The present subject matter relates generally to an additive manufacturing apparatus, and more particularly to a reclamation system for the additive manufacturing apparatus.
Additive manufacturing is a process in which material is built up layer-by-layer to form a component. Stereolithography (SLA) is a type of additive manufacturing process, which employs a tank of radiant-energy curable photopolymer “resin” and a curing energy source such as a laser. Similarly, Digital Light Processing (DLP) three-dimensional (3D) printing employs a two-dimensional image projector to build components one layer at a time. For each layer, the energy source draws or flashes a radiation image of the cross section of the component onto the surface of the resin. Exposure to the radiation cures and solidifies the pattern in the resin and joins it to a previously-cured layer.
In some instances, additive manufacturing may be accomplished through a “tape casting” process. In this process, a resin is deposited onto a flexible radiotransparent tape or foil, that is fed out from a feed reel to a build zone. Radiant energy is produced from a radiant energy device and directed through a window to cure the resin to a component that is supported by a stage in the build zone. Once the curing of the first layer is complete, the stage and the foil are separated from one another. The foil is then advanced and fresh resin is provided to the build zone. In turn, the first layer of the cured resin is placed onto the fresh resin and cured through the energy device to form an additional layer of the component. Subsequent layers are added to each previous layer until the component is completed.
In operation, as each layer of the component is formed, various amounts of resin may be unused and retained on the foil. Accordingly, it may be beneficial for the additive manufacturing apparatus to include a system that reclaims at least a portion of the unused resin.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In some embodiments of the present disclosure, a reclamation system for an additive manufacturing apparatus is provided. The reclamation system includes a collection structure configured to remove at least a portion of the resin from a foil. A containment vessel is configured to retain the resin removed from the foil. A drain directs the resin from the containment vessel to a reservoir.
In some embodiments of the present disclosure, a method operating an additive manufacturing apparatus. The method includes depositing a resin onto a foil and translating the foil within a build zone. The method also includes curing a first portion of the resin to create a layer of a component. The method further includes translating the foil along a scraper. Lastly, the method includes removing a second portion of the resin from the foil by a vibrating head of the scraper.
In some embodiments of the present disclosure, an additive manufacturing apparatus includes a stage configured to hold one or more cured layers of resin that form a component. A radiant energy device is operable to generate and project radiant energy in a patterned image. An actuator is configured to change a relative position of the stage relative to the radiant energy device. A reclamation system is downstream of the stage and is configured to remove at least a portion of the resin from a foil. The reclamation system is configured to redirect the foil from a first translational direction to a second translational direction through contact with a collection structure.
These and other features, aspects, and advantages of the present disclosure will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present disclosure, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present disclosure.
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention.
As used herein, the terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify a location or importance of the individual components. The terms “coupled,” “fixed,” “attached to,” and the like refer to both direct coupling, fixing, or attaching, as well as indirect coupling, fixing, or attaching through one or more intermediate components or features, unless otherwise specified herein. The terms “upstream” and “downstream” refer to the relative direction with respect to a foil (or resin support) movement along the manufacturing apparatus. For example, “upstream” refers to the direction from which the foil moves, and “downstream” refers to the direction to which the foil moves. The term “selectively” refers to a component's ability to operate in various states (e.g., an ON state and an OFF state) based on manual and/or automatic control of the component.
The singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
Approximating language, as used herein throughout the specification and claims, is applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately,” “generally,” and “substantially,” is not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value, or the precision of the methods or apparatus for constructing or manufacturing the components and/or systems. For example, the approximating language may refer to being within a ten percent margin.
Moreover, the technology of the present application will be described in relation to exemplary embodiments. The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments. Additionally, unless specifically identified otherwise, all embodiments described herein should be considered exemplary.
Here and throughout the specification and claims, range limitations are combined and interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise. For example, all ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other.
As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition or assembly is described as containing components A, B, and/or C, the composition or assembly can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.
The present disclosure is generally directed to an additive manufacturing apparatus that implements various manufacturing processes such that successive layers of material(s) (e.g., resins) are provided on each other to “build-up,” layer-by-layer, a three-dimensional component. The successive layers generally cure together to form a monolithic component which may have a variety of integral sub-components. Although additive manufacturing technology is described herein as enabling the fabrication of complex objects by building objects point-by-point, layer-by-layer, variations of the described additive manufacturing apparatus and technology are possible and within the scope of the present subject matter.
The additive manufacturing apparatus can include a support plate, a window supported by the support plate, and a stage moveable relative to the window. The additive manufacturing apparatus further includes a flexible tape or foil that supports a resin. The foil, with the resin thereon, is positioned between the stage and the support plate. A radiant energy device is configured to cure a portion of the resin forming the component, which is translated towards and away from the foil by the stage between successive curing operations.
In operation, as each layer of the component is formed, various amounts of resin may be unused and retained on the foil after exiting a build zone of the apparatus. In some instances, a reclamation system may be used to reclaim at least a portion of the unused resin. For example, the reclamation system may be used to remove a portion of the resin downstream of the stage.
In various examples, the reclamation system may include a collection structure that is configured to contact the foil and direct the resin to a containment vessel. Further, the collection structure may include a scraper that is configured to contact the foil and, possibly, alter a direction of the foil. The scraper may be integrally formed with the collection structure and/or be formed from various components that are attached to the collection structure. For instance, the scraper may include or form a head that is operably coupled with the collection structure. In various cases, the head may be stationary and/or move. In cases in which the head moves, mechanical actuation and/or ultrasonic energy may be implemented to aid in the removal of the resin from the foil while providing lower, additional normal forces to the foil. The additional ultrasonic energy may amplify the forces parallel to the foil to help release the slurry without applying additional strain on the foil. The lower amounts of force on the foil may prevent and minimize breakage of the foil.
The resin, once removed by the scraper, may be directed into the containment vessel. The containment vessel may define a drain that directs the resin from the containment vessel to the reservoir. From the reservoir, the resin may be refreshed for reuse and/or recertification and returned to a material depositor. Additionally or alternatively, the resin retained within the reservoir may be removed from the apparatus as waste.
Referring to the drawings wherein identical reference numerals denote the similar elements throughout the various views,
In the illustrated example, the apparatus 10 includes a feed module 24, which may include a first mandrel 24A, and a take-up module 26, which may include a second mandrel 26A, that are spaced-apart and configured to couple with respective end portions of a flexible tape or foil 28 or another type of resin support extending therebetween. A portion of the foil 28 can be supported from underneath by the support plate 16. Suitable mechanical supports (frames, brackets, etc.) may be provided for the mandrels 24A, 26A and the support plate 16. The first mandrel 24A and/or the second mandrel 26A can be configured to control the speed and direction of the foil 28 such that the desired tension and speed is maintained in the foil 28 through a drive system 30. By way of example and not limitation, the drive system 30 can be configured as one or more control devices 32, 34 associated with the first mandrel 24A and/or the second mandrel 26A. Moreover, the drive system 30 may include various components, such as motors, actuators, feedback sensors, and/or controls that can be provided for driving the mandrels 24A, 26A in such a manner so as to move at least a portion of the foil 28 between the mandrels 24A, 26A.
In various embodiments, the window 18 is transparent and can be operably supported by the support plate 16. Further, the window 18 and the support plate 16 can be integrally formed such that one or more windows 18 are integrated within the support plate 16. Likewise, the foil 28 is also transparent or includes portions that are transparent. As used herein, the terms “transparent” and “radiotransparent” refer to a material that allows at least a portion of radiant energy of a selected wavelength to pass through. For example, the radiant energy that passes through the window 18 and the foil 28 can be in the ultraviolet spectrum, the infrared spectrum, the visible spectrum, or any other practicable radiant energy. Non-limiting examples of transparent materials include polymers, glass, and crystalline minerals, such as sapphire or quartz.
The foil 28 extends between the feed module 24 and the take-up module 26 and defines a “resin surface” 36, which is shown as being planar, but could alternatively be arcuate (depending on the shape of the support plate 16). In some instances, the resin surface 36 may be defined by a first side 38 of the foil 28 and be positioned to face the stage 20 with the window 18 on an opposing side of the foil 28 from the stage 20. A second side 40 of the foil 28 may be defined as a side that the foil 28 that is opposite the resin R. For purposes of convenient description, the resin surface 36 may be considered to be oriented parallel to an X-Y plane of the apparatus 10, and a direction perpendicular to the X-Y plane is denoted as a Z-axis direction (X, Y, and Z being three mutually perpendicular directions). As used herein, the X-axis refers to the machine direction along the length of the foil 28. As used herein, the Y-axis refers to the transverse direction across the width of the foil 28 and generally perpendicular to the machine direction. As used herein, the Z-axis refers to the stage direction that can be defined as the direction of movement of the stage 20 relative to the window 18.
The resin surface 36 may be configured to be “non-stick,” that is, resistant to adhesion of a cured resin R. The non-stick properties may be embodied by a combination of variables such as the chemistry of the foil 28, its surface finish, and/or applied coatings. For instance, a permanent or semi-permanent non-stick coating may be applied. One non-limiting example of a suitable coating is polytetrafluoroethylene (“PTFE”). In some examples, all or a portion of the resin surface 36 may incorporate a controlled roughness or surface texture (e.g. protrusions, dimples, grooves, ridges, etc.) with nonstick properties. Additionally or alternatively, the foil 28 may be made in whole or in part from an oxygen-permeable material.
For reference purposes, an area or volume immediately surrounding the location of the foil 28 and the window 18 or transparent portion defined by the support plate 16 may be defined as a “build zone,” labeled 42.
