This application is directed to a continuous bulk polymerization processes and associated apparatuses for preparing polymeric compositions using a recirculation tubular loop reactor system and, more particularly, a continuous bulk polymerization process and associated apparatuses for preparing polymeric compositions, such as adhesives, using a recirculation tubular loop reactor including a planetary roller extruder (PRE).
Conventional bulk polymerization processes for producing adhesives by polymerization are known in the art. One such process includes a stirred tank reactor having a cooling jacket for removing heat from the vessel generated during the exothermic reaction therein. Such conventional processes have been somewhat effective at low conversion rates. However, at high conversion rates and associated high viscosities, the heat transfer surfaces often foul, thereby losing temperature control and facilitating runaway reactions. Mandating low conversion rates has not presented an economical solution to the problem since the excessive monomer used in low conversion operations must eventually be removed from the polymer by, for example, drying, de-volatilization or the like, thereby adding an additional processing step and associated costs.
In one aspect, a recirculation tubular loop reactor process for polymerization may include the steps of (a) preparing a feed stock by mixing at least one monomer with at least one initiator, the activation of which begins when the initiator is heated above an activation temperature, (b) heating the mixture to at least the activation temperature of the initiator to produce a partially polymerized intermediate, (c) recirculating a portion of the partially polymerized intermediate in the loop reactor, (d) directing a remaining portion of the polymerized intermediate into a stream for removal from the loop reactor, (e) cooling the recirculating intermediate below the activation temperature of the initiator, (f) mixing the cooled recirculating intermediate with additional feed stock, (g) optionally removing unreacted monomer from the remaining portion of the polymerized intermediate through drying, devolatilization, or the like and, (h) optionally applying the remaining portion to a web-form material.
In one embodiment of the invention, static mixers are used in the loop reactor to mix the feed stock and to mix the mixed feed stock with the recirculated partially polymerized intermediate. In another embodiment, a planetary roller extruder is used in the loop reactor for this purpose.
Static mixers can be advantageous for use in the loop reactor because they can accommodate comparatively large volumes of the reactants and thereby can provide the residence time that is required to obtain the degree of polymer conversion that is desired at a particular stage in the loop reactor. However, as the reactants polymerize in the static mixer their molecular weight and melt viscosity increase. This can make the polymerized material more difficult to circulate through the loop reactor. In one embodiment, it has been found desirable to replace one (or more) of the static mixers in the loop reactor with a dynamic mixer such as a twin screw extruder or a planetary roller extruder (PRE). While a dynamic mixer such as a PRE will often have a smaller residence volume than a static mixer, it imparts shear thinning to the reaction mixture that reduces the melt viscosity of the reaction mixture thereby making it easier to move the polymerized material through the loop reactor. A dynamic mixer such as a PRE is also advantageous because it can efficiently mix the reactants and reduce localized accumulations of unreacted monomer in the reaction mass.
Accordingly, another process for preparing a polymeric material using a loop reactor may include the steps of (a) introducing a feed stock containing at least one monomer and at least one activatable initiator into a dynamic mixer such as an extruder and, more particularly, a planetary roller extruder located in a reaction loop, (b) introducing partially polymerized intermediate into the dynamic mixer to form a polymerizable mixture, (c) heating the mixture from step (b) to at least the activation temperature of the initiator to polymerize the monomer in the feed stock with the polymerized intermediate, (d) recirculating a first portion of the product of step (c) in the reactor, (e) directing the remaining portion of the product of step (c) into a stream for removal from the loop reactor, and (f) mixing the recirculating portion of the product from step (c) with additional feed stock.
In a further embodiment, step (d) additionally includes the step of (g) cooling the product of step (c) to below the activation temperature of the initiator. In a further embodiment, the process additionally includes the optional step of (h) subjecting the remaining portion of the partially polymerized material to an additional reaction to further polymerize the polymerized material prior to removal in step (e). In a further embodiment, the process additionally includes the step of (i) removing unreacted monomer from the remaining portion through drying, devolatilization, or the like prior to removal. In a further embodiment, the process additionally includes the step of (j) applying the polymerized product to a web-form material.
