The present invention relates to an improved merchandise or shopping bag with an integral handle and reclosable feature. Particularly, the present invention relates to a bag with integral handles which includes a closure mechanism with male and female closure elements that is adapted for high speed and cost effective manufacturing.
Thermoplastic films are used in a variety of applications. For example, thermoplastic films are used in sheet form for applications such as drop cloths, vapor barriers, and protective covers. Thermoplastic films can also be converted into plastic bags, which may be used in a myriad of applications. The present invention is particularly useful for bags constructed from thermoplastic film.
Polymeric bags are ubiquitous in modern society and are available in countless combinations of varying capacities, thicknesses, dimensions, and colors. The bags are available for numerous applications including typical consumer applications such as long-term storage, food storage, shopping, and trash collection. Like many other consumer products, increased demand and new technology have driven innovations in polymeric bags improving the utility and performance of such bags. The present invention is an innovation of particular relevance to food storage bags.
Polymeric bags are manufactured from polymeric film produced using one of several manufacturing techniques well-known in the art. The two most common methods for manufacture of polymeric films are blown-film extrusion and cast-film extrusion. In blown-film extrusion, the resulting film is tubular while cast-film extrusion produces a generally planar film. The present invention is generally applicable to bags manufactured from a blown-film extrusion process resulting in tubular film stock.
In blown film extrusion, polymeric resin is fed into an extruder where an extrusion screw pushes the resin through the extruder. The extrusion screw compresses the resin, heating the resin into a molten state under high pressure. The molten, pressurized resin is fed through a blown film extrusion die having an annular opening. As the molten material is pushed into and through the extrusion die, a polymeric film tube emerges from the outlet of the extrusion die.
The polymeric film tube is blown or expanded to a larger diameter by providing a volume of air within the interior of the polymeric film tube. The combination of the volume of air and the polymeric film tube is commonly referred to as a bubble between the extrusion die and a set of nip rollers. As the polymeric film tube cools travelling upward toward the nip rollers, the polymeric film tube solidifies from a molten state to a solid state after it expands to its final diameter and thickness. Once the polymeric film tube is completely solidified, it passes through the set of nip rollers and is collapsed into a collapsed polymeric tube, also referred to as a collapsed bubble.
One common method of manufacturing polymeric bags involves segregating the collapsed polymeric tube into individual trash bags by forming seals which extend transversely across the entire width of the tube with each seal forming the bottom of a bag. Typically, a line of perforations is formed immediately adjacent and parallel to each seal to facilitate separation of the trash bags one from another. The opening of the perforations then forms the top of a bag and opposing edges of the collapsed polymeric tube then form the opposing sides of a bag.
It is known to provide wave-cut bags by a continuous multi-bag manufacturing process from a collapsed bubble or tube. The collapsed bubble may be slit through both a front and back of the bubble with a repeating waveform pattern. Repeating evenly spaced pairs of transverse heat seals may be placed on both halves of the slit bubble to define left and right side edges of each bag. In between each pair of heat seals a perforation or cut line may be placed so that the formed bags may be separated. The slit middle of the collapsed bubble forms the top of the bag and one of the two opposing edges of the collapsed bubble forms the bottom of the bag.
The lobe-shaped features, or lobes, of wave-cut bags can have holes punched out or otherwise provided in the middle of the lobe to provide a convenient handle for the user to carry the bag. Unfortunately, if only a single lobe is provided on each side of the bag it is difficult to close the bag and if the lobes are used to tie the bag then the lobes no longer function as handles since their length is taken up in a knot. Hence, it would be useful to provide a cost-effective means to close the bag while still maintaining use of the bag's handles. Providing a means to reclose the bag also allows the bag to be repurposed as a storage bag after being used as a merchandise or shopping bag.
U.S. Pat. No. 4,125,220 (the '220 patent), filed Dec. 2, 1977 and hereby incorporated by reference, discloses a wave-cut shopping bag with a sinusoid waveform defining a top handle of the shopping bag. A width of the bag is disclosed as equal to a single wavelength with a hole or handle opening centered vertically on the base line of the wavelength and centered horizontally at the peak of the waveform. The '220 patent, however, fails to disclose any convenient means to close the bag.
