transportable units such as emergency generating sets. Furthermore, because of its construction, the reciprocating piston engine offers the opportunity to be used for commercial motor vehicles, passenger cars, or even small equipment such as lawnmowers, saws, and other such equipment. The reciprocating piston engine can also be used in other transportation means such as motorcycles and mopeds.
Fuel consumption can be reduced with this new reciprocating piston engine. It is also possible, now and in the future, to satisfy the worldwide known exhaust gas regulations with it. The reciprocating piston engine provides a very high torque at very low numbers of revolutions. Therefore very good driving performance is possible. In particular the reciprocating piston engine can be used for vehicles that are operated with hydrogen. The structure of the reciprocating piston engine results as a matter of principle in a reduction in resultant noise emissions. This makes it possible to use the reciprocating piston engine even in noise-sensitive areas. The construction of a reciprocating piston engine in a modular system with many identical components makes it possible to reduce production costs. Because of the work principle, complex components in conventional reciprocating piston engines such as for instance a valve train are not needed. Despite this they are reliable. There are few wear parts because of the fundamentally different construction compared to conventional reciprocating piston engines. This makes maintenance easier. In addition, this makes it easier to exchange the components at less cost. The reciprocating piston engine is designed such that both sealing and appropriate lubrication are assured despite unavoidable heat expansion and any corresponding deformation, even for components under stress, and functionality is assured even with progressive wear.
The functioning principle permits many options for operating the reciprocating piston engine. For instance, it is advantageous to undertake combustion of the fuel at the same cylinder volume in the work cycle. The reciprocating piston engine is also designed such that in the work cycle no inertial forces act against the gas forces. The advantageous 4 cycle method with separate gas exchange provides little loss compared to conventional piston engines. The design of the piston with sealing part and guide part as lever system makes possible high force transmission and high torque. The combustion space can be kept compact, which again requires only a small combustion space surface. What this permits is that the reciprocating piston engine can be liquid-cooled but also air-cooled. Since the point of application of the piston guide lies far outside of the rotor point of rotation, great torque is generated using the gas force in conjunction with the lever arm in the cycle. Furthermore, advantageously only one spark plug and one carburetor or injection nozzle is needed on the reciprocating piston engine. This reduces the number of components that have to be maintained and that are also subject to wear. Combustion space sealing occurs by means of a sliding ring that in particular can be rotating. The rotation provides the fuel/air mixture a swirl that is advantageous for combustion. The seal between the cover housing and the rotor housing occurs using the fixed sealing elements in a secure manner. Using an appropriate gear, for instance a planetary gear, it is possible to increase the number of revolutions of the reciprocating piston engine for the consumer. Another advantage and thus a particular flexibility for the employability of the reciprocating piston engine is a position-insensitive oil supply. The reciprocating piston engine can be used in all conceivable installation positions. Despite this, the oil supply is always assured. Overall, the separation of inlet and discharge outlet channels also enables adequate cooling of all stationary and moving components. This is further supported by the separation of combustion chambers from other movable parts of the engine. The reciprocating piston engine thus ensures high output and certain function with low susceptibility to faults.
List of reference symbols used
Number | Date | Country | Kind |
---|---|---|---|
101 45 478 | Sep 2001 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP02/10196 | 9/11/2002 | WO | 00 | 5/26/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/02536 | 3/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
897260 | Luther, Jr. | Aug 1908 | A |
1285835 | Sunderman | Nov 1918 | A |
1918174 | Berggren | Jul 1933 | A |
1990660 | McCann | Feb 1935 | A |
2154370 | Wolf | Apr 1939 | A |
2886017 | Dib | May 1959 | A |
3572209 | Aldridge et al. | Mar 1971 | A |
3841279 | Burns | Oct 1974 | A |
6705202 | Harcourt et al. | Mar 2004 | B2 |
Number | Date | Country |
---|---|---|
1 388 660 | Feb 1965 | FR |
1 422 339 | Dec 1965 | FR |
WO 8301091 | Mar 1983 | WO |
Number | Date | Country | |
---|---|---|---|
20040216702 A1 | Nov 2004 | US |