In some instances, a material depositor 44 may be positioned along the foil 28. The material depositor 44 may be any device or combination of devices that is operable to apply a layer of the resin R on the foil 28. The material depositor 44 may optionally include a device or combination of devices to define a height of the resin R on the foil 28 and/or to level the resin R on the foil 28. Nonlimiting examples of suitable material deposition devices include chutes, hoppers, pumps, spray nozzles, spray bars, or printheads (e.g. inkjets). In some examples, a doctor blade may be used to control the thickness of resin R applied to the foil 28, as the foil 28 passes the material depositor 44.
In some embodiments, a reclamation system 46 may be configured to remove at least a portion of resin R that remains on the foil 28 after the foil 28 is removed from a build zone 42. For example, the reclamation system 46 may include a wiper assembly, a blade assembly, and/or any other removal assembly and a reservoir for collecting the resin R that is removed from the foil 28.
The resin R includes any radiant-energy curable material, which is capable of adhering or binding together the filler (if used) in the cured state. As used herein, the term “radiant-energy curable” refers to any material which solidifies or partially solidifies in response to the application of radiant energy of a particular frequency and energy level. For example, the resin R may include a photopolymer resin containing photo-initiator compounds functioning to trigger a polymerization reaction, causing the resin R to change from a liquid (or powdered) state to a solid state. Alternatively, the resin R may include a material that contains a solvent that may be evaporated out by the application of radiant energy. The resin R may be provided in solid (e.g. granular) or liquid form, including a paste or slurry.
Furthermore, the resin R can have a relatively high viscosity fluid that will not “slump” or run off during the build process. The composition of the resin R may be selected as desired to suit a particular application. Mixtures of different compositions may be used. The resin R may be selected to have the ability to out-gas or burn off during further processing, such as a sintering process.
The resin R may incorporate a filler. The filler may be pre-mixed with the resin R, then loaded into the material depositor 44. The filler includes particles, which are conventionally defined as “a small bit of matter.” The filler may include any material that is chemically and physically compatible with the selected resin R. The particles may be regular or irregular in shape, may be uniform or non-uniform in size, and may have variable aspect ratios. For example, the particles may take the form of powder, of small spheres or granules, or may be shaped like small rods or fibers.
The composition of the filler, including its chemistry and microstructure, may be selected as desired to suit a particular application. For example, the filler may be metallic, ceramic, polymeric, and/or organic. Other examples of potential fillers include diamond, silicon, and graphite. Mixtures of different compositions may be used. In some examples, the filler composition may be selected for its electrical or electromagnetic properties, e.g. it may specifically be an electrical insulator, a dielectric material, an electrical conductor, and/or magnetic.
The filler may be “fusible,” meaning it is capable of consolidation into a mass upon via application of sufficient energy. For example, fusibility is a characteristic of many available powders including, but not limited to, polymeric, ceramic, glass, and/or metallic materials. The proportion of filler to resin R may be selected to suit a particular application. Generally, any amount of filler may be used so long as the combined material is capable of flowing and being leveled, and there is sufficient resin R to hold together the particles of the filler in the cured state.
With further reference to
The radiant energy device 22 may be configured as any device or combination of devices operable to generate and project radiant energy on the resin R in a suitable pattern and with a suitable energy level and other operating characteristics to cure the resin R during the build process. For example, as shown in
The image forming apparatus 56 may include one or more mirrors, prisms, and/or lenses and is provided with suitable actuators, and arranged so that the source beam 58 from the radiant energy source 54 can be transformed into a pixelated image in an X-Y plane coincident with the surface of the resin R. In the illustrated example, the image forming apparatus 56 may be a digital micro-mirror device.
The projector 52 may incorporate additional components, such as actuators, mirrors, etc. configured to selectively move the image forming apparatus 56 or other part of the projector 52 with the effect of rastering or shifting the location of the patterned image on the resin surface 36. Stated another way, the patterned image may be moved away from a nominal or starting location.
In addition to other types of radiant energy devices 22, the radiant energy device 22 may include a “scanned beam apparatus” used herein to refer generally to any device operable to generate a radiant energy beam of suitable energy level and other operating characteristics to cure the resin R and to scan the beam over the surface of the resin R in a desired pattern. For example, the scanned beam apparatus can include a radiant energy source 54 and a beam steering apparatus. The radiant energy source 54 may include any device operable to generate a beam of suitable power and other operating characteristics to cure the resin R. Non-limiting examples of suitable radiant energy sources 54 include lasers or electron beam guns.
The apparatus 10 may be operably coupled with a computing system 66. The computing system 66 in
Optionally, the components of the apparatus 10 may be surrounded by a housing 68, which may be used to provide a shielding or inert gas (e.g., a “process gas”) atmosphere using gas ports 70. Optionally, pressure within the housing 68 could be maintained at a desired level greater than or less than atmospheric. Optionally, the housing 68 could be temperature and/or humidity controlled. Optionally, ventilation of the housing 68 could be controlled based on factors such as a time interval, temperature, humidity, and/or chemical species concentration. In some embodiments, the housing 68 can be maintained at a pressure that is different than an atmospheric pressure.
Referring to
The front portion 76 of the first mandrel 24A may include a cylindrical portion 86 that is configured to accept the first portion 74 of the foil 28 thereabout. In various instances, the foil 28 may be operably coupled to a first spool (e.g., cardboard spool, polymeric spool, paper-based spool, metallic spool, composite spool, elastomeric spool, etc.), and the first spool may be positioned about the first mandrel 24A.
A stop 88 may be positioned between the cylindrical portion 86 and the first panel 72. As such, when the foil 28 is wrapped about the first mandrel 24A, the stop 88 defines a first distance d1 between an inner edge of the foil 28 and the first panel 72. In some examples, the first mandrel 24A may be configured to move between a disengaged position and an engaged position. In operation, the first mandrel 24A may be placed in the disengaged position to allow the first spool, and the foil 28 wound thereabout, to be slid along the first mandrel 24A to a position in which an end portion of the first spool is in contact or close proximity to the stop 88. Once the first spool is positioned about the first mandrel 24A, the first mandrel 24A may be placed in the engaged position causing the first spool, and, consequently, the first portion 74 of the foil 28 to rotate with the first mandrel 24A.
In some embodiments, the drive system 30 (
With further reference to
The load cell 94 may be positioned between the pair of rollers 92A, 92B and the first mandrel 24A in the Z-axis direction. The load cell 94 may be configured as a force transducer that converts a tension or torque provided by the foil 28 onto the load cell 94 into an electrical signal that can be measured by the computing system 66 to determine a tension of the foil 28. In some embodiments, the foil 28 may be provided from the first mandrel 24A around the first roller 92A, the load cell 94, and, subsequently, the second roller 92B.
Referring to
The front portion 106 of the second mandrel 26A may include a cylindrical portion 116 that is configured to accept the second portion 104 of the foil 28 thereabout. In various instances, the foil 28 may be operably coupled to a second spool (e.g., cardboard spool, polymeric spool, paper-based spool, metallic spool, composite spool, elastomeric spool, etc.). The second spool may be positioned about the second mandrel 24A.
A stop 118 may be positioned between the cylindrical portion 116 and the second panel 102. As such, the foil 28 is wrapped about the second mandrel 26A, the stop 118 defines a second distance d2 between the inner edge of the foil 28 and the second panel 102. In some examples, the second mandrel 26A may be configured to move between a disengaged position and an engaged position. In operation, the second mandrel 26A may be placed in the disengaged position to allow the second spool to be slid along the second mandrel 26A to a position in which an end portion of the second spool is in contact or close proximity to the stop 118. Once the second spool is positioned about the second mandrel 26A, the second mandrel 26A may be placed in the engaged position causing the second spool, and, consequently, the second portion 104 of the foil 28 to rotate with the second mandrel 26A.
Similar to the feed module 24, a second control device 34 may be operably coupled with the rear portion 110 of the second mandrel 26A and extends from the second panel 102. The second control device 34 may be configured as one or more motors, actuators, or any other device that may rotate the second mandrel 26A. Further, as illustrated in
With further reference to
The second panel 102 may further support the resin reclamation system 46, which may be configured to remove at least a portion of resin R that remains on the foil 28 after the foil 28 is removed from a build zone 42 (
Referring now to
In various examples, the collection structure 130 may include a scraper 136 that is configured to contact the foil 28 and direct the resin R to a containment vessel 138. In various examples, the scraper 136 may be capable of contacting the foil 28 and/or the resin R provided on the foil 28. Through contact with the foil 28 and/or the resin R, the resin R may be separated from the foil 28 and directed to the containment vessel 138. The scraper 136 may be integrally formed with the collection structure 130 and/or later attached thereto. In various embodiments, the scraper 136 may include a head 140 defining an end segment 142 that may be generally rigid or flexible and is configured to contact the foil 28. The end segment 142 may be of any practicable geometry, thickness, and relative angle to remove at least a portion of the resin R on the foil 28. For example, the scraper 136 may be chamfered. Further, in various examples, the relative angle, which is an angle between the scraper 136 and a foil path, may be any angle between 0 degrees and 180 degrees. In some instances, the scraper 136 may be configured to remove at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% of the remaining resin R as the foil 28 is translated along the end segment 142.
In some embodiments, the contact assembly 132 may be configured to contact or press on the second side 40 (
In several embodiments, an anchor plate 148 may be supported by the brace 134 and/or otherwise coupled with the second panel 102. The anchor plate 148 can be operably coupled with the backing plate 146 through a guide 150. The guide 150 may be configured to support movement of the backing plate 146 relative to the anchor plate 148. The backing plate 146 may move between at least a first position in which the backing plate 146 is separated from the foil 28 and/or the scraper 136 and a second position in which the backing plate 146 is translated towards the scraper 136 and/or towards the second side 40 of the foil 28. In some instances, the backing plate 146 may be further coupled with an actuator 152. The actuator 152 may be configured to alter a position of the backing plate 146 relative to the anchor plate 148. In some embodiments, the actuator 152 can also be used to alter the pressure/force that is applied by the backing plate 146. In various instances, the actuator 152 may be configured as a pneumatic, hydraulic, electric, twisted, and coiled polymer (TCP) or supercoiled polymer (SCP), thermal, magnetic, and/or mechanical actuator.
