1. Field of the Disclosure
The present disclosure relates to closure mechanisms for resilient pouches, and more particularly, to such closure mechanisms that easily allow for removal of interior air by applying pressure to the closure mechanism.
2. Background of the Related Art
Resilient thermoplastic bags have become ubiquitous to store various items. Commonly, plastic bags are used to store food items as varied as sandwiches, snacks, roasts, and all manner of leftovers. Often, storage of food items in thermoplastic bags can be for a considerable time with or without refrigeration. In such circumstances, not only is it desirable for the bags to seal effectively and easily, but many consumers prefer being able to reduce or minimize the amount of air trapped inside the bag. Consumers believe that a reduction in trapped air preserves freshness better. Further, bags which contain minimal air require less storage space and, thus, are more portable and easily stored.
Use of closure mechanisms for bags has been widely used and well understood in the art. Indeed, the very high skill level of those innovating in the art of closure mechanisms for plastic bags has resulted in a very advanced state of art for closure mechanisms. Despite these advancements, it is still common practice for consumers to partially closely a plastic bag zipper, flatten the bag to remove excess air, and deftly complete closure of the zipper with introducing unwanted air. With various food items, completing this maneuver is difficult and usually somewhat ineffective.
In view of these challenges, many closure mechanism have been developed for plastic bags to allow sealing and removal of air from the bag. Some examples are illustrated in the following: U.S. Pat. No. 7,004,632 issued on Feb. 28, 2006 to Hamilton et al. discloses an adhesive seal to close venting perforations in a bag; U.S. Pat. No. 7,437,805 issued on Oct. 21, 2008 to Berich discloses a pressure sensitive one-way valve in bag; U.S. Pat. No. 6,637,939 issued on Oct. 28, 2003 to Huffer discloses a complex valve for venting a bag; U.S. Pat. No. 7,163,706 issued on Jan. 16, 2007 to Shepard et al. discloses a hook and loop closure venting mechanism; U.S. Pat. No. 7,674,039 issued on Mar. 9, 2010 to McMahon et al. shows a vacuum storage bag; and U.S. Pat. No. 6,692,147 issued on Feb. 17, 2004 to Nelson discloses venting reclosable bags. U.S. Patent Application Pub. No. 2004/0234171 published on Nov. 25, 2004 to Dais et al. also shows a pouch with a venting seal.
U.S. Pat. No. 7,260,871 issued to Borchardt et al. on Aug. 28, 2007 with the title Ventable Interlocking Closure Strip (Borchardt et al.). Borchardt et al. disclose a closure device 52 with opposing hook shaped elements 72, 92 to be interlocked (see FIG. 2 of Borchardt et al.). Hook element 72 has webs 66, 68 supporting dual hooks 72, 74. Similarly, hook element 92 has webs 86, 88 supporting dual hooks 94, 96. In the sealed position of FIG. 7 of Borchardt et al., the opposing hooks 72, 74, 94, 96 are coupled. In a vented position of
Further, specialized appliances have been developed to seal and/or extract air from bags. Typical appliances create a seal around the mouth of the bag. By using a textured bag, minute flowpaths are created so that when vacuum is applied into the sealed area, air from the interior of the bag is removed. After extracting the interior air, a heating element creates a permanent seal. See for example: U.S. Pat. No. 787,130 issued on Aug. 8, 2006 to Wu et al. that discloses bags for use in such heat sealing appliances; U.S. Pat. No. 6,058,998 issued May 9, 2000 to Kristen that discloses a heat sealing appliance; U.S. Patent Application Pub. No. 2007/0155607 published on Jul. 5, 2007 to Bassett et al. that shows an appliance for evacuation and sealing of resilient bags; and U.S. Patent Application Pub. No. 2005/0034427 published on Feb. 17, 2005 to Higer et al. that shows a vacuum sealing system with a heating element inside the evacuation chamber.
Despite the advances in specialized bags and appliances for removal of interior air and sealing, the prior art mechanisms are not without drawbacks. Once the bags are sealed, one must destroy the bag to access the contents thereof. Further, storage of liquids and/or wet products like fish fillets can be difficult as the presence of the liquid in the sealing area may prevent the heating element completing an effective seal.
