Reciprocating rotary arthroscopic surgical instrument

Information

  • Patent Grant
  • 8663264
  • Patent Number
    8,663,264
  • Date Filed
    Friday, March 18, 2011
    13 years ago
  • Date Issued
    Tuesday, March 4, 2014
    10 years ago
Abstract
A surgical instrument includes a cutting member with an implement for cutting tissue, and a drive coupled to the cutting member to simultaneously rotate and translate the cutting member in response to a force applied to the drive. A method of cutting tissue includes positioning an outer member such that tissue is located within the outer member, engaging the tissue with an inner member, and simultaneously rotating and translating the inner member to cut the tissue. A tangential cutting force is applied to the tissue with the inner member to mechanically cut the tissue. The inner member is mechanically driven to undergo simultaneous rotation and translation.
Description
TECHNICAL FIELD

This invention relates to rotary cutting surgical instruments, and more particularly, to a reciprocating rotary surgical instrument for cutting semi-rigid tissue.


BACKGROUND

Conventional arthroscopic surgical instruments generally include an outer tube and an inner member that rotates or translates axially within the outer tube. The outer tube and inner member may interact to create shear forces that cut tissue. This type of cutting is generally used to cut soft tissue, such as muscle, ligaments, and tendons.


SUMMARY

In one aspect, a surgical instrument includes a cutting member with an implement for cutting tissue, and a drive coupled to the cutting member to simultaneously rotate and translate the cutting member in response to a force applied to the drive.


One or more of the following features may be included in the surgical instrument. The drive is configured such that the cutting member reciprocates. The drive includes a drive member attached to the cutting member. The drive member includes a helical groove. The drive includes a translation piece disposed in the groove such that rotary driving of the drive member results in simultaneous reciprocation of the drive member relative to the translation piece.


In the illustrated embodiment, the drive includes an inner drive hub coupled to the drive member. The inner drive hub defines a slot and the drive member includes a key received in the slot rotary coupling the drive member to the inner drive hub such that the drive member rotates with the inner drive hub while being free to translate relative to the inner drive hub. The helical groove includes a left-hand threaded helical channel. The helical groove includes a right-hand threaded helical channel. The cutting member is attached to the drive member to move rotatably and axially with the member.


The implement is a chamfered cutting edge at a distal end of the cutting member. The chamfered edge is a straight cutting edge. Alternatively, the chamfered edge is an angled cutting edge.


The instrument includes an outer tubular member. The cutting member is received within the outer member. The outer member includes a cutting window disposed proximate to a tip of the outer member. The cutting window is an opening in the outer member exposing the cutting member to tissue. The cutting window has a U-shaped proximal end and a saddle-shaped distal end. The saddle-shaped distal end of the cutting window includes a hook.


The translation piece includes a follower received within the groove and a sealing cap over the follower. The follower is free to swivel relative to the sealing cap. The follower has an arched bridge shape. The translation piece is coupled to the drive member such that the translation piece is disposed in the helical groove and swivels to follow the helical groove as the drive member rotates.


In another aspect, a method of cutting tissue includes positioning an outer member such that tissue is located within the outer member, engaging the tissue with an inner member received within the outer member, and simultaneously rotating and translating the inner member to cut the tissue. One or more of the following features may be included. The translating is reciprocating. The outer member is oriented tangentially to the tissue.


In another aspect, a method of cutting tissue includes providing a surgical instrument having an outer member and an inner member received within the outer member for movement relative to the outer member, and applying a tangential cutting force to the tissue with the inner member to mechanically cut the tissue.


In another aspect, a method of cutting tissue includes applying a tangential cutting force to tissue with a member, and mechanically driving the member to undergo simultaneous rotation and translation. The method may include that the translation is reciprocation.