In alternate embodiments, the backing plate 146 may be generally stationary, and the scraper 136 may be translated to contact the foil 28. In such instances, the scraper 136 may be controlled by an actuator, which may be similar to the actuator 152 described above for altering the pressure/force provided on the foil 28. As provided above, the actuator may be configured as a pneumatic, hydraulic, electric, twisted, and coiled polymer (TCP) or supercoiled polymer (SCP), thermal, magnetic, and/or mechanical actuator.
As the resin R is removed by the scraper 136, and, possibly with the assistance of the backing plate 146, the resin R is directed into the containment vessel 138. The containment vessel 138 may include any structure that may maintain and/or direct the resin R to a specified location. For example, the containment vessel 138 may maintain the resin R therein while directing the resin R from the containment vessel 138 through a drain 154. A resin conduit 156 may be operably coupled with the drain 154 and direct the resin R to the reservoir 158. In some examples, the collection structure 130 is support by and positioned on a first side 108 of the second panel 102 and the reservoir 158 is on an opposing second side 112 of the second panel 102.
Referring to
First and second valves 180, 182 may be fluidly coupled with the chamber that allows for fluid to be selectively provided to either side of the piston 176 causing the piston 176 to move in response. The movement of the piston 176 also causes the slide 178 to move, which, in turn, moves the backing plate 146. The first and second valves 180, 182 can also have flow control features to be able to adjust the speed at which the backing plate 146 advances and retracts. In such instances, the first and second valves 180, 182 can minimize the risk of cutting the foil 28 or damaging the scraper 136. In various examples, the actuator 152 may be operably coupled with a pneumatic assembly 184 capable of providing a vacuum/suction and/or pushing a fluid, such as air or a process gas (e.g., nitrogen or argon), that causes the backing plate 146 to move between first and second positions. For example, the pneumatic assembly 184 may include a pressurized fluid source that includes a compressor and/or a blower, which may be positioned on a second side 112 of the second panel 102. The pneumatic assembly 184 may additionally or alternatively include any assembly capable of altering a pressure, such as a venturi vacuum pump. In some embodiments, one or more valves and/or switches may be coupled with the pneumatic assembly 184 for varying the states of the pneumatic actuator 152.
With further reference to
In several embodiments, the roller 122 and the scraper 136 may be offset in the X-axis direction. As such, the foil 28 may be positioned about a portion of the roller 122 and directed in a first translational direction td1 upstream of the scraper 136. In some examples, the first translational direction td1 may allow for the foil 28 to be positioned above the collection structure 130 and/or the scraper 136 in the Z-axis direction. Through contact with the scraper 136, the foil 28 may be redirected in a second translational direction td2 that is offset from the first translational direction td1. In some embodiments, an offset angle θ between the first direction and the second direction may be at an angle θ that is greater than 0 degrees and less than 180 degrees (e.g., 70-100 degrees) making the first and second directions a non-perpendicular angle. By altering the direction of the foil 28 between the first and second directions, the scraper 136 maintains constant contact with the foil 28 while providing a constant, predetermined force on the foil 28. The predetermined force may be altered through an adjustment assembly 196 that also for translation of the collection structure 130.
In addition to constant contact of the first side 38 of the foil 28 and the scraper 136 through the offset nature of the roller 122 and the collection structure 130, the contact assembly 132 may provide a force on the second side 40 of the foil 28. In various embodiments, the backing plate 146 of the contact assembly 132 and the scraper 136 may each have a planar surface to provide a generally consistent force on the foil 28 positioned between the scraper 136 and the contact assembly 132 while the contact assembly 132 is retained in a predefined position.
Referring to
In some embodiments, the scraper 136 may include a frame 198 that may be operably coupled with the collection structure 130. The frame 198 may support and/or house an actuator 188 (e.g., a transducer 200) that is operably coupled with the head 140. The actuator 188 may be configured to alter a position of the head 140 from a first position to a second position. Additionally and/or alternatively, the transducer 200 may be configured to convert electrical energy to ultrasonic mechanical pressure waves.
In several embodiments in which the head 140 is capable of movement, the transducer 200 may include a shaft 204 that is coupled with a connector 206 and a movement generator 208 on opposing sides thereof. In some instances, the connector 206 may be configured for coupling various heads 140 to the shaft 204. The movement generator 208 may be in the form of an ultrasonic vibrating device such as one utilizing a piezoelectric transducer 200, although alternate movement generating devices are also featured under the present disclosure including, for example, alone or in conjunction with one or the other, fluid, acoustic, motor (e.g., offset cam), reciprocating piston, or other movement assemblies.
The transducer 200 may be operably coupled with a control system 210 that may be further coupled and/or integrated within the computing system 66. The control system 210 may include an ultrasonic signal generator 212 that supplies an electric impulse to the movement generator 208, the voltage of which can be varied at different frequencies and with different waveshapes. The signal may, for example, be a pure sinusoidal wave or may be modulated with one or more other frequencies. Alternatively, the signal may be a stepped or spiked pulse. In some embodiments, the ultrasonic signal generator 212 transmits a signal of between 20-80 kHz. For example, the signal is at about 60 kHz. The signal generator 212 may, for example, transmit a constant amplitude signal at a constant frequency, or alternate one or both of these parameters. A power level can be selected as a percentage of maximum power. In various embodiments, the signal may be transmitted through a cable to the transducer 200 which imparts ultrasonic movement to the head 140.
The end segment 142 of the head 140 is configured to cut through and/or scrape the resin R from the foil 28. It will be appreciated that the end segment 142 of the head 140 may have any practicable geometry. In some examples, the thickness of the end segment 142 of the head 140 may be within the range of from about 0.010 to about 0.050 inches, and possibly within the range of from about 0.015 to about 0.025 inches. The head 140 can be made from hardened base material or have a hard coating applied for a generally long wear lifespan. Further, the body may be designed to provide a controlled directional flow for the reclamation of the resin R. For example, the body 174 may include a base portion 214 and a neck portion 216 extending therefrom. The end segment 142 may be on an opposing side of the neck from the body. The neck portion 216 may have a thickness in the X-axis direction that is less than the thickness of the base portion 214. As such, the resin R may be removed from the foil 28 by the end segment 142 and directed from the neck portion 216 to the base portion 214 and onto the containment vessel 138.
In some embodiments, such as those illustrated in
In addition to or in lieu of a transducer operably coupled with the scraper 136, in various embodiments, an actuator 188 (e.g., a transducer) may be operably coupled with the backing plate 146 of the contact assembly 132. The actuator 188 may be configured to alter a position of the backing plate 146 from a first position to a second position. Additionally and/or alternatively, the transducer may be configured to convert electrical energy to ultrasonic mechanical pressure waves. The transducer may be similar to the transducer 200 described and include any or all of the components thereof.
Additionally or alternatively, in various embodiments, such as those illustrated in
Now that the construction and configuration of the additive manufacturing apparatus having one or more accumulators have been described according to various examples of the present subject matter, a method 300 for operating an additive manufacturing apparatus is provided. The method 300 can be used to operate the additive manufacturing apparatus and the one or more accumulators, or any other suitable additive manufacturing apparatus having any type and configuration of positioning assembly. It should be appreciated that the example method 300 is discussed herein only to describe example aspects of the present subject matter, and is not intended to be limiting.
Referring now to
At step 306, the method can include moving the stage to contact the resin on a first side of the foil, and, at step 308, the method includes curing at least a first portion of the resin to create a newly cured layer of the component through the use of a radiant energy device. Once the first portion of the resin is cured, the stage may be moved away from the foil thereby separating the component.
At step 310, the method can include translating the foil along a scraper. The scraper may be configured to remove at least a portion of the resin that remains on the foil after the foil has been translated out of the build zone. In some instances, at step 312, the method can include removing a second portion of the resin from the foil. In some embodiments, at step 314, the method includes removing the resin by vibrating head of the scraper between at least a first position and a second position. The head may be vibrated through an actuator and/or a transducer that is operably coupled with the head. The actuator may be configured to alter a position of the head from a first position to a second position. Additionally and/or alternatively, the transducer may be configured to convert electrical energy to mechanical pressure waves through an ultrasonic movement generator. In some embodiments including a transducer, the method can further include vibrating the head of the scraper by converting electrical energy to mechanical pressure waves through the ultrasonic movement generator operably coupled with the transducer.
In some embodiments, the method, at step 316, can include providing pressure on a portion of the foil. In some instances, the pressure may be provided through an actuable backing plate that is movable between at least first and second positions. The head of the scraper is configured to contact a first side of the foil and the backing plate is configured to contact a second, opposing surface of the foil. In the first position, the backing plate may be separated from the second side of the foil and, in the second position, the backing plate may be in contact with the second side of the foil. In some embodiments, to effectuate the movement of the backing plate between at least first and second positions, the actuator may include a pneumatic linear actuator.
Additionally or alternatively, in some instances, the pressure may be provided through an actuable scraper that is movable between at least first and second positions. The head of the scraper is configured to contact a first side of the foil and a generally stationary backing plate is configured to contact a second, opposing surface of the foil. In the first position, the scraper may be separated from the backing plate by a first distance and, in the second position, the scraper may be separated from the backing plate by a second distance that is less than the first distance. In some embodiments, to effectuate the movement of the scarper between at least the first and second positions, the actuator may include a pneumatic linear actuator.
Once removed by the scraper, at step 318, the method includes directing the resin into a containment vessel. The containment vessel may define a drain. At step 320, the method includes directing the resin from the collection structure to a remote reservoir, which may be accomplished through gravity assistance. The remote reservoir is separated from the containment vessel and may be fluidly coupled with the reservoir through a resin conduit. From the reservoir, the resin may be returned to a material depositor and/or removed from the apparatus as waste.