Reclosable plastic bags are well-known in the art and are available in a variety of different sizes and configurations. Most commonly, reclosable plastic bags have one or more pairs of opposing, interlocking closures near the top opening of the reclosable bag. The closure may generally be opened and closed many times and are typically designed to ensure that the contents of the reclosable plastic bag are securely contained within the bag when the opposing closures are mutually engaged.
The closures of reclosable bags can be opened and closed in a number of different ways. For example, a slider or zipper device can be incorporated into the bag design to facilitate engagement and disengagement of the opposing closures. However, many reclosable bags have closures that are designed to be opened by physically pulling the closures apart and closed by pressing the closures together along the length of the closure. These bags may commonly be referred to as press to close reclosable bags.
U.S. Pat. No. 3,402,749 (the '749 patent), filed on Mar. 10, 1967 and hereby incorporated by reference, discloses a plastic film shopping bag with a reclosable zipper device and hand holes formed in integral flanges above the reclosable zipper device. However, the '749 patent relies upon straight cut upper flanges for handles which provides a difficult to grasp handle and fails to efficiently utilize material for forming the bag and its corresponding handles.
U.S. Pat. No. 4,165,832 (the '832 patent), filed on Jul. 10, 1978 and hereby incorporated by reference, discloses a side-gusseted shopping bag formed from a side-gusseted collapsed polymeric tube. Such bags are commonly referred to as “t-shirt” bags. The '832 patent discloses bags with integral handles but fails to disclose any means of closing the bag without the use of the bag's handles.
In consideration of the shortcomings of the above discussed prior art, it would be desirable to provide a merchandise or shopping bag having an integral handle and a reclosable opening. It would further be desirable to provide such a bag that takes advantage of high speed manufacturing processes and efficiently utilizes material. The present invention represents a novel solution to address these needs.
According to one embodiment of the present invention, a bag is formed from a collapsed tube of polymeric film. The bag may comprise a first panel and a second panel. The first panel and the second panel may be joined at a first side edge by a first side seal, at a second side edge by a second side seal, and at a bottom edge. The bottom edge may be defined by a first edge of the collapsed tube. The first panel may have a first top edge opposite the bottom edge and the second panel may likewise have a second top edge opposite the bottom edge. The first top edge and second top edge may define an opening of the bag. The first top edge and the second top edge may have a wave-shaped profile and the wave-shaped profile may define a lobe in the first panel and a lobe in the second panel. A first closure element may be disposed on an interior of the first panel and extend generally from the first side edge to the second side edge. The first closure element may be located below the wave-shaped profile of the first top edge. A second closure element may be disposed on an interior of the second panel opposite from the first closure element and extend generally from the first side edge to the second side edge. The second closure element may be located below the wave-shaped profile of the second top edge.
In certain embodiments of the present invention, a peak of the wave-shaped profile of both the first top edge and second top edge may be located generally equidistant from the first side edge and the second side edge. A circular opening may be defined centrally within each lobe of the first and second panels. The circular opening may be located equidistant from the first side edge and the second side edge. A gusset may also be defined within the bottom edge of the bag. The first and second closure elements may comprise male and female closure elements and the first and second closure elements may be affixed to the first and second panels by one or more heat seals. In an alternative embodiment, the first and second closure elements may be affixed to the first and second panels by a pressure sensitive adhesive.
In a further embodiment of the present invention, a polymeric bag may be formed from a continuous polymeric film tube. The polymeric film tube may be collapsed to form a collapsed tube. Prior to collapsing the polymeric film tube, a gusset may be formed within a first side and an opposing second side of the polymeric film tube. The collapsed tube may have front and rear sections, opposing first and second folded edges, and a machine direction. The collapsed tube may be slit in a repeating waveform through the front and rear sections of the collapsed tube in the machine direction. The slitting of the collapsed tube may result in a plurality of lobes with the waveform centered between the first and second folded edges. A central opening may be formed within each of the plurality of lobes. The slitting may further result in first and second tube sections with the first and second tube sections having front and rear sections. A distal end of the front section of the first tube section may be separated from a distal end of the rear section of the first tube section. A first closure element may be affixed to an interior of the front section of the first tube section with the first closure element extending generally in the machine direction. A second closure element may be affixed to an interior of the rear section of the first tube section with the second closure element also extending generally in the machine direction. The first tube section may then be formed into a plurality of bags.