The cutting edge of conventional arthroscopic surgical instruments, such as rotary shears, have difficulty initiating a cut into semi-rigid tissue tend to bounce away from the tissue. Toothed edge geometry somewhat ameliorates this problem because the “teeth” attempt to pierce the tissue to initiate a cut. However, the efficiency of using “teeth” is limited and the limitations are more evident when cutting large volumes of semi-rigid tissue, such as meniscus or intrauterine fibroid tissue. The simultaneous rotating and reciprocating inner member of the surgical instrument of the invention overcomes these difficulties. The tangential approach to the tissue in the method of the invention limits the tendency of the instrument to bounce away from the tissue. In particular, the instrument and method provide a higher resection rate to shorten procedure length, during, e.g., fibroid and polyp resection.


The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1A is a side view and 1B is a cross-sectional view taken along 1B-1B in FIG. 1A of a reciprocating rotary surgical instrument.



FIG. 2A is a top view, FIG. 2B is a cross-sectional view taken along 2B-2B in FIG. 2A, FIG. 2C is a distal end view, and FIG. 2D is a proximal end view of the inner drive hub of the reciprocating rotary surgical instrument of FIG. 1.



FIG. 3A is a top view, FIG. 3B is a side view, FIG. 3C is a cross-sectional view taken along 3C-3C in FIG. 3A, and FIG. 3D is a proximal end view of the helical member of the reciprocating rotary surgical instrument of FIG. 1.



FIG. 4A is a top view, FIG. 4B is a cross-sectional view taken along 4B-4B in FIG. 4A, and FIG. 4C is a distal end of the outer hub of the reciprocating rotary surgical instrument of FIG. 1.



FIG. 5A is an exploded view, FIG. 5B is a partial cutaway view, and FIGS. 5C and 5D are side views of the translation piece and the helical member of the surgical instrument of FIG. 1.



FIG. 6A is a side view, FIG. 6B is a cross-sectional view taken along 6B-6B in FIG. 6A, and FIG. 6C is a top view of the follower of the translation piece of the reciprocating rotary surgical instrument of FIG. 1.



FIG. 7A is a top view and FIG. 7B is a cross-sectional view taken along 7B-7B of FIG. 7A of the cap for the follower of the translation piece of the reciprocating rotary surgical instrument of FIG. 1.



FIG. 8A is a top view and FIG. 8B is a side view of the outer member of the reciprocating rotary surgical instrument of FIG. 1.



FIG. 9 is a side view of the inner member of the reciprocating rotary surgical instrument of FIG. 1.



FIG. 10 illustrates a reciprocating rotary surgical instrument of FIG. 1 in use to cut tissue.



FIG. 11 is a side view of an alternate implementation of the inner member of a reciprocating surgical instrument.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

As shown in FIGS. 1A and 1B, a cutting device 100 includes a driving end 110 and a cutting end 190. The driving end 110 is located at the proximal end of the cutting device 100. The cutting end 190 is located at the distal end of the cutting device 100.


At the driving end 110, there is an inner drive hub 130 with a drive coupler 120, and an outer hub 140. The drive coupler 120 mounts into a rotary driver (not shown), which turns the drive coupler 120 causing a helical member 150 and the inner drive hub 130 to rotate. For instance, the rotary driver is Dyonics Power Handpiece, No. 725355. The inner drive hub 130 with the drive coupler 120 is, for example, a component of Smith & Nephew disposable arthroscopic surgical instrument, No. 7205306. The helical member 150 is located within the inner drive hub 120 and the outer hub 140. The helical member 150 and a translation piece 145 are coupled together such that rotation of the helical member 150 causes linear translation of the helical member 150, as described further below.


The cutting device 100 includes an elongated inner member 185 and an elongated outer member 186, as shown in FIG. 1B. The inner member 185 is tubular with a hollow interior 184. The inner member 185 is fixed to the helical member 150 for axial and rotary motion therewith.