The memory device(s) 66C can include one or more computer-readable media and can store information accessible by the one or more processor(s) 66B, including instructions 66D that can be executed by the one or more processor(s) 66B. The instructions 66D may include one or more steps of the method 300 described above, such as to execute operations of the additive manufacturing apparatus 10 described above. For instance, the memory device(s) 66C can store instructions 66D for running one or more software applications, displaying a user interface, receiving user input, processing user input, etc. In some implementations, the instructions 66D can be executed by the one or more processor(s) 66B to cause the one or more processor(s) 66B to perform operations, e.g., such as one or more portions of methods described herein. The instructions 66D can be software written in any suitable programming language or can be implemented in hardware. Additionally, and/or alternatively, the instructions 66D can be executed in logically and/or virtually separate threads on processor(s) 66B.
The one or more memory device(s) 66C can also store data 66E that can be retrieved, manipulated, created, or stored by the one or more processor(s) 66B. The data 66E can include, for instance, data to facilitate performance of the method 300 described herein. The data 66E can be stored in one or more database(s). The one or more database(s) can be connected to computing system 66 by a high bandwidth LAN or WAN, or can also be connected to the computing system 66 through network(s) (not shown). The one or more database(s) can be split up so that they are located in multiple locales. In some implementations, the data 66E can be received from another device.
The computing device(s) 66A can also include a communication module or interface 66F used to communicate with one or more other component(s) of computing system 66 or the additive manufacturing apparatus 10 over the network(s). The communication interface 66F can include any suitable components for interfacing with one or more network(s), including, for example, transmitters, receivers, ports, controllers, antennas, or other suitable components.
As provided herein, the computing system 66 may be operably coupled with one or more of the drive system 30, the contact assembly 132, the control system 210. The computing system 66 may be configured to control the actuation of each of the drive system 30 based on the information from one or more sensors 222. Likewise, the computing system 66 may be operably coupled with the contact assembly 132 to apply a pressure to a surface of the foil 28, and/or the control system 210 to move the head 140 of the scraper 136.
It should be appreciated that the additive manufacturing apparatus is described herein only for the purpose of explaining aspects of the present subject matter. In other example embodiments, the additive manufacturing apparatus may have any other suitable configuration and may use any other suitable additive manufacturing technology. Further, the additive manufacturing apparatus and processes or methods described herein may be used for forming components using any suitable material. For example, the material may be plastic, metal, concrete, ceramic, polymer, epoxy, photopolymer resin, or any other suitable material that may be embodied in a layer of slurry, resin, or any other suitable form of sheet material having any suitable consistency, viscosity, or material properties. For example, according to various embodiments of the present subject matter, the additively manufactured components described herein may be formed in part, in whole, or in some combination of materials including but not limited to pure metals, nickel alloys, chrome alloys, titanium, titanium alloys, magnesium, magnesium alloys, aluminum, aluminum alloys, iron, iron alloys, stainless steel, and nickel or cobalt-based superalloys (e.g., those available under the name Inconel® available from Special Metals Corporation). These materials are examples of materials suitable for use in the additive manufacturing processes described herein, and may be generally referred to as “additive materials.”
Aspects of the invention(s) are provided by the subject matter of the following clauses, which are intended to cover all suitable combinations unless dictated otherwise based on logic or the context of the clauses and/or associated figures and description:
A reclamation system for an additive manufacturing apparatus, the reclamation system comprising: a collection structure configured to remove at least a portion of the resin from a foil; a containment vessel configured to retain the resin removed from the foil; and a drain directing the resin from the containment vessel to a reservoir.
The reclamation system of one or more of these clauses, further comprising: a scraper operably coupled with the collection structure and configured to remove the resin from the foil.
The reclamation system of one or more of these clauses, wherein the scraper is configured to vibrate while removing the resin from the foil.
The reclamation system of one or more of these clauses, further comprising: a backing plate positioned on an opposing side of the foil from the collection structure.
The reclamation system of one or more of these clauses, wherein the backing plate selectively provides pressure against the opposing side of the foil from the collection structure.
The reclamation system of one or more of these clauses, further comprising: an anchor plate operably coupled with the backing plate through a guide, the guide configured to support movement of the backing plate relative to the anchor plate.
The reclamation system of one or more of these clauses, further comprising: a pneumatic actuator operably coupled with the backing plate and configured to alter a position of the backing plate relative to the anchor plate.
The reclamation system of one or more of these clauses, further comprising: a brace fixedly supporting each of the anchor plate and the collection structure.
The reclamation system of one or more of these clauses, wherein the backing plate is operably coupled with a transducer, the transducer configured to convert electrical energy to mechanical pressure waves through an ultrasonic movement generator.
The reclamation system of one or more of these clauses, wherein the scraper is configured to contact the foil at an offset angle that is greater than 0 degrees and less than 180 degrees.
The reclamation system of one or more of these clauses, further comprising: a scraper operably coupled with the collection structure, the scraper having a vibrating head operably coupled with a transducer, the transducer configured to convert electrical energy to mechanical pressure waves through an ultrasonic movement generator.
A method of operating an additive manufacturing apparatus, the method comprising: depositing a resin onto a foil; translating the foil within a build zone; curing a first portion of the resin to create a layer of a component; translating the foil along a scraper; and removing a second portion of the resin from the foil by a vibrating head of the scraper.
The method of one or more of these clauses, further comprising: directing the resin into a containment vessel.
The method of one or more of these clauses, further comprising: directing the resin from the containment vessel to a remote reservoir through gravity assistance.
The method of one or more of these clauses, further comprising: providing pressure on a portion of the foil through an actuable backing plate, wherein the head of the scraper is configured to contact a first side of the foil and the backing plate is configured to contact a second, opposing surface of the foil.