In view of the above, there are problems associated with prior art mechanisms for removing interior air from flexible bags. The prior art systems often require difficult maneuvers to accomplish proper operation. Further, the prior art systems utilize complex and expensive components that are not efficiently manufactured as well as have unreliable performance. Still further, the prior art also provides complex and costly appliances that still may perform poorly. Moreover, it would be a step forward to have an effectively vented and vacuumed bag that could be reused repeatedly. Additionally, it is desired to have a venting closure mechanism that operates effectively in the presence of liquid. In view of the above problems and needs, a lack of widespread consumer acceptance of vacuum storage remains despite a strong consumer demand.
There is a need, therefore, for an improved pouch which permits easy closure and venting of excess interior air. Preferably, the pouch is also suitable to replace prior art systems that require an appliance to assist with heat sealing and creation of a vacuum in the interior. Still further, the closure mechanism of the pouch could work with an appliance that applies an external vacuum source yet still effectively seals in the presence of liquids. The closure mechanism is also able to be opened and resealed repeatedly.
In one embodiment, the present technology is directed to a recloseable pouch defining an interior including a first wall, a second wall opposing and partially sealed to the first wall to form an opening for access to the interior, and a closure mechanism for selectively sealing the opening. The closure mechanism includes a female closure element coupled to the first wall, wherein the female closure element has first and second spaced legs extending from the first wall that are substantially symmetric about a longitudinal centerline and define female sealing surfaces. The closure mechanism also includes a male closure element coupled to the second wall in alignment with the female closure element, wherein the male closure element includes a proximal base portion extending from the second wall, a neck portion forming male sealing surfaces to engage the female sealing surfaces, and a distal head portion. The male closure element has a plurality of intermittent deformed portions so that applying a compressive force upon the closure mechanism causes the female closure element to deform and, in turn, a passageway in the adjacent intermittent deformed portions is formed for fluid to flow past the closure mechanism. In an alternative embodiment, the male closure element has a plurality of intermittent deformed portions so that upon inserting the proximal base portion into the female closure element, the female closure element deflects and, in turn, fluid is allowed to flow past the closure mechanism via the adjacent intermittent portions.
Preferably, the female sealing surfaces are formed on curved distal ends. The distal head portion is a round triangle shape in cross-section and the intermittent portions are notched. The plurality of intermittent notched portions have the distal head substantially squished upward while retaining at least a portion of the male sealing surfaces. The proximal base portion and the distal head portion may be roughened surface portions so that upon inserting the proximal base portion into the female closure element, fluid is allowed to flow past the closure mechanism through the roughened surface portions.
In another embodiment, the subject technology is directed to a recloseable pouch defining an interior including a first wall, a second wall opposing and partially sealed to the first wall to form an opening for access to the interior, and a closure mechanism for selectively sealing the opening. The closure mechanism includes a female closure element coupled to the first wall, wherein the female closure element has first and second spaced legs extending a leg height from the first wall. The closure mechanism also includes a male closure element coupled to the second wall in alignment with the female closure element. Once engaged, the closure mechanism has a springiness or bias such that the normal position is the sealed position. In one embodiment, the female closure element has a base that stores energy for biasing the closure mechanism into the sealed position. The base may contain a notch that allows the base to flex. Preferably, the legs of the female closure element are longer than the male closure element so that the legs are splayed to transmit the energy to the base by virtue of deformation when pressed past the sealed position. In another embodiment, the male closure element has a finger extending a finger height from the second wall. The finger height is longer than the leg height such that upon engagement of the female and male closure elements to form a seal of the opening, the finger is deformable to create a springiness to the seal.
In one embodiment, the finger includes a proximal base portion extending from the second wall, the proximal base portion being oversized with respect to the legs such that, upon engagement, interaction between the proximal base portion and legs creates a force that drives the female and male closure elements into a sealing position. The male closure element may have a plurality of intermittent venting portions so that upon inserting the proximal base portion into the female closure element, the female closure element deforms and, in turn, fluid is allowed to flow past the closure mechanism via the adjacent venting portions. The intermittent venting portions can be notched and/or relatively rougher.