In another aspect of the invention, a combination of a recirculation loop reactor and a dynamic mixer such as an extruder and, more particularly, a planetary roller extruder is used in a process for preparing polymeric material that may include the steps of (a) introducing a feed stock of at least one monomer and at least one initiator into a loop reactor having a partially polymerized intermediate recirculating there through to form a polymerizable mixture, (b) heating the mixture from step (a) to at least the activation temperature of the initiator to polymerize the monomer with the partially polymerized intermediate, (c) circulating the polymerized intermediate from step (b) through the reactor while cooling it to a temperature below the activation temperature of the initiator, (d) mixing the cooled recirculating polymerized intermediate from step (c) with additional feed stock to further polymerize the monomer with the intermediate, (e) removing a portion of the further polymerized material from the loop reactor, and (f) subjecting the further polymerized polymeric material to an additional reaction in a planetary roller extruder to reduce unreacted monomer. In a further embodiment, the process additionally includes the step of (g) removing unreacted monomer through drying, devolatilization, or the like. In a further embodiment, the process additionally includes the step of (h) applying the polymerized product to a web-form material.
In another aspect, a self-adhesive composition that is the reaction product of at least one alkyl acrylate monomer having at least one free radical polymerization moiety and a heat-activated initiator is manufactured according to the aforementioned process.
In another aspect, the self-adhesive composition may be applied to a web-formed material using an application unit such as a slot-die applicator unit and subsequently may be crosslinked.
In one aspect, an adhesive product (e.g., an acrylate pressure sensitive adhesive) may be prepared according to the recirculation tubular reactor process 10 shown in
Those skilled in the art will appreciate that the quantity, quality and type of monomer and initiator used is dependent upon the desired end product and that the process of
Monomers useful according to the disclosed process 10 may include, but are not limited to, alkyl acrylate monomers or mixtures of alkyl acrylate monomer having, for example, an alkyl group with from about 2 to about 20 and, preferably, 4 to 10 carbon atoms. Preferred alkyl acrylate monomers may include 2-ethylhexyl acrylate, butyl acrylate (BA), isooctyl acrylate, isodecyl acrylate and any other monomers or mixtures thereof, known to those skilled in the art. Di-vinyl monomers may be used to increase the molecular weight and the internal strength of the polymer backbone and may be employed in one aspect of the process 10. In one aspect, di-vinyl monomers may be used in amounts up to about 11 percent by weight of the acrylic polymer. Suitable vinylic monomers employed in the practice of certain embodiments include styrene, acrylic acid (AA), alpha methyl styrene, tetraethylene glycol diacrylate, hydroxyethyl methacrylate, methylmethacrylate, ethylacrylate, methylacrylate, propylacrylates, propylmethacrylates, hexylacrylates, hexylmethacrylates and vinyl acetate (VA).
In one aspect, suitable polymerization initiators 15 useful according to the disclosed process 10 may be any compound or composition or combination of compounds and/or compositions that release free radicals when heated to an activation or decomposition temperature. For example, useful initiators 15 may include organic peroxides and azo compounds such as, but not limited to, lauroyl peroxide, tertiarybutyl peroxy(2-ethylhexanoate), benzoyl peroxide, 1,1-bis(tertiarybutylperoxy)-3,3,5-trimethylcyclohexane, azo-diisobutyronitrile and azobis-2-methylbutyronitrile. In another aspect, the initiator 15 may be any material or process that provides free radicals, such as light (e.g., UV light), radiation, chemical interactions or the like.
In one aspect, the initiators 15 may be used in amounts varying from about 0.002 to about 2.0 percent by weight and, more particularly, between about 0.01 and about 1.0 percent by weight, based upon the total weight of the monomers.
Polymerization reaction temperatures may be selected based upon the type of monomer material used, the decomposition temperature of the initiator material and/or the desired polymer product desired. For example, a polymerization reaction may be carried out at a temperature of about 100 to about 140° C. when initiator 15 is AIBN.
Referring again to
Static mixer 28 may be characterized as having sufficient residence time τ1 to thoroughly mix the monomer 12, 13, 14 and initiator 15 and to generate an output stream 30. It should be noted that the static mixer 28 may be fitted with a jacket 26 or other heat transfer device to provide heating/cooling, should it be desired to raise or lower the temperature of the feed stock as it passes through mixer 28. The tubular reactor residence time, generally denoted τ, may be defined as the ratio of the reactor vessel free-volume to the volumetric feed rate. While static mixer 28 is shown in
Based upon an overall material balance of the process 10 illustrated in
The recirculation flowrate R may be defined as the volume of fluid returned to the reactor loop (i.e., the point where streams 30 and 48 merge). The recycle ratio RR may be defined as the ratio of R to P.
A gear pump 37 may be fluidly connected in the flow channel between the stream 36 of static mixer 35 and the inlet stream 38 to a static mixer 40, which may be characterized as having sufficient residence time τ3 to mix/react stream 38 to form stream 41. The volumetric flowrate of gear pump 37 may be the sum of F and R.