The method of one or more of these clauses, further comprising: providing pressure on a portion of the foil through actuation of the scraper.
An additive manufacturing apparatus comprising: a stage configured to hold one or more cured layers of resin that form a component; a radiant energy device operable to generate and project radiant energy in a patterned image; an actuator configured to change a relative position of the stage relative to the radiant energy device; and a reclamation system downstream of the stage and configured to remove at least a portion of the resin from a foil, wherein the reclamation system is configured to redirect the foil from a first translational direction to a second translational direction through contact with a collection structure.
The additive manufacturing apparatus of one or more of these clauses, wherein the collection structure includes a scraper that is configured to contact the foil and direct the resin to a containment vessel.
The additive manufacturing apparatus of one or more of these clauses, further comprising: a containment vessel within the collection structure.
The additive manufacturing apparatus of one or more of these clauses, further comprising: a drain defined by the containment vessel and configured to direct the resin from the containment vessel to a reservoir.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application claims priority to U.S. Provisional Patent Application Ser. No. 63/214,294, filed on Jun. 24, 2021, the contents of which of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1990749 | Phillips et al. | Feb 1935 | A |
2259517 | Drenkard, Jr. | Oct 1941 | A |
3264103 | Cohen et al. | Aug 1966 | A |
3395014 | Cohen et al. | Jul 1968 | A |
3486482 | Hunger | Dec 1969 | A |
3710846 | Properzi | Jan 1973 | A |
3875067 | DeSorgo et al. | Apr 1975 | A |
3991149 | Hurwitt | Nov 1976 | A |
4041476 | Swainson | Aug 1977 | A |
4292827 | Waugh | Oct 1981 | A |
4575330 | Hull | Mar 1986 | A |
4752498 | Fudim | Jun 1988 | A |
4945032 | Murphy et al. | Jul 1990 | A |
5015312 | Kinzie | May 1991 | A |
5026146 | Hug et al. | Jun 1991 | A |
5031120 | Pomerantz et al. | Jul 1991 | A |
5058988 | Spence et al. | Oct 1991 | A |
5059021 | Spence et al. | Oct 1991 | A |
5088047 | Bynum | Feb 1992 | A |
5094935 | Vassiliou et al. | Mar 1992 | A |
5096530 | Cohen | Mar 1992 | A |
5104592 | Hull et al. | Apr 1992 | A |
5123734 | Spence et al. | Jun 1992 | A |
5126259 | Weiss et al. | Jun 1992 | A |
5126529 | Weiss et al. | Jun 1992 | A |
5133987 | Spence et al. | Jul 1992 | A |
5162167 | Minh et al. | Nov 1992 | A |
5174931 | Almquist et al. | Dec 1992 | A |
5175077 | Grossa | Dec 1992 | A |
5182055 | Allison et al. | Jan 1993 | A |
5192559 | Hull et al. | Mar 1993 | A |
5203944 | Prinz et al. | Apr 1993 | A |
5204055 | Sachs et al. | Apr 1993 | A |
5207371 | Prinz et al. | May 1993 | A |
5236326 | Grossa | Aug 1993 | A |
5236637 | Hull | Aug 1993 | A |
5236812 | Vassiliou et al. | Aug 1993 | A |
5247180 | Mitcham et al. | Sep 1993 | A |
5248456 | Evans, Jr. et al. | Sep 1993 | A |
5258146 | Almquist et al. | Nov 1993 | A |
5314711 | Baccini | May 1994 | A |
5340656 | Sachs et al. | Aug 1994 | A |
5387380 | Cima et al. | Feb 1995 | A |
5432045 | Narukawa et al. | Jul 1995 | A |
5447822 | Hull et al. | Sep 1995 | A |
5454069 | Knapp et al. | Sep 1995 | A |
5460758 | Langer et al. | Oct 1995 | A |
5496682 | Quadir et al. | Mar 1996 | A |
5610824 | Vinson et al. | Mar 1997 | A |
5626919 | Chapman et al. | May 1997 | A |
5650260 | Onishi | Jul 1997 | A |
5660621 | Bredt | Aug 1997 | A |
5665401 | Serbin et al. | Sep 1997 | A |
5688464 | Jacobs et al. | Nov 1997 | A |
5693144 | Jacobs et al. | Dec 1997 | A |
5697043 | Baskaran et al. | Dec 1997 | A |
5717599 | Menhennett et al. | Feb 1998 | A |
5718279 | Saoth et al. | Feb 1998 | A |
5746833 | Gerhardt | May 1998 | A |
5764521 | Batchelder et al. | Jun 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5824184 | Kamijo et al. | Oct 1998 | A |
5851465 | Bredt | Dec 1998 | A |
5866058 | Batchelder et al. | Feb 1999 | A |
5895547 | Kathrein et al. | Apr 1999 | A |
5900207 | Danforth et al. | May 1999 | A |
5939008 | Comb et al. | Aug 1999 | A |
5940674 | Sachs et al. | Aug 1999 | A |
5945058 | Manners et al. | Aug 1999 | A |
5968561 | Batchelder et al. | Oct 1999 | A |
5980813 | Narang et al. | Nov 1999 | A |
5985204 | Otsuka et al. | Nov 1999 | A |
6051179 | Hagenau | Apr 2000 | A |
6067480 | Stuffle et al. | May 2000 | A |
6068367 | Fabbri | May 2000 | A |
6110411 | Clausen et al. | Aug 2000 | A |
6146567 | Sachs et al. | Nov 2000 | A |
6193923 | Leyden et al. | Feb 2001 | B1 |
6200646 | Neckers et al. | Mar 2001 | B1 |
6206672 | Grenda | Mar 2001 | B1 |
6363606 | Johnson et al. | Apr 2002 | B1 |
6375451 | Robinson et al. | Apr 2002 | B1 |
6376148 | Liu et al. | Apr 2002 | B1 |
6391245 | Smith | May 2002 | B1 |
6399010 | Guertin et al. | Jun 2002 | B1 |
6401002 | Jang et al. | Jun 2002 | B1 |
6403002 | van der Geest | Jun 2002 | B1 |
6436520 | Yamamoto | Aug 2002 | B1 |
6450393 | Doumanidis et al. | Sep 2002 | B1 |
6463349 | White et al. | Oct 2002 | B2 |
6471800 | Jang et al. | Oct 2002 | B2 |
6500378 | Smith | Dec 2002 | B1 |
6512869 | Imayama et al. | Jan 2003 | B1 |
6543506 | Phillips | Apr 2003 | B1 |
6575218 | Burns et al. | Jun 2003 | B1 |
6596224 | Sachs et al. | Jul 2003 | B1 |
6641897 | Gervasi | Nov 2003 | B2 |
6649113 | Manners et al. | Nov 2003 | B1 |
6660209 | Leyden et al. | Dec 2003 | B2 |
6668892 | Vasilakes et al. | Dec 2003 | B2 |
6682598 | Steinmueller et al. | Jan 2004 | B1 |
6780368 | Liu et al. | Aug 2004 | B2 |
6786711 | Koch et al. | Sep 2004 | B2 |
6838035 | Ederer et al. | Jan 2005 | B1 |
6850334 | Gothait | Feb 2005 | B1 |
6852272 | Artz et al. | Feb 2005 | B2 |
6896839 | Kubo et al. | May 2005 | B2 |
6914406 | Wilkes et al. | Jul 2005 | B1 |
6930144 | Oriakhi | Aug 2005 | B2 |
6947058 | Elmquist | Sep 2005 | B1 |
6966960 | Boyd et al. | Nov 2005 | B2 |
6974521 | Schermer | Dec 2005 | B2 |
6986654 | Imiolek et al. | Jan 2006 | B2 |
7008209 | Iskra et al. | Mar 2006 | B2 |
7016738 | Karunasiri | Mar 2006 | B1 |
7022207 | Hirsch | Apr 2006 | B2 |
7045738 | Kovacevic et al. | May 2006 | B1 |
7052263 | John | May 2006 | B2 |
7070250 | Lester et al. | Jul 2006 | B2 |
7074029 | Stockwell et al. | Jul 2006 | B2 |
7084875 | Plante | Aug 2006 | B2 |
7087109 | Bredr et al. | Aug 2006 | B2 |
7158849 | Huang et al. | Jan 2007 | B2 |
7164420 | Ard | Jan 2007 | B2 |
7195472 | John | Mar 2007 | B2 |
7261542 | Hickerson et al. | Aug 2007 | B2 |
7270528 | Sherwood | Sep 2007 | B2 |
7300613 | Sano et al. | Nov 2007 | B2 |
7351304 | Liang et al. | Apr 2008 | B2 |
7402219 | Graf | Jul 2008 | B2 |
7438846 | John | Oct 2008 | B2 |
7455804 | Patel et al. | Nov 2008 | B2 |
7520740 | Wahlstrom et al. | Apr 2009 | B2 |
7550518 | Bredt et al. | Jun 2009 | B2 |
7555726 | Kurtenbach et al. | Jun 2009 | B2 |
7569174 | Ruatta et al. | Aug 2009 | B2 |
7572403 | Gu et al. | Aug 2009 | B2 |
7575682 | Olsta et al. | Aug 2009 | B2 |
7578958 | Patel et al. | Aug 2009 | B2 |
7614866 | Sperry et al. | Nov 2009 | B2 |
7614886 | Sperry et al. | Nov 2009 | B2 |
7636610 | Schillen et al. | Dec 2009 | B2 |
7698947 | Sarr | Apr 2010 | B2 |
7706910 | Hull et al. | Apr 2010 | B2 |
7742060 | Maillot | Jun 2010 | B2 |
7758799 | Hull et al. | Jul 2010 | B2 |
7767132 | Patel et al. | Aug 2010 | B2 |
7771183 | Hull et al. | Aug 2010 | B2 |
7780429 | Kikuchi | Aug 2010 | B2 |
7783371 | John et al. | Aug 2010 | B2 |
7785093 | Holmboe et al. | Aug 2010 | B2 |
7790093 | Shkolnik et al. | Sep 2010 | B2 |
7795349 | Bredt et al. | Sep 2010 | B2 |
7815826 | Serdy et al. | Oct 2010 | B2 |
7845930 | Shkolnik et al. | Dec 2010 | B2 |