Still another embodiment of the subject technology is directed to a recloseable pouch defining an interior including a first wall, a second wall opposing and partially sealed to the first wall to form an opening for access to the interior, and a closure mechanism for selectively sealing the opening. The closure mechanism includes a female closure element coupled to the first wall, wherein the female closure element defines female sealing surfaces, and a male closure element coupled to the second wall in alignment with the female closure element. The male closure element defines male sealing surfaces to engage the female sealing surfaces with portions of the male closure element having first profile portions and second profile portions, the second profile portions being intermittent and relatively smaller in cross-section than the first profile portions. In a closed position, the female and male sealing surfaces are engaged to seal the opening. In a venting position, the female closure element deforms by insertion of the male closure element therein and, in turn, fluid is allowed to be released from the interior by flowing past the second profile portions.
It should be appreciated that the present technology can be implemented and utilized in numerous ways, including without limitation as a process, an apparatus, a system, a device, a method for applications now known and later developed. These and other unique features of the system disclosed herein will become more readily apparent from the following description and the accompanying drawings.
So that those having ordinary skill in the art to which the disclosed system appertains will more readily understand how to make and use the same, reference may be made to the following drawings.
The present disclosure overcomes many of the prior art problems associated with vented pouches and bags. The advantages, and other features of the technology disclosed herein, will become more readily apparent to those having ordinary skill in the art from the following detailed description of certain preferred embodiments taken in conjunction with the drawings which set forth representative embodiments of the present invention and wherein like reference numerals identify similar structural elements. All relative descriptions herein such as left, right, up, and down are with reference to the Figures, and not meant in a limiting sense. Unless otherwise specified, the illustrated embodiments can be understood as providing exemplary features of varying detail of certain embodiments, and therefore, unless otherwise specified, features, components, modules, elements, and/or aspects of the illustrations can be otherwise resized, combined, interconnected, sequenced, separated, interchanged, positioned, and/or rearranged without materially departing from the disclosed systems or methods. The shapes and sizes of components are also exemplary and unless otherwise specified, can be altered without materially affecting or limiting the disclosed technology. Additionally, the representations shown herein may be somewhat idealized in that manufacturing processes typically have variation and approximate the features, which can be drawn with clarity beyond that which can be made.
Referring now to
The pouch 100 defines an interior for storing any type of item, fluid or solid, that may fit therein. The pouch 100 has opposing walls 104 fabricated from a thermoplastic film. The walls 104 are partially sealed together to form an opening 102 for access to the interior. The opening 102 is selectively sealed and vented by the closure mechanism 110.
Referring now to
As best seen in
As best seen in
Preferably, a ratio of the length of the deformed segments 126 to the length of the normal segments 124 is approximately one. Typically, the length of the segments 124, 126 is about 0.15 of an inch {3.81 mm} so that a plurality of deformed segments 126 are depressed by one's fingers during venting as described hereinbelow. In alternative embodiments, the normal segments 124 are significantly longer than the deformed segments 126 or vice versa. In another embodiment, the lengths of the segments 124, 126 vary.
Referring again to
In one embodiment, a width of the neck portion 132 is in the range from 0.008 to 0.018 of an inch {0.2032 to 0.4572 mm} at the sealing point. Preferably, the width of the neck portion 132 is approximately 0.013 of an inch {0.3302 mm}. In one embodiment, a width of the base 130 is in the range from 0.015 to 0.028 of an inch {0.381 to 0.7112 mm}. Preferably, the width of the base is approximately 0.023 of an inch {0.5842 mm}. It is envisioned that the base 130 is about 0.010 of an inch {0.25400 mm} wider than the neck portion 132 so that the deformed segments can be notched about 0.005 of an inch {0.127 mm} on each side of the male closure profile 112. In another embodiment, the gap or opening between the hook portions 118a, 118b of the female closure profile 112 is approximately equal to a width of the neck portion 132 at the sealing point. In still another embodiment, the gap between the hook portions 118a, 118b of the female closure profile 112 is equal to or less than a width of the neck portion 132 by about 0.002 of an inch {0.0508 mm}. Preferably, the gap between the hook portions 118a, 118b is approximately 0.001 of an inch {0.0254 mm} less than the width of the neck portion.
