This application claims the benefit of U.S. Application Ser. Nos. 60/703,306, filed Jul. 28, 2005 and 60/704,290 filed Aug. 1, 2005.
Air-operated reciprocating piston pumps are well known for the pumping of various fluids. Such pumps typically have mechanically or pneumatically operated air valves to control the flow of air to the two sides of the piston. Control of such pumps has traditionally been by monitoring and controlling the resulting fluid flow rather than the pump itself. Prior art devices such as Graco's EXTREME-MIX™ proportioner have monitored the position of the piston for purposes of control.
It is therefore an object of this invention to provide a system which allows enhanced monitoring and control of a reciprocating air motor so as to allow monitoring of piston position, cycle and flow rates, total cycles, runaway control and the ability to diagnose failing air motor and pump lower components.
The control uses a magnet mounted in the valve cup of the air motor and two reed sensors mounted in the valve cover to monitor the speed and position of the valve. A solenoid is mounted on the valve cover and can be commanded to extend a plunger into the valve cup to stop valve movement and therefore the pump from running away (typically caused by the fluid supply being empty.) The user interface comprises an LCD and buttons to set up and control the pump. The display can be toggled to display cycle rate, flow rate (in various units), total cycles and diagnostic errors. Setup parameters can include fluid units (quarts, liters, etc.) and the runaway set point.
The reed switches and magnets are located so as to detect when the air valve is at the extreme position of each stroke or in transition or both. The controller calculates the rate at which the motor is running by counting the opening and closing of the reed switches activated by the varying positions of the air valve. The controller then compares that rate to a pre-programmed value to determine if the air motor is in a runaway condition. The that condition is present, the controller activates the solenoid preventing changeover which stops the motor. This acts to prevent spilled fluid and/or pump damage.
A magnetoresistive sensor is located in the center of the air motor to precisely monitor the piston position. The data from this sensor in conjunction with that from the air valve sensors provides the input necessary for precise control and diagnostics of the pump and makes it suitable for metering and plural component application.
The controller of the instant invention can use information from the linear transducer for feedback to the air pressure (or fluid pressure if hydraulic) to control the flow volume and rate by controlling shaft displacement and velocity. This feedback may be used in either a simple meter dispense system with one fluid or a two (or more) component system where the feedback is used to maintain flow, pressure and ratio.
These and other objects and advantages of the invention will appear more fully from the following description made in conjunction with the accompanying drawings wherein like reference characters refer to the same or similar parts throughout the several views.
In an air-operated reciprocating piston pump 10, the controller 12 uses a magnet 14 mounted in the valve cup 16 of the air motor 18 and two reed sensors 20 mounted in the valve cover 22 to monitor the speed and position of the valve 16. A solenoid 24 is mounted on the valve cover 22 and can be commanded to extend a plunger 26 into the valve cup 16 to stop valve movement and therefore the pump 10 from running away (typically caused by the fluid supply being empty or the hose of other supply conduit having a leak/rupture.) The user interface 28 comprises an LCD display 30 and buttons 32 to set up and control the pump 10. The display 30 can be toggled to display cycle rate, flow rate (in various units), total cycles and diagnostic errors. Setup parameters can include fluid units (quarts, liters, etc.) and the runaway set point.
The reed switches 20 and magnets 14 are located so as to detect when the air valve 16 is at the extreme position of each stroke or in transition or both. The controller 12 calculates the rate at which the motor 18 is running by counting the opening and closing of the reed switches 20 activated by the varying positions of the air valve 16. The controller 12 then compares that rate to a pre-programmed value to determine if the air motor 18 is in a runaway condition. The that condition is present, the controller 12 activates the solenoid 24 preventing changeover which stops the motor 18. This acts to prevent spilled fluid and/or pump damage.
A magnetoresistive sensor 34 is located in the center of the air motor 18 to precisely monitor the piston 36 position. The data from this sensor 34 in conjunction with that from the air valve sensors 20 provides the input necessary for precise control and diagnostics of the pump 10 and makes it suitable for metering and plural component application.
The controller 12 of the instant invention seen in
It is contemplated that various changes and modifications may be made to the pump control without departing from the spirit and scope of the invention as defined by the following claims.