7867302 | Nevoret et al. | Jan 2011 | B2 |
7892474 | Shkolnik et al. | Feb 2011 | B2 |
7894921 | John et al. | Feb 2011 | B2 |
7931460 | Scott et al. | Apr 2011 | B2 |
7962238 | Shkolnik et al. | Jun 2011 | B2 |
7964047 | Ishida | Jun 2011 | B2 |
7995073 | Shemanarev et al. | Aug 2011 | B1 |
8003040 | El-Siblani | Aug 2011 | B2 |
8071055 | Davidson et al. | Sep 2011 | B2 |
8029642 | Hagman | Oct 2011 | B2 |
8048261 | McCowin | Nov 2011 | B2 |
8070473 | Kozlak | Dec 2011 | B2 |
8105066 | Sperry et al. | Jan 2012 | B2 |
8110135 | El-Siblani | Feb 2012 | B2 |
8126580 | El-Siblani et al. | Feb 2012 | B2 |
8157908 | Williams | Apr 2012 | B2 |
8185229 | Davidson | May 2012 | B2 |
8096262 | Ederer et al. | Jun 2012 | B2 |
8191500 | Dohring et al. | Jun 2012 | B2 |
8211226 | Bredt et al. | Jul 2012 | B2 |
8232444 | Bar Nathan et al. | Jul 2012 | B2 |
8259103 | Glueck et al. | Sep 2012 | B2 |
8269767 | Glueck et al. | Sep 2012 | B2 |
8282866 | Hiraide | Oct 2012 | B2 |
8326024 | Shkolnik | Dec 2012 | B2 |
8372330 | El-Siblani et al. | Feb 2013 | B2 |
8394313 | El-Siblani et al. | Mar 2013 | B2 |
8413578 | Doyle | Apr 2013 | B2 |
8424580 | Anderson et al. | Apr 2013 | B2 |
8444903 | Lyons et al. | May 2013 | B2 |
8454879 | Kuzusako et al. | Jun 2013 | B2 |
8475946 | Dion et al. | Jul 2013 | B1 |
8506862 | Giller et al. | Aug 2013 | B2 |
8506870 | Hochsmann et al. | Aug 2013 | B2 |
8513562 | Bichsel | Aug 2013 | B2 |
8522159 | Kurtenbach et al. | Aug 2013 | B2 |
8540501 | Yasukochi | Sep 2013 | B2 |
8568646 | Wang et al. | Oct 2013 | B2 |
8568649 | Balistreri et al. | Oct 2013 | B1 |
8593083 | Firhoj et al. | Nov 2013 | B2 |
8616872 | Matsui et al. | Dec 2013 | B2 |
8623264 | Rohner et al. | Jan 2014 | B2 |
8636494 | Gothait et al. | Jan 2014 | B2 |
8636496 | Das et al. | Jan 2014 | B2 |
8658076 | El-Siblani | Feb 2014 | B2 |
8663568 | Bar Nathan et al. | Mar 2014 | B2 |
8666142 | Shkolnik et al. | Mar 2014 | B2 |
8703037 | Hull et al. | Apr 2014 | B2 |
8715832 | Ederer et al. | May 2014 | B2 |
8718522 | Chillscyzn et al. | May 2014 | B2 |
8737862 | Manico et al. | May 2014 | B2 |
8741194 | Ederer et al. | Jun 2014 | B1 |
8741203 | Liska et al. | Jun 2014 | B2 |
8744184 | Ameline et al. | Jun 2014 | B2 |
8761918 | Silverbrook | Jun 2014 | B2 |
8801418 | El-Siblani et al. | Aug 2014 | B2 |
8805064 | Ameline et al. | Aug 2014 | B2 |
8815143 | John et al. | Aug 2014 | B2 |
8844133 | Fuller | Aug 2014 | B2 |
8845316 | Schillen et al. | Sep 2014 | B2 |
8845953 | Balistreri et al. | Sep 2014 | B1 |
8862260 | Shkolnik et al. | Oct 2014 | B2 |
8872024 | Jamar et al. | Oct 2014 | B2 |
8873024 | Jamar et al. | Oct 2014 | B2 |
8876513 | Lim et al. | Nov 2014 | B2 |
8877115 | Elsey | Nov 2014 | B2 |
8888480 | Yoo et al. | Nov 2014 | B2 |
8915728 | Mironets et al. | Dec 2014 | B2 |
8926304 | Chen | Jan 2015 | B1 |
8932511 | Napendensky | Jan 2015 | B2 |
8968625 | Tan | Mar 2015 | B2 |
8974717 | Maguire et al. | Mar 2015 | B2 |
8991211 | Arlotti et al. | Mar 2015 | B1 |
8992816 | Jonasson et al. | Mar 2015 | B2 |
8998601 | Busato | Apr 2015 | B2 |
9011982 | Muller et al. | Apr 2015 | B2 |
9031680 | Napadensky | May 2015 | B2 |
9063376 | Mizumura | Jun 2015 | B2 |
9064922 | Nakajima et al. | Jun 2015 | B2 |
9067359 | Rohner et al. | Jun 2015 | B2 |
9067360 | Wehning et al. | Jun 2015 | B2 |
9067361 | El-Siblani | Jun 2015 | B2 |
9073260 | El-Siblani et al. | Jul 2015 | B2 |
9079357 | Ebert et al. | Jul 2015 | B2 |
9101321 | Kiesser | Aug 2015 | B1 |
9149986 | Huang et al. | Oct 2015 | B2 |
9150032 | Roof et al. | Oct 2015 | B2 |
9153052 | Ameline et al. | Oct 2015 | B2 |
9159155 | Andersen | Oct 2015 | B2 |
9186847 | Fruth et al. | Nov 2015 | B2 |
9193112 | Ohkusa et al. | Nov 2015 | B2 |
9205601 | DeSimone et al. | Dec 2015 | B2 |
9211678 | DeSimone et al. | Dec 2015 | B2 |
9216546 | DeSimone et al. | Dec 2015 | B2 |
9221100 | Schwarze et al. | Dec 2015 | B2 |
9233504 | Douglas et al. | Jan 2016 | B2 |
9248600 | Goodman et al. | Feb 2016 | B2 |
9259880 | Chen | Feb 2016 | B2 |
9308690 | Boyer et al. | Apr 2016 | B2 |
9327385 | Webb et al. | May 2016 | B2 |
9346217 | Huang et al. | May 2016 | B2 |
9346218 | Chen et al. | May 2016 | B2 |
9360757 | DeSimone et al. | Jun 2016 | B2 |
9364848 | Silverbrook | Jun 2016 | B2 |
9403322 | Das et al. | Aug 2016 | B2 |
9403324 | Ederer et al. | Aug 2016 | B2 |
9415443 | Ljungblad et al. | Aug 2016 | B2 |
9415544 | Kerekes et al. | Aug 2016 | B2 |
9415547 | Chen et al. | Aug 2016 | B2 |
9429104 | Fuller | Aug 2016 | B2 |
9434107 | Zenere | Sep 2016 | B2 |
9446557 | Zenere et al. | Sep 2016 | B2 |
9453142 | Rolland et al. | Sep 2016 | B2 |
9456884 | Uckelmann et al. | Oct 2016 | B2 |
9457374 | Hibbs et al. | Oct 2016 | B2 |
9463488 | Ederer et al. | Oct 2016 | B2 |
9469074 | Ederer et al. | Oct 2016 | B2 |
9486944 | El-Siblani et al. | Nov 2016 | B2 |
9486964 | Joyce | Nov 2016 | B2 |
9487443 | Watanabe | Nov 2016 | B2 |
9498920 | DeSimone et al. | Nov 2016 | B2 |
9498921 | Teulet | Nov 2016 | B2 |
9511546 | Chen et al. | Dec 2016 | B2 |
9517591 | Yoo et al. | Dec 2016 | B2 |
9517592 | Yoo et al. | Dec 2016 | B2 |
9527244 | El-Siblani | Dec 2016 | B2 |
9527272 | Steele | Dec 2016 | B2 |
9529371 | Nakamura | Dec 2016 | B2 |
9533450 | El-Siblani et al. | Jan 2017 | B2 |
9539762 | Durand et al. | Jan 2017 | B2 |
9545753 | Costabeber | Jan 2017 | B2 |
9545784 | Nakamura | Jan 2017 | B2 |
9550326 | Costabeber | Jan 2017 | B2 |
9561622 | Das et al. | Feb 2017 | B2 |
9561623 | El-Siblani et al. | Feb 2017 | B2 |
9578695 | Jerby et al. | Feb 2017 | B2 |
9579852 | Okamoto | Feb 2017 | B2 |
9581530 | Guthrie et al. | Feb 2017 | B2 |
9592635 | Ebert et al. | Mar 2017 | B2 |
9604411 | Rogren | Mar 2017 | B2 |
9610616 | Chen et al. | Apr 2017 | B2 |
9616620 | Hoechsmann et al. | Apr 2017 | B2 |
9632037 | Chen et al. | Apr 2017 | B2 |
9632420 | Allanic | Apr 2017 | B2 |
9632983 | Ueda et al. | Apr 2017 | B2 |
9636873 | Joyce | May 2017 | B2 |
9649812 | Hartmann et al. | May 2017 | B2 |
9649815 | Atwood et al. | May 2017 | B2 |
9656344 | Kironn et al. | May 2017 | B2 |
9670371 | Pervan et al. | Jun 2017 | B2 |
9676143 | Kashani-Shirazi | Jun 2017 | B2 |
9676963 | Rolland et al. | Jun 2017 | B2 |
9682166 | Watanabe | Jun 2017 | B2 |
9682425 | Xu et al. | Jun 2017 | B2 |
9688027 | Batchelder et al. | Jun 2017 | B2 |
9707720 | Chen et al. | Jul 2017 | B2 |
9720363 | Chillscyzn et al. | Aug 2017 | B2 |
9738034 | Gruber et al. | Aug 2017 | B2 |
9738564 | Capobianco et al. | Aug 2017 | B2 |
9751292 | Jamar et al. | Sep 2017 | B2 |
9764513 | Stampfl et al. | Sep 2017 | B2 |
9764535 | Xie et al. | Sep 2017 | B2 |
9821546 | Schaafsma et al. | Nov 2017 | B2 |
9862146 | Driessen et al. | Jan 2018 | B2 |
9862150 | Chen et al. | Jan 2018 | B2 |
9868255 | Comb et al. | Jan 2018 | B2 |
9885987 | Chillscysn et al. | Feb 2018 | B2 |
9895843 | Lobovsky et al. | Feb 2018 | B2 |
9901983 | Hovel et al. | Feb 2018 | B2 |
9908293 | Yoo et al. | Mar 2018 | B2 |
9919474 | Napadensky | Mar 2018 | B2 |
9919515 | Daniell et al. | Mar 2018 | B2 |
9950368 | Lampenscherf et al. | Apr 2018 | B2 |
9956727 | Steele | May 2018 | B2 |
9962767 | Buller et al. | May 2018 | B2 |
9981411 | Green et al. | May 2018 | B2 |
10000023 | El-Siblani et al. | Jun 2018 | B2 |
10011076 | El-Siblani et al. | Jul 2018 | B2 |
10061302 | Jacobs et al. | Aug 2018 | B2 |
10071422 | Buller et al. | Sep 2018 | B2 |
10124532 | El-Siblani et al. | Nov 2018 | B2 |
10150254 | Bauman et al. | Dec 2018 | B2 |
10155345 | Ermoshkin et al. | Dec 2018 | B2 |
10155882 | Rolland et al. | Dec 2018 | B2 |
10183330 | Buller et al. | Jan 2019 | B2 |
10183444 | Campbell | Jan 2019 | B2 |
10240066 | Rolland et al. | Mar 2019 | B2 |
10245784 | Teken et al. | Apr 2019 | B2 |
10317882 | de Pena et al. | Jun 2019 | B2 |