Other configurations are possible such as shown in U.S. Pat. No. 5,070,584 issued to Dais et al. on Dec. 10, 1991, U.S. Pat. No. 6,692,147 issued to Nelson on Feb. 17, 2004, U.S. Pat. No. 6,962,439 issued to Taheri on Nov. 8, 2005, U.S. Pat. No. 6,010,244 issued to Dobreski et al. on Jan. 4, 2000, U.S. Pat. No. 7,736,058 issued to Tanaka et al. on Jun. 15, 2010, U.S. Pat. No. 7,322,747 issued to Borchardt on Jan. 29, 2008, and U.S. Pat. No. 7,674,039 issued to McMahon et al. on Mar. 9, 2010 as well as U.S. Patent Application Pub. No. 2004/0234171 to Dais et al. published on Nov. 25, 2004, U.S. Patent Application Pub. No. 2004/0234173 to Saad et al. published on Nov. 25, 2004, U.S. Patent Application Pub. No. 2007/0183692 to Pawloski published on Aug. 9, 2007, and U.S. Patent Application Pub. No. 2006/0008187 to Armstrong published on Jan. 12, 2006.
Referring now to
Referring now to
Referring now to
Referring now particularly to
Still referring to
Under continued force F, the male closure profile 114 deflects to impart a desirable springiness. At the same time, the hook portions 118a, 118b are also being urged outward by the shoulder portion 130, which is wider than the neck portion 132. Preferably, the shoulder portion 130 tapers from the base 128 to the neck portion 132. Hence, the hook portions 118a, 118b along with the legs 116a, 116b are also deflecting further outward as the male closure profile 114 is further inserted to further generate a springiness to the engagement. As a result, the user has an improved confidence that the female and male closure elements 112, 114 are properly interlocked. As the legs 116a, 116b deflect outward, enerty is stored in the base 122. Upon release of the engagement force F, one or more of the stored engergy in the base 122, the resilient nature of the legs 116a, 116b, and/or the taper of the shoulder portion 130 bias the hook portions 118a, 118b to slide down the shoulder portion 130 into the sealed position on the neck portion 126 as shown in
Since the stem 136 is generally larger than the separation between the hook portions 118a, 118b of the female closure profile 112, engagement of the deformed segments 126 still requires force albeit less than for the normal segments 124. Hence, although the female profile 112 deflects less upon insertion of the deformed segments 124, sealing still occurs upon insertion. Also, the stem 136 of the deformed segments 126 is approximately the same height as the normal segments 124 so that upon the stem 136 contacting the base 122, bending of the stem 136 occurs to further enhance the springiness effect. In one embodiment, the stem 136 is relatively longer than the normal segments 124 as the deformed segments 126 are formed by intermittently squishing the normal segments 124 distally such that the shoulder portion 130 and distal head portion 134 are substantially reshaped.
Referring now to
Referring now to
However, in the deformed segments 126 adjacent and within the compressed portion, a venting passageway 140 is created as shown by the air arrows in
Referring now to
Referring to
Referring now to
The male closure element of the subject technology may be extruded and post-applied or extruded with the pouch as is known in the art. After formation, the male closure element is processed through a deforming apparatus to create the deformed segments. Such deforming apparatus are well known as well. For example, see U.S. Pat. No. 5,140,727, issued to Dais et al. on Aug. 25, 1992 and U.S. Pat. No. 5,647,100, issued to Porchia et al. on Jul. 15, 1997.
Now referring to
A throughbore 676 is formed in the annular body 672 to receive a dowel 678, which facilitates mounting the deformer ring 670 to the deforming apparatus. The teeth 674 are separated by gaps 680, which create a tooth arc length 682 and gap arc length 684 on the outermost portion of the deformer ring 670. In use, the size of the tooth arc length 682 and the gap are length 684 that form the deformed and undeformed segments, respectively, in the male closure elements. In one embodiment, the tooth arc length 682 and the gap arc length 684 are approximately equal but either may be longer than the other. Preferably, the tooth arc length 682 and the gap arc length 684 are about 0.15 of an inch {3.81 mm}. In another embodiment, the tooth arc length 82 is about 0.175 of an inch {4.44500 mm} and the gap arc length 84 is about 0.148 of an inch {3.75920 mm}. Depending upon the resiliency of the female profile, an excessively long deformed segment may allow the legs of the female profile to close back in onto the stem of the male profile. Hence, the resiliency of the female profile and length of the deformed segments are preferably chosen to prevent unsupported areas from resealing.
