The present disclosure relates to a recliner mechanism for a seat assembly and a method of manufacturing the recliner mechanism.
This section provides background information related to the present disclosure and is not necessarily prior art.
Vehicle seats often include a recliner heart that can rotate a seatback relative to a seat bottom. A hand lever can be rotated to move the recliner heart between a locked position preventing relative rotation between the seatback and the seat bottom and an unlocked position permitting relative rotation between the seatback and the seat bottom. When in the locked position, tolerances between components of the recliner heart may continue to allow for movement of the seatback relative to the seat bottom, which affects the perceived quality of the seat by a user, for example. The present disclosure provides a recliner heart and a method for reducing tolerances between components of the recliner heart, therefore, restricting movement of the seatback relative to the seat bottom when the recliner heart is in the locked position.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In one form, the present disclosure provides a method for manufacturing a recliner heart. The method may include supporting a guide plate of the recliner heart with a first support member, disposing a first block onto the guide plate opposite the first support member, disposing a second block in a recess of the guide plate, and applying a force to the first block. The second block is disposed in the recess such that a gap is formed between the guide plate and the second block. A force is applied to the first block such that material of the guide plate moves into the gap formed between the guide plate and the second block.
In some configurations, the guide plate includes a first boss. The first boss is supported by the first support member and the first block is disposed onto the first boss.
In some configurations, the gap is formed between the first boss of the guide plate and the second block.
In some configurations, the force is applied to the first block via a press.
In some configurations, the method includes disposing a third block onto a second boss of the guide plate.
In some configurations, the method includes supporting the second boss opposite the third block with a second support member.
In some configurations, the second block is disposed between the first and third blocks.
In some configurations, the method includes applying a force to the third block such that material of the second boss moves into another gap formed by the second boss and the second block.
In some configurations, the recess has a first width before the forces are applied to the first and third blocks and a second width after the forces are applied to the first and third blocks. The first width is wider than the second width.
In some configurations, the force is applied to the third block via a second press.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
With reference to
The first and second recliner mechanisms 12, 13 may be operable in a locked state preventing relative rotation between the seatback 22 and the seat bottom 24 and an unlocked state permitting relative rotation between the seatback 22 and seat bottom 24 among an upright position (
As shown in
As shown in
With reference to
The guide plate 38 may be mounted to the first bracket 30. With references to
The ratchet plate 45 may be a generally round, flat disk and may include a central aperture 65 and a cylindrical recess 67 (
The plurality of pawls 54 may be radially disposed around the central aperture 39 on the guide plate 38 and may be slidably mounted within the first recesses 47 of the guide plate 38 (
The cam 52 may be a generally round disk having an aperture 59 and a plurality of radial latch protrusions 61 arranged around the aperture 59. The cam 52 is rotatable relative to the pawls 54 and the ratchet plate 45 such that the latch protrusions 61 can selectively engage the latches 72 of the pawls 54 to move the pawls 54 out of engagement with the teeth 69 of the ratchet plate 45 (i.e., into the unlocked state).
The connector disk 56 is engaged with the cam 52 and the hub 50. The connector disk 56 may include a disk portion 88 (
The extrusion 90 of the connector disk 56 is engaged with the hub 50 and the cam 52 such that rotation of the hub 50 (which is caused by rotation of the hand lever 16) causes rotation of the cam 52 to move the pawls 54 radially into and out of engagement with the teeth 69 of the ratchet plate 45.
The outer coil spring 46 may exert a torsional force that biases the first recliner mechanism 12 toward a locked state. The outer coil spring 46 may wrap around the hub 50 and engage the first bracket 30 and the hand lever 16. The inner coil spring 48 may extend around the cross member 14 and may engage the first and second brackets 30, 32 to rotationally bias the seatback 22 toward the upright position relative to the seat bottom 24.
The hub 50 may extend through the length of the recliner heart 34 and may include a first end 70 and a second end 71. The first end 70 may engage the hand lever 16 such that the hub 50 and the hand lever 16 are rotationally fixed to each other. A fastener 36 (e.g., a screw; shown in
The structure and function of the second recliner mechanism 13 may be similar or identical to that of the first recliner mechanism 12 and, therefore, will not be described again in detail.
The cross member 14 may be a generally rectangular (e.g., square) profile and may extend in a cross-vehicle direction. The cross member 14 may connect the first recliner mechanism 12 to the second recliner mechanism 13, and may transmit rotational motion of the first recliner mechanism 12 to the second recliner mechanism 13 to move the second recliner mechanism 13 between the locked and unlocked states simultaneously with motion of the first recliner mechanism 12 between the locked and unlocked states. That is, the cross member 14 transmits torque from the hand lever 16 to the second recliner mechanism 13.