In one aspect, the stream 38 may be heated in the mixer 40 to a temperature above the activation temperature of the initiator, thereby initiating a free-radical polymerization reaction, wherein the monomer is at least partially converted to a polymer (i.e., stream 41 may have a conversion X1). The mixer 40 may include a jacket 39 for providing a heating/cooling means for stream 38, 41.
The fractional conversion of liquid monomer into adhesive polymer, generally denoted Xn, may be calculated as follows:
Xn=1−(Cn/Co)
wherein Xn has a numerical value between 0 and 1, inclusive. For example, X1 may be calculated as follows:
X1=1−(C1/Co)
wherein Co is the concentration of reactant monomer in stream 32 and C1 is the concentration of reactant monomer in stream 41. In a similar manner X2 may be calculated as follows:
X2=1−(C2/Co)
wherein C2 is the concentration of reactant monomer in stream 44. Likewise, X3 may be calculated as follows:
X3=1−(C3/Co)
where C3 is the concentration of reactant monomer in stream 50.
For example, when the process 10 is used to react BA, VA and AA with AIBN to form an acrylate PSA, conversion X1 may be about 0.8, conversion X2 may be 0.95 and conversion X3 may be 0.99, though those skilled in the art will appreciate that the actual conversions may be dependent upon the flowrates F, R, P and the sizes of the vessels 28, 35, 40, 42, 50, 60, among other factors.
The stream 41 from static mixer 40 may flow into static mixer 42 which may be characterized as having sufficient residence time τ4 to continue converting monomer into polymer to obtain a conversion X2. Vessel 42 may include a jacket 43 to provide heating/cooling means to stream 41. Stream 44 may be characterized by a flowrate consisting of the sum of F and R and may be split into stream 45 having a flowrate P and stream 46 having a flowrate R. The volumetric split may be regulated by a gear pump 51, which may be fluidly connected in the flow channel between streams 50 and 52. The volumetric flowrate of gear pump 51 may be characterized as P. Alternatively, or in combination with pump 51, a three-way valve (not shown) may be located at the point where stream 45 diverges from stream 46 to regulate the recirculation flowrate R. Stream 45 may enter a static mixer 60 to further react the monomer to a conversion X3. Vessel 60 may be characterized as having a sufficient residence time τ6 and heating/cooling capabilities (e.g., jacket 58) to convert stream 45 having a flowrate P at a conversion X2 into stream 50 having a flowrate P at a conversion X3.
The tubular reactor loop process cycle may be completed by stream 46 entering static mixer 50 at a flowrate R, which may be characterized as having sufficient residence time τ5 to cool the mass below the initiation temperature. Exit stream 48 may exit the vessel 50 while generally retaining the conversion X2. Static mixer/cooler 50 may include a jacket 54 to facilitate the cooling of stream 46.
In one aspect, the total loop residence time may be the sum of τ2, τ3, τ4 and τ5. For example, the total loop residence time may be about 20 minutes such that the polymer mixture recirculates in the loop about 3 times per hour. In another aspect, gear pumps 37, 51 may be adjusted such that the total loop residence time provides about 1 to about 4 recirculations per hour. At this point, those skilled in the art will appreciate that the total residence time may be selected to obtain the desired product depending upon the type of end polymer desired and the monomers and initiators used.
In one aspect, the product stream 52 (i.e., the final product) may be applied to a web-formed material using an application unit such as a slot-die applicator. However, those skilled in the art will appreciate that the recirculation tubular reactor process 10 described herein may be used to produce a wide variety of polymeric materials for a variety of different uses. For example, the process 10 described herein may be used to produce release coatings, primer coatings, non-PSA adhesives, sealants, caulks, acrylic hybrid PSAs and non-PSA coatings, such as urethane acrylics, epoxy acrylics, styrene acrylics and the like.
Static mixers, such as continuous tubular reactors, may be characterized as having reactants introduced and products withdrawn simultaneously in a continuous manner. The reactants may enter at one end of the reactor and the products may exit at the other end, with a continuous variation in the composition of the reacting mixture in between. Heat transfer to and/or from the tubular reactor may be accomplished with jackets or a shell and tube design. Fluid media may be forced to mix themselves through a progression of divisions and recombinations within a static mixer. As a static mixer has no moving parts, the maintenance and operating costs may be significantly reduced. The energy for mixing may be delivered by the pumps 37, 51 that facilitate flow through the vessels. Tubular reactors may be characterized by the fact that the flow of fluid through the reactor is orderly with no element of fluid overtaking or mixing with any other element ahead or behind.