The deformer rings herein and technology related to the same may also be implemented in any deforming apparatus now known and later developed. One apparatus or process for making a male closure element for a reclosable thermoplastic bag in accordance with the subject technology would include an extruder for providing a longitudinally extending profile of a substantially uniform shape as shown in the normal segments above. As shown in
Referring now to
Referring now to
During opening and closing of a pouch with the male closure profile 714, the majority of the bump 760 is spaced from the sealing surfaces of the neck portion 732. Further, as the typical bump 760 is only 0.001 of an inch (0.0254 mm), the female legs 116a, 116b are resilient and flexible enough to contour to the bump 760 to maintain an effective seal in the event that the bump 760 extends into the neck portion 732.
Now referring to
The primary difference of deformer ring 770 in comparison to the defamer ring 670 is a linear ridge 792 instead of the relief notch 690. As a result of the linear ridge 792, the deformer ring 770 creates a central indentation in the deformed segments of the profile (not shown). Such an indentation may create a passageway for fluid inside the pouch to escape while the zipper is closed. Although the pouch may not seal perfectly, the passageway would provide the ability to squeeze out undesired interior fluid without undoing the seal. The linear ridge 792 may take any of a plurality of configurations. For example, the ridge 792 may have a triangular, square, polygonal, rounded or asymmetric cross-section. Further, depending upon the configuration of the linear ridge 792 and profiles, the indentations may seal effectively but create a passageway that opens upon pressure within the pouch being greater than ambient, e.g., during squeezing after closure. For example, the flexibility of the female profile is such that contact is maintained with the sealing surfaces in the indentation but tenuously so that pressure disrupts the seal, effectively a one-way valve.
Pouches fabricated by using the deformer ring 770 and the like would be useful for packaging items in which it is desirable to remove the air. For additional examples, it could include microwave packaging that requires venting during heating, packaging for items such as bread dough in which removal of accumulating gases such as carbon dioxide is desired, dry good like dried fruit and grains that do not require the protection of a large amount of air in the pouch, and the like.
Referring now to
The primary difference of the male closure element 514 in comparison to the male closure element 114 is a pair of opposing notches 533 in the shoulder portion 530 near the base 528. The notches 533 are formed during the extrusion process. Depending upon the deformation process, the notches may or may not be present in the deformed segments (not shown). As a result of the notches 533, the hook portions 518a, 518b can rest in the notches 533 during compression of the zipper. The notches 533 are sized and configured such that a user would discern the hook portions 518a, 518b entering the notches and, thereby, have affirmation that the zipper is in the venting position. Then during venting, the hook portions 518a, 518b, being somewhat captured in the notches 533, would at least partially if not completely prevent the zipper's natural tendency to return to the closed position.
Closure mechanisms for pouches in accordance with the subject technology also provide benefits when used with a vacuum machine. The vacuum machine may be similar to that as shown in U.S. Patent Application Pub. No. 2005/0034427 or any other type appliance but without a heating element, which is not necessary. Instead of a heating element, the vacuum machine simply needs to be adapted and configured with a compression element to set the closure mechanism in the vented position. Once in the vented position, evacuation of air and liquids from the interior can be accomplished by the typical vacuum components of the prior art. An exemplary process is described below.
One process for utilizing a pouch 100 with closure mechanism 110 begins with loading the pouch 100 with the items to be stored. The closure mechanism 110 is closed as described above to seal in the items. Additional care may be taken to remove excess interior air but it is not necessary. The vacuum appliance is opened and may have markings to indicate how the closure mechanism 110 should be placed therein. The closure mechanism 110 may also have markings or simply have colored closure elements 112, 114 that not only provide a visual indication of proper closure but allow orientation to the vacuum appliance markings.
The vacuum appliance creates a sealed, evacuated pouch 100 by simultaneously compressing the closure mechanism 110 into the venting position while subjecting the opening 102 to vacuum. In one embodiment, a pair of opposing mating frames compress the closure mechanism 110 under a weight of a lid of the vacuum appliance. A hermetic seal surrounds the opening 102 in which a vacuum chamber is created. By having the closure mechanism 110 in the venting position and subjecting the opening 102 to vacuum, evacuation of the pouch occurs.
