The present invention relates to a reciprocating piston engine and in particular to such an engine which has a sleeve valve opening and closing the inlet and exhaust ports of the engine.
Sleeve valve engines are already known, for instance the “Burt-McCollum” sleeve valve engine. Sleeve valve engines were prevalent in the 1940s and 1950s in aircraft, due to the fact that they offer reduced mass, size and reduced total parts count together with increased power when compared with equivalent poppet valve engines. The Burt-McCollum sleeve valve engine gives an operation that reduces friction because the piston reciprocates within the sleeve, with the sleeve then moving in an elliptical motion within the cylinder and because the sleeve is never stationary with respect to a surrounding bore (to its outside) and with respect to the piston (on its inside), this continuous motion reduces friction by ensuring that there is always a good spread of lubricant between the sliding surfaces.
The parts count engine package size and complexity of sleeve engine are reduced in comparison with a poppet valve engine because gas exchange is performed via ports in the cylinder wall alternately covered and uncovered by a sleeve rather than cylinder head ports opened and closed by poppet valves. This in turn means that the cylinder head itself, where poppet valves are provided in a poppet valve engine, can in a sleeve valve engine instead be dedicated to other components now common in this part of the engine, e.g. direct fuel injectors (used both in compression ignition and spark ignition engines). The absence of poppet valves in the cylinder head also facilitates better cooling of the cylinder head, because cooling ducts can be located in areas through which the poppet valves and ports would extend in a poppet valve engine. This cooling is of particular benefit in the case of spark ignition engines because it allows the engine to operate safely at higher loads without suffering from pre-detonation (usually called “knock”).
Burt-McCollum Sleeve valves were manufactured for aircraft in larger numbers as four-stroke engines, e.g. the Napier Sabre engine and the Bristol Centaurus. They were manufactured in smaller numbers as two-stroke engines, e.g. the Ricardo E.65 engine and the Rolls-Royce Crecy engine.
In all of the sleeve valve engines of the prior art the driving mechanism for driving the sleeve valve drove the sleeve valve between two extreme positions fixed throughout operation of the engine (i.e. fixed in terms of the axial positions of the sleeve valve within the cylinder and also fixed in terms of the rotational positions of the sleeve valve within the cylinder).
According to the present invention there is provided a reciprocating piston internal combustion engine comprising:
a cylinder having a cylinder head and a side wall extending away from the cylinder head;
an inlet port defined in the cylinder side wall via which air is delivered to the cylinder;
an exhaust port defined in the cylinder side wall via which combusted gases are exhausted from the cylinder;
a sleeve valve which slides axially along the cylinder while simultaneously rotating about the axis of the cylinder, the sleeve valve having sleeve ports extending therethrough which move into and out of alignment with the inlet and exhaust ports to thereby open and close the ports;
a piston which reciprocates within the sleeve valve and within the cylinder to define therewith a combustion chamber; and
a sleeve valve driving mechanism which drives the sleeve valve to slide axially along and rotate in the cylinder in times relationship with reciprocation of the piston in the cylinder; wherein:
the sleeve valve is driven between two extreme positions in each stroke and the sleeve driving mechanism is operable to vary in locations the two extreme positions.
The present invention provides variable valve timing in a sleeve valve engine. Variable valve timing is now common in “state of the art” poppet valve engines, such engines having, for instance, one or more “cam phasers” which vary the timing of inlet valve opening/closing and/or exhaust valve opening/closing with changes in engine speed and load in order to optimise engine operation-to the benefit of reduced emissions and reduced fuel consumption.
For a sleeve engine to be of a comparable efficiency to a variable valve timing poppet valve engine the opening and closing of the inlet and exhaust ports is made variable by the present invention in order to optimise engine operation.
Preferred embodiments of the present invention will now be described with reference to the accompanying drawings, in which:
a and 4b schematically illustrate an operating principle of the present invention; and
Turning firstly to
Inlet ports 21 extend around half of the cylinder wall 16 and allow the flow of fresh charge air into the cylinder. Exhaust ports 22 extend around the other half of the cylinder and allow flow of combusted gases out of the cylinder. The sleeve 13 has in it a series of sleeve ports 23 which move into and out of alignment with the inlet ports 21 and the exhaust ports 22 to thereby open and close the ports.
The sleeve 13 is driven to slide in the cylinder while simultaneously rotating about the cylinder axis by a sleeve driving mechanism which reciprocates the sleeve 13 within the cylinder 16 in timed relationship with the reciprocation of the piston 14. The sleeve driving mechanism comprises a cranked sleeve drive shaft 24 and a yoke plate 25 rotatably mounted on a throw 26 of the sleeve drive shaft 24. The yoke plate 25 is connected to the sleeve 13 by a pivotal connection 27 which allows for rotation of the yoke plate 25 relative to a sleeve 13.
A control arm 28 is pivotally connected at one end 29 to the yoke plate 25 and at the other end 30 to a radial arm 31 which extends out from a control shaft 32 and rotates therewith. The cranked sleeve drive shaft 24 and the control arm 28 together act on the yoke plate 25 in such a way that the yoke plate rotates about the throw 28 as the throw 26 rotates with the drive shaft 24. In this way, the sleeve 13 is not only slid up and down the cylinder 16 as shown by the arrow 33, but it is also rotated one way and then another about the axis of the cylinder 16 as indicated by the arrow 34.
The control shaft 32 will be controlled by an electronic controller (not shown). The control shaft 32 can be rotated to rotate the yoke plate 25 around the throw 26, which has the effect of varying the start and end positions to which the sleeve 13 is driven by the driving mechanism 13. The start and end positions are varied not only in terms of the axial position of the sleeve within the cylinder 10, but also the rotational position of the sleeve 13 relative to the cylinder 16.
It is the alignment of the sleeve ports 23 with the inlet ports 21 and outlet ports 22 which determines when the ports are opened by the piston 14 as it moves in its travels. By varying the start and finish positions of the sleeve 13 during its sliding and rotation the timing of the opening and closing of the ports 21 and 22 can be varied with changes in engine speed and load.
The inlet ports 21 and the exhaust ports 22 are each separated from each other by “bridges” in the cylinder block. As the sleeve motion is changed, the area of alignment between the sleeve ports and the cylinder ports varies and this has the effect of giving a larger or smaller aperture for introduction of fresh charge or exhaust of combusted gases.
The engine shown in
The
In
The pair of actuators 50 and 60 respectively slide and rotate the sleeve in the cylinder between two extremes in timed relationship to the movement of the piston. Each actuator is pivotally mounted at each end. The axial orientation of the actuator 50 relative to the cylinder means that as the actuator 50 extends and retracts, the sleeve is slid axially along the cylinder. The tangential orientation of the actuator 60 relative to the cylinder means that as the actuator 60 extends and retracts the sleeve is rotated relative to the cylinder. The controller 54 can control precisely the operation of the actuators 50 and 60 and so with varying engine speeds and loads vary the timing of the opening and closing of the inlet and exhaust ports and also vary in area the port opening in the manner illustrated in
Although in the figure the actuator 50 is axially aligned with the cylinder and the actuator 51 exactly tangentially aligned, in fact the actuators need not be so aligned so long as they are arranged orthogonally to each other. As long as the axes of the actuators intersect at 90° then they can be made to generate the required motion of the sleeve and they do not need any particular orientation to the cylinder axis.
Around the cylinder of any of the engines described above there can be provided a series of rotatable collars 70, 71, 72 as shown in
Number | Date | Country | Kind |
---|---|---|---|
0523553.6 | Nov 2005 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2006/004256 | 11/15/2006 | WO | 00 | 6/12/2008 |