The plurality of bags may be formed by sets of closely spaced, parallel seals that extend transversely across a width of the first tube section. Perforations may also be formed that extend transversely across the width of the first tube section with a perforation between and parallel with each set of parallel seals. Each waveform may have a plurality of peaks and bases with each set of parallel seals centered at each base so that each peak of the waveform is centered in the machine direction between sets of parallel seals. In an alternate preferred embodiment, a plurality of side seals may be formed with each side seal extending transversely across a width of the first tube section at each base of the wave-shape profile. Simultaneously with the formation of each side seal, the first tube section may be cut through about or within each side seal.
In at least one embodiment, the first closure element may be affixed to the front section of the first tube section with one or more heat seals and the second closure element may be affixed to the rear section of the first tube section with one or more heat seals. In an alternative embodiment, the first closure element may be affixed to the front section of the first tube section with a pressure sensitive adhesive and the second closure element may likewise be affixed to the rear section of the first tube section with a pressure sensitive adhesive. The first and second closure elements may be comprised of male and female closure elements. The first and second closure elements may also be comprised of interlocking press to close closure elements. Additionally, the first closure element may be interlocked with the second closure element.
According to a further embodiment of the present invention, a bag can be formed from polymeric blown film. The bag may comprise a front panel and a rear panel with each panel having a first side, a second side, an upper edge, and a bottom edge. The bag may also comprise a front handle and a rear handle with each handle having first side, a second side, a bottom edge and an upper edge. The front and rear handle upper edges may define an opening of the bag and the front and rear panel may be joined at the bottom edge. The front handle may be sealed to the front panel by a front handle seal and the front handle seal may extend from the first side to the second side of the front handle. The front panel seal may also be adjacent to the front panel upper edge and front handle bottom edge. The rear handle may be sealed to the rear panel by a rear handle seal. The rear handle seal may extend from the first side to the second side of the rear handle. The rear panel seal may be adjacent to the rear panel upper edge and rear handle bottom edge.
In the same embodiment, a pair of opposing side gusset panels may be joined to and between the front panel and rear panel. Furthermore, each of the front and rear handle upper edges may have a wave-shaped profile and the wave-shaped profile may define a lobe in each of the front and rear handles. A first closure element may be disposed on an interior of the front handle and extend generally from the first side to the second side of the front handle. The first closure element may be located between the wave-shaped profile and the front handle seal. A second closure element may be disposed on an interior of the rear handle opposite from the first closure element and extend generally from the first side to the second side of the rear handle. The second closure element may be located between the wave-shaped profile and the rear handle seal.
In an additional embodiment of the present invention, a bag may be formed from polymeric blown film. A side-gusseted tube may be formed with a first machine direction. The side-gusseted tube may be collapsed to define a front side and a rear side with both the front and rear sides having leading distal edges. A partial wave-cut tube with a second machine direction may be formed and collapsed to define a front side and a rear side. The front and rear sides of the partial wave-cut tube may each have a first side edge with a wave-cut profile and an opposing second side edge. Each second side edge of the partial wave-cut tube be may extend generally linearly in the second machine direction. The side-gusseted tube may intersect with the partial wave-cut tube and the first machine direction may be arranged generally perpendicular to the second machine direction. The leading distal edges of the side-gusseted tube may be placed adjacent to the second side edges of the partial wave-cut tube. The front side leading distal edge may be sealed to the front side second side edge and the rear side leading distal edge may be sealed to the rear side second side edge. A bottom seal may be formed in the side-gusseted tube and opposing side seals in the partial wave-cut tube to define a bottom and side edges of the bag. The bag may be severed from the side-gusseted tube and the partial wave-cut tube.