The vacuum appliance recognizes when the vacuum is accomplished and deactivates the vacuum mechanism. Upon lifting the appliance lid, the vacuum seal to the chamber and compression pressure on the closure mechanism 110 are released. The closure mechanism 110 naturally returns to the closed position because of the inherent springiness as described above. Hence, the pouch 100 has been effectively sealed with the interior evacuated while still being able to reopen and reuse the pouch 100 repeatedly. Further, as no heating element is required, the mechanical closure mechanism 110 is robust under wet conditions in which the prior art suffered from poor and ineffective sealing.
Incorporation by Reference
All patents, published patent applications and other references disclosed herein are hereby expressly incorporated in their entireties by reference.
While the invention has been described with respect to preferred embodiments, those skilled in the art will readily appreciate that various changes and/or modifications can be made to the invention without departing from the spirit or scope of the invention as defined by the appended claims. For example, each claim may depend from any or all claims in a multiple dependent manner even though such has not been originally claimed.
Number | Name | Date | Kind |
---|---|---|---|
2035674 | Sipe | Mar 1936 | A |
2822012 | Gold | Feb 1958 | A |
3338284 | Ausnit | Aug 1967 | A |
3381592 | Ravel | May 1968 | A |
3416585 | Staller | Dec 1968 | A |
3565147 | Ausnit | Feb 1971 | A |
RE27174 | Ausnit | Sep 1971 | E |
3937395 | Lawes | Feb 1976 | A |
RE28969 | Naito | Sep 1976 | E |
4186786 | Kirkpatrick | Feb 1980 | A |
4191076 | Bollmer et al. | Mar 1980 | A |
4285105 | Kirkpatrick | Aug 1981 | A |
4285376 | Ausnit | Aug 1981 | A |
4363345 | Scheibner | Dec 1982 | A |
4372014 | Simpson | Feb 1983 | A |
4419159 | Herrington | Dec 1983 | A |
4428788 | Kamp | Jan 1984 | A |
4479244 | Ausnit | Oct 1984 | A |
4484352 | Katzin | Nov 1984 | A |
4515647 | Behr | May 1985 | A |
4522678 | Zieke | Jun 1985 | A |
4532652 | Herrington | Jul 1985 | A |
4555282 | Yano | Nov 1985 | A |
4561108 | Kamp | Dec 1985 | A |
4561109 | Herrington | Dec 1985 | A |
4562027 | Behr et al. | Dec 1985 | A |
4578813 | Ausnit | Mar 1986 | A |
4586319 | Ausnit | May 1986 | A |
4615045 | Siegel | Sep 1986 | A |
4618383 | Herrington | Oct 1986 | A |
4655862 | Christoff et al. | Apr 1987 | A |
4672723 | Hugues et al. | Jun 1987 | A |
4673383 | Bentsen | Jun 1987 | A |
4676851 | Scheibner et al. | Jun 1987 | A |
4683015 | Wagers | Jul 1987 | A |
4698118 | Takahashi | Oct 1987 | A |
4701358 | Behr et al. | Oct 1987 | A |
4709399 | Sanders | Nov 1987 | A |
4709400 | Bruno | Nov 1987 | A |
4710968 | Borchardt et al. | Dec 1987 | A |
4736451 | Ausnit | Apr 1988 | A |
4736496 | Fisher et al. | Apr 1988 | A |
4741789 | Zieke et al. | May 1988 | A |
4755248 | Geiger et al. | Jul 1988 | A |
4764977 | Wagers | Aug 1988 | A |
4787880 | Ausnit | Nov 1988 | A |
4788282 | Deziel | Nov 1988 | A |
4791710 | Nocek et al. | Dec 1988 | A |
4792240 | Ausnit | Dec 1988 | A |
4796300 | Branson | Jan 1989 | A |