The outer member 186 is also tubular with a hollow interior 187. The inner member 185 is received inside the outer member 186. The outer member 186 is fixed to the outer hub 140 and does not move. The outer member 186 includes a tip 188, which is blunt, i.e., the corners are rounded. At the cutting end 190, the outer member 186 defines a cutting window 170 through a wall 186a of the outer member 186.


Referring to FIGS. 2A-2D, the inner drive hub 130 includes the drive coupler 120, a lumen 136, an aspiration opening 132, and a slot 134. The drive coupler 120 extends from the proximal end of the inner drive hub 130 and mounts in the rotary driver. Debris from the cutting end 190 of the cutting device 100 is aspirated through the aspiration opening 132. The slot 134 is disposed in a wall 131 of the inner drive hub 130. The slot 134 is like a track along one side of the inner drive hub 130. The slot 134 of the inner drive hub 130 is coupled with a key 152 of the helical member 150 (see FIG. 4B) so that rotation of the inner drive hub 130 causes the helical member 150 to rotate while allowing the helical member 150 to move axially relative to the inner drive hub 130, e.g., the key 152 axially slides along the slot 134.


Referring to FIGS. 3A-3D, the helical member 150 of the cutting device 100 is formed of a lubricious material in a tubular shape with a through lumen 159. The inner member 185 is disposed within the helical member 150 and fixed therein, for example, by epoxy, injection-molded, or over-molded plastic.


The helical member 150 includes the key 152 and two helical channels 156, 158 disposed thereon. As shown in FIG. 3B, the key 152 is shaped like a fin and is located at the proximal end of the helical member 150. The key 152 mates with the slot 134 of the inner drive hub 130.


The two helical channels 156, 158 are disposed on a distal portion of the exterior surface of the helical member 150. One helical channel 156 is right-hand threaded; the other helical channel 158 is left-hand threaded. The pitch of the helical channels may be different or the same. The length of the distal portion of the helical member 150 with helical channels 156, 158 is longer than the length of the cutting window 170. The helical channels 156, 158 are smoothly blended together at their ends to form a continuous groove so that there is a smooth transition from one helical channel to the other helical channel at each end of the distal portion of the helical member 150.


The helical member 150 and the inner drive hub 130 are mechanically driven by the rotary driver. The helical member 150 also moves in an axial direction, e.g., reciprocates, as a result of the interaction of the translation piece 145 with the helical channels 156, 158, as described below.


Referring to FIGS. 4A-4C, the outer hub 140 of the cutting device 100 is formed of hard plastic and does not move. An example of an outer hub is a component of Smith & Nephew disposable arthroscopic surgical instrument, No. 7205306, modified with a cutout 144 for receiving the translation piece 145. The cutout 144 is disposed within a wall of the outer hub 140, for example, centrally, as in FIG. 4B, and aligned with the helical member. The translation piece 145 is located in the cutout 144 of the outer hub 140.


As shown in FIG. 1B, the outer member 186 is disposed within the outer hub 140 and fixed therein by a coupling 144 using, for example, epoxy, glue, insert molding, or spin-welding.


Referring to FIG. 5A, the translation piece 145 includes a follower 145a and a cap 145b. Having the two helical channels 156, 158 in conjunction with the slot/key 134, 152 coupling of the inner drive hub 130 and the helical member 150, the rotary driver only needs to rotate in one direction and does not require reversal of the rotational direction upon the translation piece 145 reaching the end of one of the helical channels 156, 158.


Referring to FIGS. 6A-6C, the follower 145a includes a cylindrical head 145a1 and two legs 145a2. As shown in FIGS. 5B-5D, the legs 145a2 form an arch and rest in the channels of the double helix 156, 158 formed in the distal portion of the exterior surface of the helical member 150. The arch of the legs 145a2 is dimensionally related to the diameter described by the helical channels 156, 158 of the helical member 150.