The gear pumps 37, 51 discussed herein may include a housing defining a pump cavity (not shown), a pair of intermeshing toothed gears (not shown) rotatably disposed within the pump cavity, each gear having a mounting shaft (not shown) extending axially therefrom, and a bearing means (not shown) for rotatably supporting the gear shafts. The bearing means may include a radial face disposed in facing relation to the gears and a pair of axial openings for rotatably receiving the gear shafts. The gear pumps 37,51 may be driven externally by rotating the drive shaft of the pumps 37, 51 with a motor (not shown). As materials passes through the gear pumps 37, 51, the rotation imparted by or on the gears may be in direct proportion to the amount of material passing through the gears. Thus, the gears may act as precise devices to meter the quantity of plastic flowing in the channel. The volume of the gear mechanisms may be varied either by varying the size of the gears or the axial thickness of the gears.
The vessels 28, 35, 40, 42, 50, 60 described herein may have dual purposes, namely (1) elevating and/or decreasing the temperature and (2) mixing the fluid passing therethrough. The vessels 28, 35, 40, 42, 50, 60 may be “residence time reactors” because they may provide the reactants with additional time to reach the activation temperature and may provide additional mixing.
At this point, those skilled in the art will appreciate that more or less vessels 28, 35, 40, 42, 50, 60 may be used according to the process 10. For example, vessels 40, 42 may be separate vessels or may be combined as a single vessel.
For exemplary purposes only, the bulk feed stream 25 may include a BA monomer stream 12 at a flowrate of 6.83 kg/hr, a VA monomer stream 13 at a flowrate of 0.6 kg/hr, an AA monomer stream at a flowrate of 68 grams/hr and an AIBN initiator 15 at a flowrate of 2 grams/hr. The product stream 52 may be an acrylate PSA at a flowrate P of 7.5 kg/hr.
The static mixer/heater 35 may mix the low viscosity monomers/initiator with the high viscosity polymer. At 70° C., the initiator (AIBN) and monomers are present together but they do not react. Recirculation stream 48 may be 0.042 m3/hr, 900 kg/m3, 700 Pas; Stream 30 may be 0.00833 m3/hr, 900 kg/m3, 0.01 Pas; Stream 32 may be 0.05 m3/hr, 900 kg/m3, 583 Pas. Static mixer/heater 35 may be CSE-X/8, DN 49.5, 18 elements, Δp=ca. 21 bar, shear rate 10.5 s−1, residence time 104 s, length approximately 900 mm, as shown in
In one aspect, the gear pump 37 may be capable of pumping about 50 kg/hr of polymer with about 1,000 Pas viscosity against a pressure of about 50 bar. The flow may be controlled by the accuracy of the pump 37 (a flow meter may be optional). In one aspect, the recirculation rate R may be about 1 to about 5 times the feed-rate F.
The homogenized mixture 38 of monomer/polymer/initiator may be heated in the mixer/heat exchanger 40. By increasing the temperature from about 70° C. to about 120° C. the polymerization reaction may be induced. The exothermic heat generated may be partly absorbed by the bulk polymer and the temperature rise due to the reaction may, for example, be about 20 to about 40° C. Heating may be performed with Marlotherm® L heat transfer fluid supplied to the reactor jacket 39 (e.g., at about 120° C.). Once the reaction starts the reactor jacket 39 may operate as a cooler, thereby keeping the temperature under control. Mixture data (stream 41) may be 0.005 m3/hr, 900 kg/m3, 700 Pas, Cp (heat capacity) of 2,300 J/kg/° K, λ (latent heat) of 0.15 W/m/° K. Mixer/heat exchanger 40 may be a CSE-XR, DN 80, 8 elements, Δp=ca. 5 bar, shear rate 4 s−1, residence time 170 s, length approximately 750-1,100 mm as shown in
Marlotherm® LH is a high-performance synthetic, organic heat-transfer medium for use in the liquid phase in closed forced circulation unpressurized heat transfer systems at working temperatures from about 0° to about 280° C. The Marlotherm® heat transfer fluid is supplied by Sasol Olefins & Surfactants (Marl, Germany). A reaction temperature of about 120° C. may be suitably selected for the AIBN initiator, although alternatively, different thermal initiators or mixtures of thermal initiators may require a different reaction temperature.