As shown in
With continued reference to
As shown in
A third rectangular-shaped sizing block 112 may be disposed in one of the first recesses 47 (between the blocks 102, 104). In this way, a gap or space 114 is formed between an end 116 of the third sizing block 112 and a wall 118 of the one boss 43a and a gap or space 119 is formed between another end 120 of the third sizing block 112 and a wall 122 of the another boss 43b.
As shown in
One benefit of the method for manufacturing a recliner heart as described above is the reduction in cost from not having to grind components of the recliner heart to meet specified tolerances. Another benefit of the method for manufacturing a recliner heart as described above is the speed in which the guide plate of the recliner heart may be manufactured (i.e., width of the recesses are sized). The sizing block can also be adjusted as necessary to account for part or material variances within the recliner heart. It should be understood that the method described above can also be used for guide plates for other configurations of recliner hearts/recliner mechanisms that may vary in structure.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 62/715,960, filed on Aug. 8, 2018. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3736026 | Ziegler et al. | May 1973 | A |
3953069 | Tamura et al. | Apr 1976 | A |
4219234 | Bell | Aug 1980 | A |
4243264 | Bell | Jan 1981 | A |
4279442 | Bell | Jul 1981 | A |
4372610 | Fisher, III et al. | Feb 1983 | A |
4457557 | Une | Jul 1984 | A |
4484779 | Suzuki | Nov 1984 | A |
4579387 | Bell | Apr 1986 | A |
4634182 | Tanaka | Jan 1987 | A |
4684174 | Bell | Aug 1987 | A |
4705319 | Bell | Nov 1987 | A |
4720145 | Bell | Jan 1988 | A |
4733912 | Secord | Mar 1988 | A |
4747641 | Bell | May 1988 | A |
4795213 | Bell | Jan 1989 | A |
4822100 | Bell | Apr 1989 | A |
4919482 | Landis et al. | Apr 1990 | A |
4928374 | Allen | May 1990 | A |
5007680 | Miyauchi et al. | Apr 1991 | A |
5044647 | Patterson | Sep 1991 | A |
5154476 | Haider et al. | Oct 1992 | A |
5240309 | Kojer | Aug 1993 | A |
5248184 | Morris | Sep 1993 | A |
5265937 | Allen | Nov 1993 | A |
5393116 | Bolsworth et al. | Feb 1995 | A |
5419616 | Paetzold | May 1995 | A |
5435624 | Bray et al. | Jul 1995 | A |
5460429 | Whalen | Oct 1995 | A |
5489141 | Strausbaugh et al. | Feb 1996 | A |
5577805 | Glinter et al. | Nov 1996 | A |
5590932 | Olivieri | Jan 1997 | A |
5622410 | Robinson | Apr 1997 | A |
5628215 | Brown | May 1997 | A |
5660440 | Pejathaya | Aug 1997 | A |
5718481 | Robinson | Feb 1998 | A |
5769493 | Pejathaya | Jun 1998 | A |
5788330 | Ryan | Aug 1998 | A |
5823622 | Fisher, IV et al. | Oct 1998 | A |
5857659 | Kato | Jan 1999 | A |
5918939 | Magadanz | Jul 1999 | A |
5927809 | Tame | Jul 1999 | A |
5941591 | Tsuge et al. | Aug 1999 | A |
5947560 | Chen | Sep 1999 | A |
5979986 | Pejathaya | Nov 1999 | A |
6007152 | Kojima et al. | Dec 1999 | A |
6023994 | Yoshida | Feb 2000 | A |
6047444 | Braun | Apr 2000 | A |
6068341 | Rink | May 2000 | A |
6074009 | Farino | Jun 2000 | A |
6095609 | Magadanz | Aug 2000 | A |
6106067 | Zhuang et al. | Aug 2000 | A |
6123380 | Sturt et al. | Sep 2000 | A |
6139104 | Brewer | Oct 2000 | A |
6158800 | Tsuge et al. | Dec 2000 | A |
6161899 | Yu | Dec 2000 | A |
6199953 | Chen | Mar 2001 | B1 |
6250704 | Garrido | Jun 2001 | B1 |
6290297 | Yu | Sep 2001 | B1 |
6328381 | Smuk | Dec 2001 | B1 |
6345867 | Hellrung et al. | Feb 2002 | B1 |
6447066 | Chabanne et al. | Sep 2002 | B1 |