Referring particularly to FIGS. 5C and 5D, as the helical member 150 and the inner drive hub 130 are mechanically driven by the rotary driver (not shown), the follower 145a follows the helical channels 156, 158, swiveling as the follower 145a smoothly transitions from helical channel to helical channel 156,158 at the ends of the distal portion of the helical member 150 having the helical channels 156, 158. The coupling of the follower 145a to the helical channels 156, 158 causes the helical member 150 to also translate. Thus, the inner member 185 simultaneously rotates and reciprocates to cut the tissue.


Referring to FIGS. 7A and 7B, the cap 145b of the translation piece 145 covers the follower 145a to provide a seal to allow sufficient suction to remove aspirated debris. Also, the cap 145b is a separate piece from the follower 145a in order to allow the follower 145b to swivel.


As shown in FIGS. 8A and 8B, the outer member cutting window 170 has a generally oblong shape. The proximal end 172 of the cutting window 170 is U-shaped and the distal end 173 has a saddle shape that forms a hook 174. The distal end 173 is chamfered to provide a sharp edge. The hook 174 pierces the targeted tissue to hold the tissue as the inner member 185 cuts. Also, the shape of the cutting window 170 eliminates galling between the inner and outer members 185, 186, and dulling of the cutting edge of the inner member 185.


The cutting window 170 is disposed proximate to the tip 188 of the outer member 186. The cutting window 170 exposes the inner member 185 over a length L.



FIG. 9 shows that the inner member 185 is generally tubular with hollow interior 187. Aspiration of debris occurs through the hollow interior 187 of the inner member 185, and through the lumen of the helical member to the aspiration opening 132 of the inner drive hub 130. The distal end 183 of the inner member 185 is chamfered to a sharp edge 187 for cutting. The inner member 185 simultaneously rotates about its axis and translates along its axis to cut tissue. The cutting surface of the distal end 183 of the inner member 185 shears the tissue. For example, referring to FIG. 10, the cutting device 100 is placed tangentially against the targeted tissue such that the cutting window 170 exposes the inner member 185 to the tissue. As the inner member 185 rotates and translates, as shown by the arrows, the tissue within the cutting window catches on the hook 174 to initiate the cut and then the cutting edge 183 of the inner member 185 shears the tissue as the inner member 185 advances to cut the tissue. The cut is completed as the cutting edge 183 of the inner member 185 advances beyond the hook 174 of the cutting window 170 within the outer member 186.



FIG. 11 shows an alternative implementation of the inner member. The distal end 283 of the inner member 285 may be angled to a chamfered point so that the cut in the targeted tissue is initiated on one side and then extends across the width of the tissue. Similarly, when the cutting device is placed tangentially against the targeted tissue, the rotating and translating inner member 285 shears the tissue to be cut.