In certain embodiments, the bottom seal may be formed generally perpendicular to the machine direction of the side-gusseted tube and generally parallel to the partial wave-cut tube. The side-gusseted tube may have a pair of inwardly folded opposing side gussets between the front side and rear side. A first closure element may be affixed to an interior of the front side of the partial wave-cut tube and a second closure element may be affixed to an interior of the rear side of the partial wave-cut tube.
It is contemplated that the present invention may be utilized in ways that are not fully described or set forth herein. The present invention is intended to encompass these additional uses to the extent such uses are not contradicted by the appended claims. Therefore, the present invention should be given the broadest reasonable interpretation in view of the present disclosure, the accompanying figures, and the appended claims.
A full and complete understanding of the present invention may be obtained by reference to the detailed description of the present invention and the preferred embodiments when viewed with reference to the accompanying drawings. The drawings can be briefly described as follows.
The present disclosure illustrates one or more preferred embodiments of the present invention. It is not intended to provide an illustration or encompass all embodiments contemplated by the present invention. In view of the disclosure of the present invention contained herein, a person having ordinary skill in the art will recognize that innumerable modifications and insubstantial changes may be incorporated or otherwise included within the present invention without diverging from the spirit of the invention. Therefore, it is understood that the present invention is not limited to those embodiments disclosed herein. The appended claims are intended to more fully and accurately encompass the invention to the fullest extent possible, but it is fully appreciated that certain limitations on the use of particular terms is not intended to conclusively limit the scope of protection.
The bag 100 is shown having a first panel 102 and a second panel 104. The two panels 102 and 104 are joined together at a first side 106 by first seal 107, at a second side 108 by a second seal 109, and at a bottom edge 110. The first panel 102 and second panel 104 may be formed from a single piece of polymeric film which is folded to define the bottom edge 110. A first top edge 112 and second top edge 114 are shown defined at an upper distal end of the first panel 102 and the second panel 104 respectively. Each top edge 112 and 114 may be in the form of a wave-shaped profile to form lobe 116 and 118 in each bag panel 102 and 104. Lobe 116 and 118 each comprise one period of the wave-shaped profile such that a width of bag 100 from the first side 106 to the second side 108 is one wavelength of the wave-shaped profile. The wave-shaped profile may comprise a sinusoidal wave shape but other wave-shaped profiles are also contemplated by the invention.
As further shown in
Looking again at
The dimensions of polymeric bag 100 may vary but in one particular embodiment a width of bag 100, from the first side edge 106 to the second side edge 108 may be about 10-14 inches. A height of bag 100 from bottom edge 100 to closure elements 120 and 122 may be about 8-14 inches. A height of each bag 100 handle from a base to a peak of the wave-shaped profile may be about 4-8 inches. A total of height of bag 100 from the bottom edge 110 to a peak of the wave-shaped profile may be about 12-20 inches. A thickness of the polymeric film of bag 100 may also vary but in particular embodiments may range from about 0.4 mils to 4 mils. The diameter of each handle opening 124 and 126 may also vary but in certain embodiments of bag 100 it may be about 2.5-5 inches.
Shown in
The polymeric resin used in the blown film extrusion process may vary. However, for forming polymeric bags, a polyethylene resin is commonly used. In the current state of the art for polymeric bags, a blend of various polyethylene polymers may be used. A polymer blend can have linear low-density polyethylene (LLDPE) or high-density polyethylene (HDPE) as the primary component. Other polymers may be utilized such as low-density polyethylene (LDPE). The polymer blend may include additives including, but not limited to, coloring additives, anti-blocking agents, and/or odor control additives. The film utilized to form polymeric bags may also comprise multiple layers of blown film resin. The resultant multi-layer film may be formed by co-extrusion, a lamination process, or other methods of forming a multi-layer film known in the art. In each layer, one or more of the above-discussed polymers may be used.