6511129 | Minor et al. | Jan 2003 | B1 |
6533357 | Pospeshil et al. | Mar 2003 | B2 |
6550864 | Zarna et al. | Apr 2003 | B1 |
6554362 | Pospeshil | Apr 2003 | B1 |
6634713 | Nonomiya et al. | Oct 2003 | B2 |
6669296 | Moriyama et al. | Dec 2003 | B2 |
6669299 | Carlson et al. | Dec 2003 | B2 |
6698837 | Pejathaya et al. | Mar 2004 | B2 |
6740845 | Stol et al. | May 2004 | B2 |
6854802 | Matsuura et al. | Feb 2005 | B2 |
6857703 | Bonk | Feb 2005 | B2 |
6860562 | Bonk | Mar 2005 | B2 |
6869143 | Secord | Mar 2005 | B2 |
6908156 | Park et al. | Jun 2005 | B1 |
7025422 | Fast | Apr 2006 | B2 |
7093901 | Yamada | Aug 2006 | B2 |
7097253 | Coughlin et al. | Aug 2006 | B2 |
7100987 | Volker et al. | Sep 2006 | B2 |
7121624 | Pejathaya et al. | Oct 2006 | B2 |
7152924 | Nemoto et al. | Dec 2006 | B1 |
7154065 | Martukanitz et al. | Dec 2006 | B2 |
7172253 | Haverkamp | Feb 2007 | B2 |
7198330 | Wahlen et al. | Apr 2007 | B2 |
7293838 | Sugama et al. | Nov 2007 | B2 |
7296857 | Shinozaki et al. | Nov 2007 | B2 |
7300109 | Hofmann et al. | Nov 2007 | B2 |
7306286 | Syrowik et al. | Dec 2007 | B2 |
7328954 | Sasaki et al. | Feb 2008 | B2 |
7360838 | Smuk | Apr 2008 | B2 |
7419217 | Ishizuka | Sep 2008 | B2 |
7458639 | Thiel et al. | Dec 2008 | B2 |
7490907 | Nagura et al. | Feb 2009 | B2 |
7503099 | Pejathaya | Mar 2009 | B2 |
7527336 | Kienke et al. | May 2009 | B2 |
7578556 | Ohba et al. | Aug 2009 | B2 |
7604297 | Weber | Oct 2009 | B2 |
7695068 | Maeda et al. | Apr 2010 | B2 |
7775591 | Hahn et al. | Aug 2010 | B2 |
7976103 | Gamache et al. | Jul 2011 | B2 |
8052215 | Ito | Nov 2011 | B2 |
8360527 | Lehmann | Jan 2013 | B2 |
9102248 | Matt | Aug 2015 | B2 |
9108541 | Assmann et al. | Aug 2015 | B2 |
9227532 | Balzar et al. | Jan 2016 | B2 |
9527410 | Leconte | Dec 2016 | B2 |
9527419 | Hosbach et al. | Dec 2016 | B2 |
9555725 | Rothstein et al. | Jan 2017 | B2 |
9701222 | Kitou | Jul 2017 | B2 |
9751432 | Assmann | Sep 2017 | B2 |
9873357 | McCulloch et al. | Jan 2018 | B1 |
9889774 | Espinosa et al. | Feb 2018 | B2 |
10279709 | Suzuki et al. | May 2019 | B2 |
10610018 | Madhu | Apr 2020 | B1 |
10800296 | Schmitz et al. | Oct 2020 | B2 |
10864830 | Schmitz et al. | Dec 2020 | B2 |
20030127898 | Niimi et al. | Jul 2003 | A1 |
20030230923 | Uramichi | Dec 2003 | A1 |
20040134055 | Aizaki | Jul 2004 | A1 |
20050029806 | Yamanashi | Feb 2005 | A1 |
20050253439 | Sasaki et al. | Nov 2005 | A1 |
20060006718 | Umezaki | Jan 2006 | A1 |
20060012232 | Coughlin et al. | Jan 2006 | A1 |
20060055223 | Thiel et al. | Mar 2006 | A1 |
20060170269 | Oki | Aug 2006 | A1 |
20070138854 | Paing et al. | Jun 2007 | A1 |
20070200408 | Ohta et al. | Aug 2007 | A1 |
20080001458 | Hoshihara et al. | Jan 2008 | A1 |
20080164741 | Sakamoto | Jul 2008 | A1 |
20090056124 | Krebs et al. | Mar 2009 | A1 |
20090072602 | Schuler | Mar 2009 | A1 |
20100072802 | Smith et al. | Mar 2010 | A1 |
20100096896 | Nonomiya | Apr 2010 | A1 |
20100231021 | Myers et al. | Sep 2010 | A1 |
20100320823 | Thiel | Dec 2010 | A1 |
20110068612 | Thiel | Mar 2011 | A1 |
20110127814 | Thiel | Jun 2011 | A1 |
20110227386 | Berndtson et al. | Sep 2011 | A1 |
20120248841 | Hellrung et al. | Oct 2012 | A1 |
20130207434 | Stilleke et al. | Aug 2013 | A1 |
20130270884 | Espinosa et al. | Oct 2013 | A1 |
20140091607 | Maeda | Apr 2014 | A1 |
20140138998 | Christoffel et al. | May 2014 | A1 |
20140159458 | Lu | Jun 2014 | A1 |
20140301682 | Leppla | Oct 2014 | A1 |