4812056 | Zieke | Mar 1989 | A |
4812192 | Woods et al. | Mar 1989 | A |
4822539 | Tilman et al. | Apr 1989 | A |
4829641 | Williams | May 1989 | A |
4832768 | Takahashi | May 1989 | A |
4834554 | Stetler, Jr. et al. | May 1989 | A |
4846586 | Bruno | Jul 1989 | A |
4859259 | Scheibner | Aug 1989 | A |
4869725 | Schneider et al. | Sep 1989 | A |
4898492 | Janowski | Feb 1990 | A |
4906310 | Broderick et al. | Mar 1990 | A |
4907321 | Williams | Mar 1990 | A |
4923701 | VanErden | May 1990 | A |
4941238 | Clark | Jul 1990 | A |
4964739 | Branson et al. | Oct 1990 | A |
5009828 | McCree | Apr 1991 | A |
5012561 | Porchia et al. | May 1991 | A |
5017021 | Simonsen et al. | May 1991 | A |
5022530 | Zieke | Jun 1991 | A |
5023122 | Boeckmann et al. | Jun 1991 | A |
RE33674 | Uramoto | Aug 1991 | E |
5049223 | Dais et al. | Sep 1991 | A |
5053091 | Giljam et al. | Oct 1991 | A |
5056933 | Kamp | Oct 1991 | A |
5067822 | Wirth et al. | Nov 1991 | A |
5070584 | Dais et al. | Dec 1991 | A |
5092684 | Weeks | Mar 1992 | A |
5138750 | Gundlach et al. | Aug 1992 | A |
5140727 | Dais et al. | Aug 1992 | A |
5141577 | Porchia et al. | Aug 1992 | A |
5154086 | Porchia et al. | Oct 1992 | A |
5167454 | Woods et al. | Dec 1992 | A |
5184896 | Hammond et al. | Feb 1993 | A |
5186543 | Cochran | Feb 1993 | A |
5192135 | Woods et al. | Mar 1993 | A |
5198055 | Wirth et al. | Mar 1993 | A |
5209574 | Tilman | May 1993 | A |
5211481 | Tilman | May 1993 | A |
5235731 | Anzai et al. | Aug 1993 | A |
5238306 | Heintz et al. | Aug 1993 | A |
5248201 | Kettner et al. | Sep 1993 | A |
5252281 | Kettner et al. | Oct 1993 | A |
5259904 | Ausnit | Nov 1993 | A |
5273511 | Boeckman | Dec 1993 | A |
5307552 | Dais et al. | May 1994 | A |
5326176 | Domke | Jul 1994 | A |
5345659 | Allan | Sep 1994 | A |
5356222 | Kettner et al. | Oct 1994 | A |
5358334 | Simonsen | Oct 1994 | A |
5366294 | Wirth et al. | Nov 1994 | A |
5368394 | Scott et al. | Nov 1994 | A |
5369847 | Naya et al. | Dec 1994 | A |
5382094 | Ausnit | Jan 1995 | A |
5384942 | Siegel | Jan 1995 | A |
5388910 | Koyanagi | Feb 1995 | A |
5397182 | Gaible et al. | Mar 1995 | A |
5403094 | Tomic | Apr 1995 | A |
5405561 | Dais et al. | Apr 1995 | A |
5415904 | Takubo et al. | May 1995 | A |
5462360 | Tilman et al. | Oct 1995 | A |
5474382 | May | Dec 1995 | A |
5478228 | Dais et al. | Dec 1995 | A |
5492705 | Porchia et al. | Feb 1996 | A |
5509734 | Ausnit | Apr 1996 | A |
5511884 | Bruno et al. | Apr 1996 | A |
5525363 | Herber et al. | Jun 1996 | A |
5527112 | Dais et al. | Jun 1996 | A |
5540500 | Tanaka | Jul 1996 | A |
5558493 | Hayashi et al. | Sep 1996 | A |
5564834 | Porchia et al. | Oct 1996 | A |
5575747 | Dais et al. | Nov 1996 | A |
5577305 | Johnson | Nov 1996 | A |
5588187 | Swain | Dec 1996 | A |
5611627 | Belias et al. | Mar 1997 | A |
5618111 | Porchia et al. | Apr 1997 | A |
5647100 | Porchia et al. | Jul 1997 | A |
5655273 | Tomic et al. | Aug 1997 | A |
5660479 | May et al. | Aug 1997 | A |
5664299 | Porchia et al. | Sep 1997 | A |
5669715 | Dobreski et al. | Sep 1997 | A |
5672009 | Malin | Sep 1997 | A |