A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. For example, instead of a double helical channel, the helical member may include a single helical channel with a retractable follower and spring, or possibly, attraction and repelling forces of magnets or a solenoid could enable the rotating and reciprocating movements. Also, alternatively, the inner and outer members may have a cross-sectional shape other than circular. Additionally, the shape of the hook of the outer member may be modified in order to improve grasping of the tissue or grasping a larger volume of tissue. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A surgical instrument, comprising: a cutting member including an implement for cutting tissue; anda drive coupled to the cutting member to simultaneously rotate, translate, and reciprocate the cutting member in response to only a rotational force applied to the drive in a single direction and to cut tissue during simultaneous rotation and translation of the cutting member, wherein the drive includes a drive member having a helical groove, and wherein the cutting member rotates about a longitudinal axis and translates along the longitudinal axis.
  • 2. The surgical instrument of claim 1, wherein drive member is coupled to the cutting member.
  • 3. The surgical instrument of claim 2, wherein the drive further includes a translation piece.
  • 4. The surgical instrument of claim 3, wherein the translation piece is disposed in the helical groove of the drive member such that rotation of the drive member causes the cutting member to translate.
  • 5. The surgical instrument of claim 1, wherein the helical groove makes at least two revolutions around the drive member and is configured to cause the cutting member to translate in a first direction, directly from a first location to a second location, along an axis of the cutting member while the drive member completes at least two full rotations.
  • 6. The surgical instrument of claim 1, wherein the helical groove comprises a left-hand threaded helical channel and a right-hand threaded helical channel.
  • 7. The surgical instrument of claim 6, wherein the left-hand threaded helical channel and the right-hand threaded helical channel blend together at their ends to form a continuous groove such that there is a smooth transition from the left-hand threaded helical channel to the right-hand threaded helical channel.
  • 8. The surgical instrument of claim 7, wherein the cutting member is received within an outer tubular member, the outer tubular member including a cutting window disposed proximate to a tip of the outer tubular member.
  • 9. The surgical instrument of claim 8, wherein the cutting window includes an opening in the outer tubular member exposing the cutting member to tissue.
  • 10. The surgical instrument of claim 9, wherein the right-hand threaded helical channel, the left-hand threaded helical channel, or both make two complete revolutions around the drive member and is configured to cause the cutting member to translate in a first direction, directly from a first location to a second location, along an axis of the cutting member while the drive member completes at least two full rotations.
  • 11. The surgical instrument of claim 9, wherein translation of the cutting member over a complete translational path of the cutting member requires the cutting member to complete more than one full rotation.
  • 12. A surgical instrument, comprising: a cutting member including an implement for cutting tissue; anda drive coupled to the cutting member to simultaneously rotate, translate, and reciprocate the cutting member in response to only a rotational force applied to the drive in a single direction and to cut tissue during simultaneous rotation and translation of the cutting member, the drive including a drive member having a helical groove, the helical groove of the drive member including a left-hand threaded helical channel and a right-hand threaded helical channel, the left-hand threaded helical channel and the right-hand threaded helical channel being blended together at both ends to form a continuous groove, and the left-hand threaded helical channel, the right-hand threaded helical channel, or both making at least two revolutions around the drive member between the blended ends, wherein the cutting member rotates about a longitudinal axis and translates along the longitudinal axis.
  • 13. A surgical instrument, comprising: a cutting member including an implement for cutting tissue;a drive coupled to the cutting member to simultaneously rotate, translate, and reciprocate the cutting member in response to only a rotational force applied to the drive in a single direction and to cut tissue during simultaneous rotation and translation of the cutting member, the drive including a drive member having a helical groove extending at least two revolutions around the drive member; andan outer tubular member, the cutting member being received within the outer tubular member, the outer tubular member including a cutting window disposed proximate to a tip of the outer tubular member.
  • 14. The surgical instrument of claim 13, wherein the cutting member rotates about a longitudinal axis and translates along the longitudinal axis.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 11/734,674, filed Apr. 12, 2007, now allowed, which is a continuation of U.S. application Ser. No. 09/983,810, filed Oct. 26, 2001, now U.S. Pat. No. 7,226,459. The prior applications are incorporated herein by reference in their entirety.