Vessel 42 may be a double jacketed mixer and may be capable of providing additional residence time and mixing performance in order to increase the yield and the product quality. The polymer streams 41, 44 may be kept at a constant temperature (e.g., 120° C.). Mixture data (stream 44) may be characterized as 0.05 m3/hr, 900 kg/m3, 700 Pas. Mixer/heat exchanger 42 may be characterized as CSE-X/4, DN 80, 15 elements, Δp=ca. 3 bar, shear rate 1.6 s−1, residence time 390 s, length approximately 1,200 mm, as illustrated in
The monomer/polymer/initiator mixture may be cooled in the recirculation loop by vessel 50 from about 120° C. down to about 70° C., thereby reducing or preventing further polymerization. The cooling of vessel 50 may be performed with Marlotherm® L supplied to the jacket 54 of the vessel 50 (e.g., at about 60° C.). Mixture data (stream 48) may be 0.005 m3/hr, 900 kg/m3, 700 Pas, Cp of 2,300 J/kg/° K, λ of 0.15 W/m/° K. Mixer/heat exchanger 50 maybe a CSE-XR, DN 80, 18 elements, Δp=ca. 11 bar, shear rate 4 s−1, residence time 390 s, length approximately 1,600 mm, as illustrated in
Vessel 60 may be a double jacketed static mixer and may provide additional residence time and mixing, thereby increasing the conversion from X2 to X3. The 7.5 kg/hr flow-rate P may be regulated by the gear pump 51. Mixture data (stream 52) may be characterized as 0.00833 m3/hr, 900 kg/m3, 700 Pas. Mixer/heat exchanger 60 may be characterized as, CSE-X/4, DN 40, 15 elements, Δp=ca. 6 bar, shear rate 2.7 s−1, residence time 265 s, length approximately 700 mm, as shown in
Flowrate, temperature, pressure, vessel level, melt viscosity and electrical power sensor readouts and various control systems may be provided to assist the process operator with process control, as illustrated in
In one aspect, a polymeric product (e.g., an acrylate pressure sensitive adhesive (PSA)) may be prepared according to the process 110 shown in
Those skilled in the art will appreciate that the quantity, quality and type of monomer and initiator used is dependent upon the desired end product and that the process of
Monomers 120, 130, 140 and polymerization initiators 150 useful according to the disclosed process 110 may include those listed previously for disclosed process 10.
In one aspect, the initiators 150 may be used in amounts varying from about 0.002 to about 2.0 percent by weight and, more particularly, between about 0.01 and about 1.0 percent by weight, based upon the total weight of the monomer feed stock.
Referring to
The feed stream 200 is carried into the first planetary roller barrel 270 and combined with a recycled polymer stream 370 (having a recirculation flowrate R in
The fractional conversion of liquid monomer into adhesive polymer, generally denoted Yn, in process 110 may be calculated as follows:
Yn=1−(C′n/C′o)
wherein Yn has a numerical value between 0 and 1, inclusive. For example, Y1 may be calculated as follows:
Y1=1−(C′1/C′o)
wherein C′o is the concentration of reactant monomer in combined streams 200 and 370 and C′1 is the concentration of reactant monomer in stream 300. In a similar manner Y2 may be calculated as follows:
Y2=1−(C′2/C′o)
wherein C′2 is the concentration of reactant monomer in stream 350. Likewise, Y3 may be calculated as follows:
Y3=1−(C′3/Co)
where C′3 is the concentration of reactant monomer in stream 400.
Stream 300 may have a conversion Y1, and a flowrate characterized as the sum of F, the flow from the feed materials, and R, the recycled feed. A gear pump 310 is fluidly connected in the flow channel between the stream 300 and the stream 320 to a static mixer 340. The volumetric flowrate of pump 310 may be but is not necessarily the sum of F and R. Those skilled in the art will recognize that as a result of the shear thinning that occurs in the PRE and other volumetric changes that can accompany the mixing of reactants, as will as compressive effects that can be accommodate within the loop reactor, the flowrate of pump 310 can vary. In general, the purpose of the pump 310 is to minimize pulsations in flowrate. The static mixer 340 may include a jacket 330 and/or other heat exchange device for providing a heating/cooling means for stream 320.
Stream 350 may have a conversion Y2 and may be split into stream 360 having a flowrate P and stream 370 having a flowrate R. The volumetric split may be regulated by a pump 410, which may be fluidly connected in the flow channel between streams 400 and 420. The volumetric flowrate of pump 410 may be characterized as P. Stream 360 may enter a static mixer 390 to further react the monomer to a conversion Y3. Static mixer 390 may have heating/cooling capabilities (e.g., jacket 380) to convert stream 360 having a flowrate P at a conversion Y2 into stream 400 having a flowrate P at a conversion Y3.