20150015044 | Teufel et al. | Jan 2015 | A1 |
20150069809 | Matt | Mar 2015 | A1 |
20150091354 | Enokijima et al. | Apr 2015 | A1 |
20150123444 | Assmann | May 2015 | A1 |
20150266398 | Higashi et al. | Sep 2015 | A1 |
20150306986 | Jarry et al. | Oct 2015 | A1 |
20150321585 | McCulloch et al. | Nov 2015 | A1 |
20160339810 | Pluta et al. | Nov 2016 | A1 |
20170037945 | Maeda et al. | Feb 2017 | A1 |
20170080828 | Aktas | Mar 2017 | A1 |
20170088021 | Noguchi et al. | Mar 2017 | A1 |
20170136921 | Dill et al. | May 2017 | A1 |
20180056819 | Schmitz et al. | Mar 2018 | A1 |
20180103760 | Fujita et al. | Apr 2018 | A1 |
20190255979 | Zahn et al. | Aug 2019 | A1 |
20190329674 | Schmitz et al. | Oct 2019 | A1 |
20190337424 | Chang | Nov 2019 | A1 |
20190358694 | Yamakita | Nov 2019 | A1 |
20200070689 | Naik et al. | Mar 2020 | A1 |
20200253380 | Schmitz et al. | Aug 2020 | A1 |
20200282879 | Schmitz et al. | Sep 2020 | A1 |
20200331367 | Schmitz et al. | Oct 2020 | A1 |
20210039528 | Poptani et al. | Feb 2021 | A1 |
20210061139 | Schmitz et al. | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
2869816 | Oct 2013 | CA |
1291566 | Apr 2001 | CN |
1457306 | Nov 2003 | CN |
1840382 | Oct 2006 | CN |
101616820 | Dec 2009 | CN |
202086037 | Dec 2011 | CN |
103025568 | Apr 2013 | CN |
4324734 | Jan 1995 | DE |
102007002366 | Jul 2008 | DE |
102008026176 | Dec 2009 | DE |
102011108976 | Jan 2013 | DE |
102012008940 | Nov 2013 | DE |
1074426 | Feb 2001 | EP |
1546104 | May 1979 | GB |
2000084684 | Mar 2000 | JP |
5290789 | Sep 2013 | JP |
5555969 | Jul 2014 | JP |
100601809 | Jul 2006 | KR |
100817000 | Mar 2008 | KR |
20090035633 | Apr 2009 | KR |
20140001651 | Jan 2014 | KR |
101420164 | Jul 2014 | KR |
101655777 | Sep 2016 | KR |
WO-9620848 | Jul 1996 | WO |
WO-2011069107 | Jun 2011 | WO |
WO-2013167240 | Nov 2013 | WO |
Entry |
---|
Office Action regarding German Patent Application No. 102016114406.1, dated Apr. 27, 2020. Translation provided by Witte, Weller & Partner Patentanwälte mbB. |
International Search Report regarding International Application No. PCT/US2020/021377, dated Jun. 30, 2020. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2020/021377, dated Jun. 30, 2020. |
U.S. Appl. No. 16/740,874, filed Jan. 13, 2020, Ralph L. Schmitz et al. |
U.S. Appl. No. 16/811,112, filed Mar. 6, 2020, Ralph L. Schmitz et al. |
U.S. Appl. No. 16/842,135, filed Apr. 7, 2020, Ralph L. Schmitz et al. |
U.S. Appl. No. 16/378,950, filed Apr. 9, 2019, Ralph L. Schmitz et al. |
U.S. Appl. No. 16/542,369, filed Aug. 16, 2019, Firoz Divan Naik et al. |
Office Action regarding Canadian Patent Application No. 2,812,408, dated Jun. 17, 2016. |
Office Action regarding Chinese Patent Application No. 201910334168.9, dated Apr. 30, 2021. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Indian Patent Application No. 201921032346, dated Mar. 18, 2021. |
SPI Lasers UK Ltd., “Opening new possibilities with single mode oscillation welding (CW).” Presented at: Laser World of Photonics China; Shanghai, China (Mar. 2008). |
Office Action regarding German Patent Application No. 102019211855.0, dated Feb. 4, 2021. Partial translation provided by Bardehle Pagenberg Partnerschaft mbB. |
Office Action regarding German Patent Application No. 102019212517.4, dated Mar. 11, 2021. Partial translation provided by Bardehle Pagenberg Partnerschaft mbB. |
Number | Date | Country | |
---|---|---|---|
20200047644 A1 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
62715960 | Aug 2018 | US |