US Referenced Citations (168)
Number Name Date Kind
1831786 Duncan Apr 1926 A
1585934 Joseph May 1926 A
1666332 Hirsch Apr 1928 A
2708437 Hutchins May 1955 A
3686706 Finley Aug 1972 A
3734099 Bender et al. May 1973 A
3850162 Iglesias Nov 1974 A
3945375 Banko Mar 1976 A
3980252 Tae Sep 1976 A
3995619 Glatzer Dec 1976 A
3996921 Neuwirth Dec 1976 A
4011869 Seiler, Jr. Mar 1977 A
4108182 Hartman et al. Aug 1978 A
4146405 Timmer et al. Mar 1979 A
4203444 Bonnell et al. May 1980 A
4210146 Banko Jul 1980 A
4246902 Martinez Jan 1981 A
4247180 Norris Jan 1981 A
4261346 Wettermann Apr 1981 A
4316465 Dotson Feb 1982 A
4369768 Vukovic Jan 1983 A
4392485 Hiltebrandt Jul 1983 A
4414962 Carson Nov 1983 A
4449538 Corbitt et al. May 1984 A
4493698 Wang et al. Jan 1985 A
4517977 Frost May 1985 A
4543965 Pack et al. Oct 1985 A
4589414 Yoshida et al. May 1986 A
4601290 Effron et al. Jul 1986 A
4606330 Bonnet Aug 1986 A
4630598 Bonnet Dec 1986 A
4644952 Patipa et al. Feb 1987 A
4649919 Thimsen et al. Mar 1987 A
4700694 Shishido Oct 1987 A
4706656 Kuboto Nov 1987 A
4718291 Wood et al. Jan 1988 A
4737142 Heckele Apr 1988 A
4749376 Kensey et al. Jun 1988 A
4756309 Sachse et al. Jul 1988 A
4819635 Shapiro Apr 1989 A
4844064 Thimsen et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4856919 Takeuchi et al. Aug 1989 A
4867157 McGurk et al. Sep 1989 A
4924851 Ognier et al. May 1990 A
4940061 Terwilliger et al. Jul 1990 A
4950278 Sachse et al. Aug 1990 A
4955882 Hakky Sep 1990 A
4986827 Akkas et al. Jan 1991 A
4998527 Meyer Mar 1991 A
4998914 Wiest et al. Mar 1991 A
5007917 Evans Apr 1991 A
5037386 Marcus et al. Aug 1991 A
5106364 Hayafuji et al. Apr 1992 A
5112299 Pascaloff May 1992 A
5116868 Chen et al. May 1992 A
5133713 Huang et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5163433 Kagawa et al. Nov 1992 A
5176677 Wuchinich Jan 1993 A
5195541 Obenchain Mar 1993 A
5226910 Kajiyama et al. Jul 1993 A
5269785 Bonutti Dec 1993 A
5275609 Pingleton et al. Jan 1994 A
5304118 Trese et al. Apr 1994 A
5312399 Hakky et al. May 1994 A
5312425 Evans et al. May 1994 A
5320091 Grossi et al. Jun 1994 A
5350390 Sher Sep 1994 A
5364395 West Nov 1994 A
5390585 Ryuh Feb 1995 A
5392765 Muller Feb 1995 A
5395313 Naves et al. Mar 1995 A
5403276 Schechter et al. Apr 1995 A
5409013 Clement Apr 1995 A
5411513 Ireland et al. May 1995 A
5425376 Banys et al. Jun 1995 A
5429601 Conley et al. Jul 1995 A
5443476 Shapiro Aug 1995 A
5449356 Walbrink et al. Sep 1995 A
5456689 Kresch et al. Oct 1995 A
5490819 Nicholas et al. Feb 1996 A
5490860 Middle et al. Feb 1996 A
5492537 Vancaillie Feb 1996 A
5498258 Hakky et al. Mar 1996 A
5527331 Kresch et al. Jun 1996 A
5549541 Muller Aug 1996 A
5556378 Storz et al. Sep 1996 A
5569254 Carlson et al. Oct 1996 A
5569284 Young et al. Oct 1996 A
5591187 Dekel Jan 1997 A
5601583 Donahue et al. Feb 1997 A