Thus by incorporating at least one PRE in the loop reactor, the reactor and process defined earlier is made more versatile. If the only mixers are static mixers, then mixing is dependent upon a threshold linear velocity of the polymeric material, above which is required to impart sufficient shear for effective mixing. With a dynamic mixer, mixing efficiency is largely independent of linear velocity of the polymeric material. Thus the option of using a PRE in the loop reactor increases mixing and heat exchange versatility of the overall reactor system.
Referring to
In one embodiment, the stream 580 may have a flowrate F and may be combined with a recirculation polymer stream 740 having a flowrate R to form a polymer/monomer/initiator mixture stream 590. The polymer/monomer/initiator mixture stream 590 may be fed to a static mixer 600, which is designed to thoroughly mix the stream 590. The output of static mixer 600 may be output stream 620. Static mixer 600 may be fitted with a jacket 610 to provide heating and/or cooling if necessary. A gear pump 630 may be fluidly connected in the flow channel between the stream 620 of static mixer 600 and the inlet stream 640 to a static mixer 650, which is designed to mix/react stream 640 to form stream 670. The volumetric flowrate of pump 37 may approximate the sum of F and R, but as mentioned earlier, the system will accommodate variations in flow.
The fractional conversion of liquid monomer into adhesive polymer, generally denoted Zn, in process 120 may be calculated as follows:
Zn=1−(C″n/C″o)
wherein Zn has a numerical value between 0 and 1, inclusive. For example, Z1 may be calculated as follows:
Z1=1−(C″1/C″o)
wherein C″o is the concentration of reactant monomer in stream 590 and C″1 is the concentration of reactant monomer in stream 670. In a similar manner Z2 may be calculated as follows:
Z2=1−(C″2/C″o)
wherein C″2 is the concentration of reactant monomer in stream 700. Likewise, Z3 may be calculated as follows:
Z3=1−(C″3/C″o)
where C″3 is the concentration of reactant monomer in stream 840.
Analogous to the earlier description, the inlet stream 640 may be heated in the static mixer 650 to a temperature above the activation temperature of the initiator, thereby initiating a free-radical polymerization reaction, wherein the monomer is at least partially converted to a polymer (i.e., stream 670 may have a conversion Z1). The static mixer 650 may include a jacket 660 and/or other heat exchange device for providing a heating/cooling means for stream 640, 670.
The exiting stream 670 from static mixer 650 may flow into static mixer 680 which may be characterized as having sufficient residence time to continue converting monomer into polymer to obtain a conversion Z2 in stream 700. Static mixer 680 may include a jacket 690 and/or other heat exchange device to provide heating/cooling means to streams 670, 700. Stream 700 may be split into stream 750 having a product flowrate P and recirculated stream 710 having a flowrate R. The amount of product removed from the reactor loop 120 may be regulated by a pump 850, which may be fluidly connected in the flow channel between streams 840 and 860. The volumetric flowrate of pump 850 may be characterized as P. Stream 710 may enter a static mixer 720 to further react the monomer. Static mixer 720 may be characterized as having a sufficient residence time and cooling capabilities (e.g., jacket 730) to convert stream 710 having a flowrate R into stream 740 at a temperature below the activation temperature and possible additional conversion Z4 (i.e., where C″4 is the concentration of reactant monomer in stream 740).
Stream 750 having a conversion Z2 is carried into the first planetary roller barrel 760 and heated to about 25 to about 240° C. to continue the free-radical reaction process. The mixture is carried into a second planetary roller barrel 770 and a third planetary roller barrel 780, where a preset residence time is provided to minimize the residual monomer content of the finished polymer stream 840. Accurate temperature control can be maintained within barrels 760, 770, 780 by conducting heating/cooling medium through the barrel walls 790, 800, 810, respectively and close to the intermeshing surfaces, as well as through a central bore 830 in the central spindle 820. The polymer process temperature is maintained below the polymeric materials degradation temperature (i.e., 240° C. for butyl acrylic polymers). Planetary roller barrels 760, 770, 780 convert stream 750 having a flowrate P at a conversion Z2 into stream 840 having a flowrate P at a conversion Z3.
In one aspect, the product streams 52, 420 and 860 from the processes 10, 110, 120, respectively, may be applied to a web-formed material using an application unit such as a slot-die applicator or other application and doctoring methods.