10336055 | Das et al. | Jul 2019 | B2 |
10336057 | Moore et al. | Jul 2019 | B2 |
10350823 | Rolland et al. | Jul 2019 | B2 |
10357956 | Usami et al. | Jul 2019 | B2 |
10406748 | Honda | Sep 2019 | B2 |
10612112 | Yang et al. | Apr 2020 | B2 |
10639843 | Yuan et al. | May 2020 | B2 |
10682808 | Fujita et al. | Jun 2020 | B2 |
10695988 | Hanyu et al. | Jun 2020 | B2 |
10717212 | Parkinson et al. | Jul 2020 | B2 |
10737479 | El-Siblani et al. | Aug 2020 | B2 |
20020164069 | Nagano et al. | Nov 2002 | A1 |
20030180171 | Artz et al. | Sep 2003 | A1 |
20030209836 | Sherwood | Nov 2003 | A1 |
20050012239 | Nakashima | Jan 2005 | A1 |
20050019016 | Ishikawa et al. | Sep 2005 | A1 |
20060230984 | Bredt et al. | Oct 2006 | A1 |
20060248062 | Libes et al. | Nov 2006 | A1 |
20070063366 | Cunningham et al. | Mar 2007 | A1 |
20070116937 | Lazzerini | May 2007 | A1 |
20080170112 | Hull et al. | Jul 2008 | A1 |
20080224352 | Narukawa et al. | Sep 2008 | A1 |
20080241404 | Allaman et al. | Oct 2008 | A1 |
20100003619 | Das et al. | Jan 2010 | A1 |
20100196694 | Yamazaki et al. | Aug 2010 | A1 |
20100290016 | Kaehr et al. | Nov 2010 | A1 |
20110089610 | El-Siblani et al. | Apr 2011 | A1 |
20110101570 | John et al. | May 2011 | A1 |
20110162989 | Ducker et al. | Jul 2011 | A1 |
20110207057 | Hull et al. | Aug 2011 | A1 |
20120195994 | El-Siblani et al. | Aug 2012 | A1 |
20120292800 | Higuchi et al. | Nov 2012 | A1 |
20120313294 | Vermeer et al. | Dec 2012 | A1 |
20130008879 | Bichsel | Jan 2013 | A1 |
20130140741 | El-Siblani et al. | Jun 2013 | A1 |
20140099476 | Subramanian et al. | Apr 2014 | A1 |
20140103581 | Das et al. | Apr 2014 | A1 |
20140200865 | Lehmann et al. | Jul 2014 | A1 |
20140239554 | El-Siblani et al. | Aug 2014 | A1 |
20140275317 | Moussa | Sep 2014 | A1 |
20140319735 | El-Siblani et al. | Oct 2014 | A1 |
20140322374 | El-Siblani et al. | Oct 2014 | A1 |
20140332507 | Fockele | Nov 2014 | A1 |
20140339741 | Aghababaie et al. | Nov 2014 | A1 |
20140348691 | Ljungblad et al. | Nov 2014 | A1 |
20140348692 | Bessac et al. | Nov 2014 | A1 |
20150004042 | Nimal | Jan 2015 | A1 |
20150004046 | Graham et al. | Jan 2015 | A1 |
20150056365 | Miyoshi | Feb 2015 | A1 |
20150086409 | Hellestam | Mar 2015 | A1 |
20150102531 | El-Siblani et al. | Apr 2015 | A1 |
20150104563 | Lowe et al. | Apr 2015 | A1 |
20150140152 | Chen | May 2015 | A1 |
20150140155 | Ohno et al. | May 2015 | A1 |
20150145174 | Comb | May 2015 | A1 |
20150158111 | Schwarze et al. | Jun 2015 | A1 |
20150165695 | Chen et al. | Jun 2015 | A1 |
20150210013 | Teulet | Jul 2015 | A1 |
20150224710 | El-Siblani | Aug 2015 | A1 |
20150231798 | Goto | Aug 2015 | A1 |
20150231828 | El-Siblani et al. | Aug 2015 | A1 |
20150231831 | El-Siblani | Aug 2015 | A1 |
20150246487 | El-Siblani | Sep 2015 | A1 |
20150251351 | Feygin | Sep 2015 | A1 |
20150268099 | Craig et al. | Sep 2015 | A1 |
20150298396 | Chen et al. | Oct 2015 | A1 |
20150301517 | Chen et al. | Oct 2015 | A1 |
20150306819 | Ljungblad | Oct 2015 | A1 |
20150306825 | Chen et al. | Oct 2015 | A1 |
20150321421 | Ding | Nov 2015 | A1 |
20150352668 | Scott et al. | Dec 2015 | A1 |
20150352791 | Chen et al. | Dec 2015 | A1 |
20150355553 | Allanic | Dec 2015 | A1 |
20150375452 | Huang et al. | Dec 2015 | A1 |
20160016361 | Lobovsky et al. | Jan 2016 | A1 |
20160031010 | O'Neill et al. | Feb 2016 | A1 |
20160046075 | DeSimone et al. | Feb 2016 | A1 |
20160046080 | Thomas et al. | Feb 2016 | A1 |
20160052205 | FrantzDale | Feb 2016 | A1 |
20160059484 | DeSimone et al. | Mar 2016 | A1 |
20160059485 | Ding et al. | Mar 2016 | A1 |
20160067921 | Willis et al. | Mar 2016 | A1 |
20160082662 | Majer | Mar 2016 | A1 |
20160082671 | Joyce | Mar 2016 | A1 |
20160096332 | Chen et al. | Apr 2016 | A1 |
20160107340 | Joyce | Apr 2016 | A1 |
20160107383 | Dikovsky et al. | Apr 2016 | A1 |
20160107387 | Ooba et al. | Apr 2016 | A1 |
20160129631 | Chen et al. | May 2016 | A1 |
20160137839 | Rolland et al. | May 2016 | A1 |
20160167160 | Hellestam | Jun 2016 | A1 |
20160176114 | Tsai et al. | Jun 2016 | A1 |
20160184931 | Green | Jun 2016 | A1 |
20160193785 | Bell et al. | Jul 2016 | A1 |
20160214327 | Ucklemann et al. | Jul 2016 | A1 |
20160221262 | Das et al. | Aug 2016 | A1 |
20160243649 | Zheng et al. | Aug 2016 | A1 |
20160303798 | Mironets et al. | Oct 2016 | A1 |
20160332386 | Kuijpers | Nov 2016 | A1 |
20160361871 | Jeng et al. | Dec 2016 | A1 |
20160361872 | El-Siblani | Dec 2016 | A1 |
20170008234 | Cullen et al. | Jan 2017 | A1 |
20170008236 | Easter et al. | Jan 2017 | A1 |
20170021562 | El-Siblani et al. | Jan 2017 | A1 |
20170066185 | Ermoshkin et al. | Mar 2017 | A1 |
20170066196 | Beard et al. | Mar 2017 | A1 |
20170072635 | El-Siblani et al. | Mar 2017 | A1 |
20170080641 | El-Siblani | Mar 2017 | A1 |
20170087670 | Kalentics et al. | Mar 2017 | A1 |
20170100895 | Chou et al. | Apr 2017 | A1 |
20170100897 | Chou et al. | Apr 2017 | A1 |
20170100899 | El-Siblani et al. | Apr 2017 | A1 |
20170102679 | Greene et al. | Apr 2017 | A1 |
20170113409 | Patrov | Apr 2017 | A1 |
20170120332 | DeMuth et al. | May 2017 | A1 |
20170120333 | DeMuth et al. | May 2017 | A1 |
20170120334 | DeMuth et al. | May 2017 | A1 |
20170120335 | DeMuth et al. | May 2017 | A1 |
20170120336 | DeMuth et al. | May 2017 | A1 |
20170120387 | DeMuth et al. | May 2017 | A1 |
20170120518 | DeMuth et al. | May 2017 | A1 |
20170120529 | DeMuth et al. | May 2017 | A1 |
20170120530 | DeMuth et al. | May 2017 | A1 |
20170120537 | DeMuth et al. | May 2017 | A1 |
20170120538 | DeMuth et al. | May 2017 | A1 |
20170123222 | DeMuth et al. | May 2017 | A1 |
20170123237 | DeMuth et al. | May 2017 | A1 |
20170136688 | Knecht et al. | May 2017 | A1 |
20170136708 | Das et al. | May 2017 | A1 |
20170157841 | Green | Jun 2017 | A1 |
20170157862 | Bauer | Jun 2017 | A1 |
20170165916 | El-Siblani | Jun 2017 | A1 |
20170173865 | Dikovsky et al. | Jun 2017 | A1 |
20170182708 | Lin et al. | Jun 2017 | A1 |
20170190120 | Bloome et al. | Jul 2017 | A1 |
20170276651 | Hall | Sep 2017 | A1 |
20170284971 | Hall | Oct 2017 | A1 |
20170291804 | Craft et al. | Oct 2017 | A1 |
20170297108 | Gibson et al. | Oct 2017 | A1 |
20170297109 | Gibson et al. | Oct 2017 | A1 |
20170305136 | Elsey | Oct 2017 | A1 |
20170326786 | Yuan et al. | Nov 2017 | A1 |
20170326807 | Greene et al. | Nov 2017 | A1 |
20170368816 | Batchelder et al. | Dec 2017 | A1 |
20180001567 | Juan et al. | Jan 2018 | A1 |
20180015672 | Shusteff et al. | Jan 2018 | A1 |
20180043619 | Kim et al. | Feb 2018 | A1 |
20180056585 | Du Toit | Mar 2018 | A1 |
20180056604 | Sands et al. | Mar 2018 | A1 |
20180079137 | Herzog et al. | Mar 2018 | A1 |
20180085998 | von Burg | Mar 2018 | A1 |
20180117790 | Yun | May 2018 | A1 |
20180169969 | Deleon et al. | Jun 2018 | A1 |
20180200948 | Kuijpers | Jul 2018 | A1 |
20180201021 | Beaver et al. | Jul 2018 | A1 |
20180229332 | Tsai et al. | Aug 2018 | A1 |
20180229436 | Gu et al. | Aug 2018 | A1 |
20180272603 | MacCormack et al. | Sep 2018 | A1 |
20180272608 | Yun | Sep 2018 | A1 |
20180345600 | Holford et al. | Dec 2018 | A1 |
20180370214 | Comb et al. | Dec 2018 | A1 |
20190022937 | Stelter et al. | Jan 2019 | A1 |
20190039299 | Busbee et al. | Feb 2019 | A1 |
20190047211 | Herring et al. | Feb 2019 | A1 |
20190061230 | Ermoshkin et al. | Feb 2019 | A1 |
20190112499 | Rolland et al. | Apr 2019 | A1 |
20190126548 | Barnhart et al. | May 2019 | A1 |
20190232369 | Strößner | Aug 2019 | A1 |
20190232550 | Mark et al. | Aug 2019 | A1 |
20190240932 | Graf | Aug 2019 | A1 |
20190263054 | Kotler et al. | Aug 2019 | A1 |
20190283316 | Rolland et al. | Sep 2019 | A1 |
20190344381 | Pomerantz et al. | Nov 2019 | A1 |
20190389137 | Frohnmaier et al. | Dec 2019 | A1 |
20200001398 | Mellor et al. | Jan 2020 | A1 |