5603332 O'Connor Feb 1997 A
5630798 Beiser et al. May 1997 A
5649547 Ritchart et al. Jul 1997 A
5669927 Boebel et al. Sep 1997 A
5676497 Kim Oct 1997 A
5702420 Sterling et al. Dec 1997 A
5709698 Adams et al. Jan 1998 A
5730752 Alden et al. Mar 1998 A
5733298 Berman et al. Mar 1998 A
5741286 Recuset Apr 1998 A
5741287 Alden et al. Apr 1998 A
5749885 Sjostrom et al. May 1998 A
5759185 Grinberg Jun 1998 A
5772634 Atkinson Jun 1998 A
5775333 Burbank et al. Jul 1998 A
5782849 Miller Jul 1998 A
5807282 Fowler Sep 1998 A
5810861 Gaber Sep 1998 A
5814009 Wheatman Sep 1998 A
5833643 Ross et al. Nov 1998 A
5840060 Beiser et al. Nov 1998 A
5857995 Thomas et al. Jan 1999 A
5873886 Larsen et al. Feb 1999 A
5899915 Saadat May 1999 A
5911699 Anis et al. Jun 1999 A
5911722 Adler et al. Jun 1999 A
5913867 Dion Jun 1999 A
5916229 Evans Jun 1999 A
5925055 Adrian et al. Jul 1999 A
5928163 Roberts et al. Jul 1999 A
5944668 Vancaillie et al. Aug 1999 A
5947990 Smith Sep 1999 A
5951490 Fowler Sep 1999 A
5956130 Vancaillie et al. Sep 1999 A
6001116 Heisler et al. Dec 1999 A
6004320 Casscells et al. Dec 1999 A
6007513 Anis et al. Dec 1999 A
6024751 Lovato et al. Feb 2000 A
6032673 Savage et al. Mar 2000 A
6039748 Savage et al. Mar 2000 A
6042552 Cornier Mar 2000 A
6068641 Varsseveld May 2000 A
6086542 Glowa et al. Jul 2000 A
6090123 Culp et al. Jul 2000 A
6113594 Savage Sep 2000 A
6119973 Galloway Sep 2000 A
6120147 Vijfvinkel et al. Sep 2000 A
6120462 Hibner et al. Sep 2000 A
6132448 Perez et al. Oct 2000 A
6156049 Lovato et al. Dec 2000 A
6159160 Hsei et al. Dec 2000 A
6159209 Hakky Dec 2000 A
6203518 Anis et al. Mar 2001 B1
6217543 Anis et al. Apr 2001 B1
6224603 Marino May 2001 B1
6244228 Kuhn et al. Jun 2001 B1
6258111 Ross et al. Jul 2001 B1
6277096 Cortella et al. Aug 2001 B1
6358263 Mark et al. Mar 2002 B2
6402701 Kaplan et al. Jun 2002 B1
6428486 Ritchart et al. Aug 2002 B2
6494892 Ireland et al. Dec 2002 B1
6610066 Dinger et al. Aug 2003 B2
6626827 Felix et al. Sep 2003 B1
6632182 Treat Oct 2003 B1
6656132 Ouchi Dec 2003 B1
6712773 Viola Mar 2004 B1
7025732 Thompson et al. Apr 2006 B2
7226459 Cesarini et al. Jun 2007 B2
7922737 Cesarini et al. Apr 2011 B1
20010039963 Spear et al. Nov 2001 A1
20010047183 Privitera et al. Nov 2001 A1
20030050638 Yachia et al. Mar 2003 A1
20030078609 Finlay et al. Apr 2003 A1
20030114875 Sjostrom Jun 2003 A1
20060241586 Wilk Oct 2006 A1
Foreign Referenced Citations (54)
Number Date Country
3206381 Sep 1983 DE
3601453 Sep 1986 DE
4038398 Jun 1992 DE
4440035 May 1996 DE
19633124 May 1997 DE
0310285 Apr 1989 EP
0327410 Aug 1989 EP
0557044 Aug 1993 EP
0582295 Feb 1994 EP
0606531 Jul 1994 EP
0621008 Oct 1994 EP
0806183 Nov 1997 EP
2093353 Sep 1982 GB
2311468 Oct 1997 GB
8101648 Jun 1981 WO
9211816 Jul 1992 WO
9307821 Apr 1993 WO
9315664 Aug 1993 WO
WO9426181 Nov 1994 WO
9505777 Mar 1995 WO