Those skilled in the art will appreciate that the processes 10, 110, 120 described herein may be used to produce a wide variety of polymeric materials for a variety of different uses, for example release coatings, primer coatings, adhesives, PSA and non-PSA, sealants, caulks, and architectural coatings. Moreover, these adhesives and coatings can be polymerized with a wide variety of chemistries. Specifically chemistries such as, but not limited to, acrylic monomers, polyols, isocyanates, vinyl materials, epoxies and the like.
In one embodiment, the polymeric composition produced according to processes 10, 110, 120 may be crosslinked with the aid of electron beams or UV energy in a manner known in the art. For example, crosslinking the polymeric material using UV energy may require the addition of appropriate UV promoters (e.g., photoinitiators, such as peroxides). If desired, the UV promoters or actinic radiation promoters may be added by way of the recirculated tubular reactor process without departing from the scope of this disclosure.
In the event that additional tack and/or adhesion is required, resins, oils and/or other additives may be added to the reactants and/or the final product. In the event that color or other properties need to be modified; pigments, dyes, fillers, anti-degradants and/or other additives may be added to the reactants and/or the final product.
Typical tackifying resins may include, but are not limited to partially or fully hydrogenated wood, gum or tall oil rosins, esterified wood, gum or tall oil rosins, alpha and beta pinene resins and polyterpene resins. The resins may be introduced in solid, liquid, i.e. including, but not limited to solutions and dispersions and/or molten form. Typical anti-degradents include antioxidants, ultraviolet absorbers and ultraviolet stabilizers. Typical crosslinking agents may include peroxides, ionic, thermally-activated resins, isocyanates, UV, and/or EB activated curing agents. Typical colorants may include titanium dioxide and other various metal pigments. In the event that the use of solvents is desired, typical solvents may include liquid carboxylates such as ethyl acetate and n-butyl acetate, ketones such as acetone, dimethyl ketone and cyclohexanones, aromatic hydrocarbons such as benzene, toluene, and the xylenes, liquid aliphatic and cyclo-aliphatic hydrocarbons such as petroleum fractions having boiling points of about 50 and 150° C. and in particular about 60 and 100° C., cyclohexane, and others such as dioxane, tetrahydrofuran and di-t-butyl ethers or mixtures thereof. Particularly useful solvents for the polymeric composition of this disclosure may include ethyl acetate, cyclohexane, and mixtures of acetone with petroleum ether (e.g., having a boiling point of about 60 to about 95° C.).
The use of a slot-die for coating polymeric materials onto web-form material may have particular advantages over the traditional coating processes, e.g., roll-over-roll, reverse-roll, knife-over-roll, and the like. Web-form coating speeds, when employing traditional coating processes may be limited to polymeric materials with viscosities of 40,000 cPs or less and are not conducive to high solids polymeric materials. However, the use of slot-die coating technology, particularly when employed in conjunction with high-solids polymeric materials produced by the recirculated tubular reactor process may be of particular interest as application speeds approach and exceed 1,000 meters per minute.
Depending upon the intended use of the web-form product incorporating the polymers produced according to the disclosed process, suitable web-form carrier materials may include any known carriers, with or without appropriate chemical or physical surface pretreatment of the coating side, and with or without appropriate anti-adhesive physical treatment or coating of the reverse side. Representative examples include creped, non-creped and release papers, polyethylene, polypropylene, mono- or biaxially oriented polypropylene films, polyester, PVC, release and other films, as well as foamed materials, wovens, knits and nonwovens in web form made from polyolefins.
Although the disclosed polymerization processes have been shown and described with respect to certain aspect and embodiments, modifications will occur to those skilled in the art upon reading and understanding the specification. The disclosed polymerization process includes all such modifications. In particular, while the discussion herein focuses on a particular embodiment for manufacturing an adhesive, those skilled in the art will recognize that the invention has application to the manufacture of polymeric material in general.