20200079008 | Chowdry et al. | Mar 2020 | A1 |
20200079017 | MacNeish, III et al. | Mar 2020 | A1 |
20200108553 | Rogren | Apr 2020 | A1 |
20200164437 | Goth et al. | May 2020 | A1 |
20200198224 | Dubelman et al. | Jun 2020 | A1 |
20200230938 | Menchik et al. | Jul 2020 | A1 |
20200247040 | Green | Aug 2020 | A1 |
20200290275 | Dubelman et al. | Sep 2020 | A1 |
20200307075 | Mattes et al. | Oct 2020 | A1 |
20200376775 | Das et al. | Dec 2020 | A1 |
20210046695 | Thompson et al. | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
101628477 | Jan 2010 | CN |
103210344 | Jul 2013 | CN |
103522546 | Jan 2014 | CN |
104175559 | Dec 2014 | CN |
104647752 | May 2015 | CN |
105711101 | Jun 2016 | CN |
105773962 | Jul 2016 | CN |
107322930 | Nov 2017 | CN |
208946717 | Jun 2019 | CN |
109968661 | Jul 2019 | CN |
111497231 | Aug 2020 | CN |
102007010624 | Sep 2008 | DE |
448459 | Sep 1991 | EP |
557051 | Aug 1993 | EP |
1454831 | Sep 2004 | EP |
1852244 | Nov 2007 | EP |
1864785 | Dec 2007 | EP |
1946908 | Jul 2008 | EP |
2521524 | Nov 2012 | EP |
3053729 | Aug 2016 | EP |
3453521 | Mar 2019 | EP |
3356121 | Oct 2020 | EP |
2311960 | Oct 1997 | GB |
H06246839 | Sep 1994 | JP |
2002370286 | Dec 2002 | JP |
2003039564 | Feb 2003 | JP |
2004257929 | Sep 2004 | JP |
2016196098 | Nov 2016 | JP |
20170108729 | Sep 2017 | KR |
102109664 | May 2020 | KR |
WO9600422 | Jan 1996 | WO |
WO9806560 | Feb 1998 | WO |
WO0100390 | Jan 2001 | WO |
WO2006077665 | Jul 2006 | WO |
WO2006109355 | Oct 2006 | WO |
WO2017009368 | Jan 2017 | WO |
WO2017098968 | Jun 2017 | WO |
WO2017100538 | Jun 2017 | WO |
WO2019159936 | Aug 2019 | WO |
WO2020033607 | Feb 2020 | WO |
WO2020185553 | Sep 2020 | WO |
Entry |
---|
Admatec, Admaflex 300 DLP 3D Printer, Specifications, Features, Design and Functions, Netherlands, 2 Pages. Retrieved Nov. 5, 2020 from Webpage: https://admateceurope.com/files/10fla369c2239943e6506f27ba920bd4dd9359078e744369695ab6ffbde75c6c?filename=Admaflex%20300%20brochure.pdf&sig=hQvDlxkSmFOZwjM. |
Carbon, Carbon SpeedCell: Additive Manufacturing Reinvented, Redwood City California, Mar. 16, 2017, 4 Pages. Retrieved from Webpage: https://www.carbon3d.com/news/carbon-speedcell-additive-manufacturing-reinvented/. |
Carbon, The 3D Printer for Products that Outperform, 8 Pages. Retrieved from Webpage: https://www.carbon3d.com. |
DDM Systems, Disruptive Technologies for Additive Manufacturing, 2014. Retrieved on Jul. 7, 2020 from Web Link: http://www.ddmsvs.com/. |
Designing Buildings Wiki, Types of Brick Bonding, 6 Pages. Retrieved Mar. 25, 2021 from Webpage: https://www.designbuildings.co.uk/wiki/Types_of_brick_bonding. |
Doctor Blade with Micrometer Screw Gauge, The Tape Casting Warehouse, Inc., Morrisville PA, 6 Pages. Retrieved Mar. 23, 2021 from Webpage: https://www.drblade.com/. |
EnvisionTEC, Advanced DLP for Superior 3D Printing, Mar. 9, 2017, 8 Pages. https://envisiontec.com/wp-content/uploads/2016/12/Why-EnvisionTEC-DLP-3D-Printing-is-Better-rebranded.pdf. |
Feng et al., Exposure Reciprocity Law in Photopolymerization of Multi-Functional Acrylates and Methacrylates, Macromolecular Chemistry and Physics, vol. 208, 2007, pp. 295-306. |
Formlabs, An Introduction to Post-Curing SLA 3D Prints, 8 Pages. Retrieved from Webpage: https://formlabs.com/blog/introduction-post-curing-sla-3d-prints. |
Formlabs, Form Wash & Form Cure, 8 Pages. Retrieved from Webpage: https://formlabs.com/tools/wash-cure/. |
Hafkamp et al., A Feasibility Study on Process Monitoring and Control in Vat Photopolymerization of Ceramics, Mechatronics, vol. 56, the Netherlands, Dec. 2018, pp. 220-241. Retrieved from https://doi.org/10.1016/j.mechatronics.2018.02.006. |
Kudo3D, Post-Process Your SLA Prints in 4 Easy Steps, 8 Pages. Retrieved from Webpage: https://www.kudo3d.com/post-process-your-sla-prints-in-4-easy-steps/. |
Leap, Low-Frequency Sonic Mixing Technology, Energy Efficiency & Renewable Energy, Energy.Gov, 5 Pages. Retrieved Mar. 17, 2021 from Webpage: https://www.energy.gov/eere/amo/low-frequency-sonic-mixing-technology. |
Lee et al., Development of a 3D Printer Using Scanning Projection Stereolithography, Scientific Reports, vol. 5, Article No. 9875, 2015, 5 pages. https://www.nature.com/articles/srep09875#sl. |
Lee et al., Large-Area Compatible Laser Sintering Schemes with a Spatially Extended Focused Beam, Journal, Micromachines, vol. 8, No. 153, Seoul University, Seoul Korea, May 11, 2017, 8 Pages. http://dx.doi.org/10.3390/mi8050153. |
Limaye, Multi-Objective Process Planning Method for Mask Projection Stereolithography, Dissertation Georgia Institute of Technology, Dec. 2007, 324 Pages. |
Lithoz, 2 Pages. Retrieved from Webpage: http://www.lithoz.com/en/our-products/cleaning-station. |
Matthews et al., Diode-Based Additive Manufacturing of Metals Using an Optically-Addressable Light Valve, Optic Express Research Article, vol. 25, No. 10, Lawrence Livermore National Laboratory, Livermore CA, May 10, 2017. |
Nussbaum et al., Evaluation of Processing Variables in Large Area Polymer Sintering of Single Layer Components, Solid Freeform Fabrication 2016: Proceedings of the 27th Annual International Solid Freeform Fabracation Symposium—An Additive Manufacturing Conference Reviewed Paper, University of South Florida, Tampa Florida. |
Park et al., Development of Multi-Material DLP 3D Printer, Journal of the Korean Society of Manufacturing Technology Engineers, vol. 26, Issue 1, Seoul Korea, Feb. 15, 2017, pp. 100-107. https://doi.org/10.7735/ksmte.2017.26.1.100. |
Prodways Tech, Prodways Movinglight Technology Retrieved on Jul. 2, 2020 from Web Link: https://www.prodways.com/en/the-prodways-movinglight-technology/. |
Ricoh Imaging Company Ltd., The Advanced Pixel Shift Resolution System II for Super-High-Resolution Images, Pentax K-1 Mark II, Pixel Shift Resolution System, 4 Pages. Retrieved on Mar. 30, 2021 from Webpage: http://www.ricoh-imaging.co.jp/english/products/k-1-2/feature/02.html. |
Sonics & Materials, Inc., Ultrasonic Food Cutting Equipment, Sonics & Materials, Inc., Retrieved on Jun. 26, 2020, 4 Pages. https://www.sonics.com/food-cutting. |
Stemmer Imaging, Ultra-High Resolution for Industrial Imaging, Germany, 9 Pages. Retrieved on Mar. 30, 2021 from Webpage: https://www.stemmer-imaging.com/en/knowledge-base/pixel-shift-technology/. |
Stevenson, Admatec's Ceramic 3D Printers, Ceramic, Metal, Fabbaloo 3D Printing News, Jan. 21, 2019, 8 Pages. Retrieved Nov. 24, 2020 from Weblink: https://www.fabbloo.com/blog/2019/1/21/adamtecs-cermaic-3d-printers. |
TechMetals, Electroless Nickel (TM 117C), Engineered Metal Finishing & Performance Coatings, 1 Page. Retrieved from Webpage: https://techmetals.com/pdfs/TM_117C.pdf https://techmetals.com/tm117c-2/. |
Telsonic Ultrasonics, Cutting Awning Fabrics and Sealing the Edge, the Powerhouse of Ultrasonics, 2017, 1 Page. https://www.telsonic.com/fileadmin/applications/AS_206_Cut_Seal_Markisengewebe_EN.pdf. |
Telsonic Ultrasonics, Integrated Power Actuator—IPA 3505, Telsonic Ultrasonics, Retrieved Jun. 26, 2020, 2 Pages. https://www.telsonic.com/en/products/integrated-power-actuator-ipa-3505/. |
Tok et al., Tape Casting of High Dielectric Ceramic Substrates for Microelectronics Packaging, Journal of Materials Engineering and Performance, vol. 8, 1999, pp. 469-472. (Abstract Only) https://link.springer.com/article/10.1361/105994999770346783. |
Wikipedia, Pixel Shifting, 2 Pages. Retrieved Mar. 30, 2021 from Webpage: https://en.wikipedia.org/wiki/Pixel_shifting. |
Wikipedia, Standing Wave, 11 Pages. Retrieved Mar. 17, 2021 from Webpage: https://en.wikipedia.org/wiki/Standing_wave. |
Number | Date | Country | |
---|---|---|---|
20220410481 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
63214294 | Jun 2021 | US |