9510981 Apr 1995 WO
9530377 Nov 1995 WO
9611638 Apr 1996 WO
9626676 Sep 1996 WO
9709922 Mar 1997 WO
9717027 May 1997 WO
9719642 Jun 1997 WO
9724071 Jul 1997 WO
9734534 Sep 1997 WO
9735522 Oct 1997 WO
9809569 Mar 1998 WO
9810707 Mar 1998 WO
9846147 Oct 1998 WO
9903407 Jan 1999 WO
9903409 Jan 1999 WO
9907295 Feb 1999 WO
9939648 Aug 1999 WO
9944506 Sep 1999 WO
9960935 Dec 1999 WO
WO0012010 Mar 2000 WO
0033743 Jun 2000 WO
0044295 Aug 2000 WO
0047116 Aug 2000 WO
WO0057797 Oct 2000 WO
0135831 May 2001 WO
0158368 Aug 2001 WO
0195810 Dec 2001 WO
02069808 Sep 2002 WO
03077767 Sep 2003 WO
2005060842 Jul 2005 WO
2005096963 Oct 2005 WO
2006121968 Nov 2006 WO
2006121970 Nov 2006 WO
2007044833 Apr 2007 WO
Non-Patent Literature Citations (17)
Entry
Defendant Hologic Inc.'s Preliminary, Non-Binding List of Asserted Prior Art References in Smith & Nephew, Inc. v. Hologic, Inc., Civil Action Nos. 11-CV-12064-RWZ and 10-CV-10951-RWZ, U.S. District Court for the District of Massachusetts, Feb. 8, 2012, 8 pages.
Baggish et al., “Instrumentation for Hysteroscopy,” in “Diagnostic and Operative Hysterectomy,” Mosby (1999).
Fishing Reel produced by Shimano of Japan into the U.S. prior to Oct. 26, 2001, 7 pages.
Hologic's Opposition to Smith & Nephew's Motion for Preliminary Injunction, Redacted, Smith & Nephew, Inc. v. Hologic, Inc., Civil Action No. 11-CV-12064-RWZ, filed Dec. 30, 2011, 26 pages.
Exhibit P to Hologic's Opposition to Smith & Nephew's Motion for Preliminary Injunction, Redacted, Smith & Nephew, Inc. v. Hologic, Inc., Civil Action No. 11-CV-12064-RWZ, filed Dec. 30, 2011, 99 pages.
Dictionary definition of reciprocate, Merriam-Webster Dictionary, on-line edition, retrieved Mar. 20, 2013.
Dictionary definition of rotate, Merriam-Webster Dictionary, on-line edition, retrieved Mar. 20, 2013.
Dictionary definition of translate, Merriam-Webster Dictionary, on-line edition, retrieved Mar. 20, 2013.
Decision Granting Request for Reexam mailed Jun. 5, 2012.
Office Action for U.S. Appl. No. 95/001,933 mailed Jun. 5, 2012.
Patent Owner's Response to Office Action for U.S. Appl. No. 95/001,933 mailed Jun. 5, 2012.
Third Party Requester's Response to Office Action for U.S. Appl. No. 95/001,933 mailed Jun. 5, 2012.
Office Action for U.S. Appl. No. 95/001,933 mailed Apr. 1, 2013.
Patent Owner's Response to Office Action for U.S. Appl. No. 95/001,933 mailed Apr. 1, 2013.
Third Party Requester's Response to Office Action for U.S. Appl. No. 95/001,933 mailed Apr. 1, 2013.
Office Action for U.S. Appl. No. 95/001,933 mailed Sep. 19, 2013.
Patent Owner's Response to Office Action for U.S. Appl. No. 95/001,933 mailed Sep. 19, 2013.
Related Publications (1)
Number Date Country
20110230904 A1 Sep 2011 US
Continuations (2)
Number Date Country
Parent 11734674 Apr 2007 US
Child 13051257 US
Parent 09983810 Oct 2001 US
Child 11734674 US