This application claims the benefit of U.S. Provisional Application Ser. No. 60/841,079 filed on Aug. 30, 2006 and U.S. Provisional Application Ser. No. 60/853,578 filed on Oct. 23, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3551396 | Lanthier | Dec 1970 | A |
3821330 | Free | Jun 1974 | A |
3968059 | Shimada et al. | Jul 1976 | A |
3991129 | Daniels | Nov 1976 | A |
4061708 | Lazarus et al. | Dec 1977 | A |
4158571 | Lynch et al. | Jun 1979 | A |
4192637 | Chong | Mar 1980 | A |
4209599 | Brady et al. | Jun 1980 | A |
4220580 | Rowatt | Sep 1980 | A |
4275177 | Walkenhorst et al. | Jun 1981 | A |
4289409 | Brand | Sep 1981 | A |
4324868 | Maeda | Apr 1982 | A |
4393171 | Bracke et al. | Jul 1983 | A |
4487897 | Matsuoka et al. | Dec 1984 | A |
4515008 | Matsushita et al. | May 1985 | A |
4546160 | Brand et al. | Oct 1985 | A |
4595709 | Reischl | Jun 1986 | A |
4619979 | Kotnour et al. | Oct 1986 | A |
4810523 | Williams et al. | Mar 1989 | A |
4814373 | Frankel et al. | Mar 1989 | A |
4843134 | Kotnour et al. | Jun 1989 | A |
4849489 | Benhamou et al. | Jul 1989 | A |
4898897 | Kiyohara et al. | Feb 1990 | A |
4968535 | Terai et al. | Nov 1990 | A |
5194525 | Miura et al. | Mar 1993 | A |
5210132 | Matsubara et al. | May 1993 | A |
5362448 | Kawakami et al. | Nov 1994 | A |
5484882 | Takada et al. | Jan 1996 | A |
5521263 | Seeger et al. | May 1996 | A |
5539033 | Bredahl et al. | Jul 1996 | A |
5599888 | Higuchi et al. | Feb 1997 | A |
5602216 | Juvet | Feb 1997 | A |
5637646 | Ellis | Jun 1997 | A |
5637662 | Relvini et al. | Jun 1997 | A |
5641281 | Russell et al. | Jun 1997 | A |
5703184 | Fujita et al. | Dec 1997 | A |
5726258 | Fischer et al. | Mar 1998 | A |
5744555 | Ames et al. | Apr 1998 | A |
5801224 | Narayan et al. | Sep 1998 | A |
5886112 | Vuillemin et al. | Mar 1999 | A |
5902865 | Gausepohl et al. | May 1999 | A |
5952449 | Aminaka et al. | Sep 1999 | A |
5962604 | Rath | Oct 1999 | A |
6074084 | Kolossow | Jun 2000 | A |
6100360 | Twu et al. | Aug 2000 | A |
6100369 | Miyajima et al. | Aug 2000 | A |
RE36855 | Bredahl et al. | Sep 2000 | E |
6162879 | Galewski | Dec 2000 | A |
6184285 | Hatfield et al. | Feb 2001 | B1 |
6197264 | Korhonen et al. | Mar 2001 | B1 |
6288196 | Takahashi et al. | Sep 2001 | B1 |
6362296 | Singahal et al. | Mar 2002 | B1 |
6380345 | Uenishi et al. | Apr 2002 | B1 |
6388026 | Campbell et al. | May 2002 | B1 |
6399703 | Fischer et al. | Jun 2002 | B1 |
6461574 | Korhonen et al. | Oct 2002 | B2 |
6593434 | Watanabe | Jul 2003 | B1 |
6632907 | Mizota et al. | Oct 2003 | B1 |
6641627 | Keipert et al. | Nov 2003 | B2 |
6703478 | Nakane et al. | Mar 2004 | B2 |
6726465 | Groleau | Apr 2004 | B2 |
6740400 | Kato et al. | May 2004 | B2 |
6780271 | Burmeister et al. | Aug 2004 | B1 |
6906150 | Kommareddi et al. | Jun 2005 | B2 |
6926873 | Filippi et al. | Aug 2005 | B1 |
6946519 | Okubo et al. | Sep 2005 | B2 |
6955277 | Smith et al. | Oct 2005 | B2 |
6979717 | Moore | Dec 2005 | B2 |
7279535 | Konig et al. | Oct 2007 | B2 |
20030149165 | Brown et al. | Aug 2003 | A1 |
20030236374 | Bardman et al. | Dec 2003 | A1 |
20040202814 | Moeller et al. | Oct 2004 | A1 |
20040235978 | Husemann et al. | Nov 2004 | A1 |
20050170086 | Tynan, Jr. et al. | Aug 2005 | A1 |
20070055032 | Langenbuch et al. | Mar 2007 | A1 |
20070173622 | Tynan et al. | Jul 2007 | A1 |
20080058482 | Marx et al. | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
19548136 | Jun 1997 | DE |
19638094 | Mar 1998 | DE |
1056584 | Dec 2000 | EP |
1067352 | Jan 2001 | EP |
1080865 | Mar 2001 | EP |
2004101626 | Nov 2004 | WO |
2004101627 | Nov 2004 | WO |
2007087465 | Aug 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080058483 A1 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
60841079 | Aug 2006 | US | |
60853578 | Oct 2006 | US |