As further shown in
Once the collapsed tube 300 is severed with waveform 306, circular openings 322 may be punched or otherwise formed in collapsed tube 300. In an alternative embodiment, circular openings 322 may be formed in collapsed tube 300 prior to the slitting operation. Each circular opening 322 is shown located about a centerline of collapsed tube 300 and also aligned in a machine direction of the collapsed tube at each peak of waveform 306. Once circular openings 322 are placed in the collapsed tube 300, first and second tube sections 314 and 316 may be separated from each other for further conversion into polymeric bags.
Shown in
As further shown in
Continuous closure elements 344 and 346 may be press and close type closure elements with one of the closure elements a female closure element and the other of the closure elements a male closure element as is known in the art. One particular example of female and male closure elements is disclosed in United States Pat. Appl. Publ. No. US2011/0311167A1 (the '167 publication) which is hereby incorporated by reference.
In one particular embodiment of the present invention, continuous closure elements 344 and 346 may be manufactured separately from the collapsed tube 300 and provided as roll stock, or in other various bulk forms, for application to each tube section 314 and 316. In an alternative embodiment, continuous closure elements 344 and 346 may be manufactured in-line with the contemplated manufacturing process of the present invention and formed in-line prior to application to each tube section 314 and 316.
Shown in
As further shown in
As more clearly shown in
As shown in
As best shown in
As further shown in
Handle 402, as shown in
Now returning to
As further shown in
The dimensions of polymeric bag 400 may vary but in one particular embodiment a width of bag 400, from the first side 414 to the second side 416, may be about 6-14 inches. A height of bag 400 from bottom 420 to closure elements 458 and 460 may be about 8-14 inches. A height of each bag handle 402 from a base to a peak of the wave-shaped profile may be about 4-8 inches. A total of height of bag 400 from the bottom 420 to a peak of the wave-shaped profile may be about 12-20 inches. A thickness of the polymeric film of bag 400 may also vary but in particular embodiments may range from about 0.4 mils to 4 mils. The diameter of each handle opening 452 and 454 may also vary but in certain embodiments of bag 400 it may be about 2.5-5 inches.
Shown in
As further shown in
Further shown in
Side-gusseted tube 502 is shown in
Once edges 506 and 510 are folded upwards, the two films of the side-gusseted tube 502 and partial wave-cut tube 504 may be sealed to each other with sealing mechanism 514. In a likewise fashion, edges 508 and 512 may be sealed to each other with sealing mechanism 516. Simultaneously with the sealing of the upper and outer edges, the slit portions of side edges 518 may be resealed. Also, preferably simultaneously with the sealing of the upper and outer edges 506, 508, 510, and 512, hot-knife seals can be placed transversely across side-gusseted tube 502 to form bottom edge 420 of bag 400 and also at opposing sides 522 of handle portion 520 of partial wave-cut tube 504 to form fully sealed side edges 464 and 466 of bag 400. The hot knife seals can seal the adjoining films together and simultaneously sever the film.
Along with the sealing of the edges and sides, closure elements 524 and 526 may be crushed together, or ultrasonically welded, adjacent to sides 522 to ensure proper sealing and operation of closure elements 524 and 526. Once bag 400 is completely formed, it can be severed from tubes 502 and 504, preferably by the previously described hot-knife seals. Once separated from tubes 502 and 504, bag 400 may be packaged or otherwise processed further.
As previously noted, the specific embodiments depicted herein are not intended to limit the scope of the present invention. Indeed, it is contemplated that any number of different embodiments may be utilized without diverging from the spirit of the invention. Therefore, the appended claims are intended to more fully encompass the full scope of the present invention.
This application is a continuation of application Ser. No. 16/535,915, filed Aug. 8, 2019, which is a continuation of application Ser. No. 14/969,259, filed Dec. 15, 2015, now U.S. Pat. No. 10,421,584, which is a continuation-in-part of application Ser. No. 14/956,628, filed Dec. 2, 2015. These three aforementioned applications are hereby incorporated by reference into this disclosure.
Number | Date | Country | |
---|---|---|---|
Parent | 16535915 | Aug 2019 | US |
Child | 17960941 | US | |
Parent | 14969259 | Dec 2015 | US |
Child | 16535915 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14956628 | Dec 2015 | US |
Child | 14969259 | US |