5686126 | Noel et al. | Nov 1997 | A |
5689866 | Kasai et al. | Nov 1997 | A |
5704670 | Surplus | Jan 1998 | A |
5711609 | Simonsen | Jan 1998 | A |
5713669 | Thomas et al. | Feb 1998 | A |
5718024 | Robbins | Feb 1998 | A |
5720557 | Simonsen | Feb 1998 | A |
5722128 | Toney et al. | Mar 1998 | A |
5729876 | Johnson | Mar 1998 | A |
5747126 | Van Erden et al. | May 1998 | A |
5749658 | Kettner | May 1998 | A |
5769772 | Wiley | Jun 1998 | A |
5774955 | Borchardt et al. | Jul 1998 | A |
5775812 | St. Phillips et al. | Jul 1998 | A |
5783012 | Porchia et al. | Jul 1998 | A |
5791783 | Porchia et al. | Aug 1998 | A |
5794315 | Crabtree et al. | Aug 1998 | A |
5804265 | Saad et al. | Sep 1998 | A |
5809621 | McCree et al. | Sep 1998 | A |
5817380 | Tanaka | Oct 1998 | A |
5827163 | Kettner | Oct 1998 | A |
5832145 | Dais et al. | Nov 1998 | A |
5832570 | Thorpe et al. | Nov 1998 | A |
5836056 | Porchia et al. | Nov 1998 | A |
5839831 | Mazzocchi | Nov 1998 | A |
D406685 | McGinnis | Mar 1999 | S |
5878468 | Tomic et al. | Mar 1999 | A |
5902046 | Shibata | May 1999 | A |
5911508 | Dobreski et al. | Jun 1999 | A |
5927855 | Tomic et al. | Jul 1999 | A |
5930877 | Thorpe et al. | Aug 1999 | A |
5933927 | Miller et al. | Aug 1999 | A |
5934806 | Tomic et al. | Aug 1999 | A |
5950285 | Porchia et al. | Sep 1999 | A |
5953796 | McMahon et al. | Sep 1999 | A |
5955160 | Tanaka et al. | Sep 1999 | A |
5964532 | St. Phillips et al. | Oct 1999 | A |
5967663 | Vaquero et al. | Oct 1999 | A |
5988880 | Tomic | Nov 1999 | A |
6009603 | Gallagher | Jan 2000 | A |
6010244 | Dobreski et al. | Jan 2000 | A |
6014795 | McMahon et al. | Jan 2000 | A |
6030122 | Ramsey et al. | Feb 2000 | A |
6032437 | Bois | Mar 2000 | A |
6050726 | Hoerl | Apr 2000 | A |
6058998 | Kristen | May 2000 | A |
6071011 | Thomas et al. | Jun 2000 | A |
6074096 | Tilman | Jun 2000 | A |
6077208 | Larkin et al. | Jun 2000 | A |
6080252 | Plourde | Jun 2000 | A |
6110586 | Johnson | Aug 2000 | A |
6112374 | Van Erden | Sep 2000 | A |
6135636 | Randall | Oct 2000 | A |
6138329 | Johnson | Oct 2000 | A |
6139186 | Fraser | Oct 2000 | A |
6148588 | Thomas et al. | Nov 2000 | A |
6149302 | Taheri | Nov 2000 | A |
6152600 | Tomic | Nov 2000 | A |
6156363 | Chen et al. | Dec 2000 | A |
6164825 | Larkin et al. | Dec 2000 | A |
6167597 | Malin | Jan 2001 | B1 |
6170696 | Tucker et al. | Jan 2001 | B1 |
6170985 | Shabram, Jr. et al. | Jan 2001 | B1 |
6187396 | Moller | Feb 2001 | B1 |
6210038 | Tomic | Apr 2001 | B1 |
6217215 | Tomic | Apr 2001 | B1 |
6217216 | Taheri | Apr 2001 | B1 |
6220754 | Stiglic et al. | Apr 2001 | B1 |
6221484 | Leiter | Apr 2001 | B1 |
6228484 | Willert-Porada et al. | May 2001 | B1 |
6228485 | Leiter | May 2001 | B1 |
6231236 | Tilman | May 2001 | B1 |
6257763 | Stolmeier et al. | Jul 2001 | B1 |
6279298 | Thomas et al. | Aug 2001 | B1 |
6286681 | Wilfong, Jr. et al. | Sep 2001 | B1 |
6286999 | Cappel et al. | Sep 2001 | B1 |
6293701 | Tomic | Sep 2001 | B1 |
6299353 | Piechocki et al. | Oct 2001 | B1 |
6318894 | Derenthal | Nov 2001 | B1 |
6321423 | Johnson | Nov 2001 | B1 |
6360513 | Strand et al. | Mar 2002 | B1 |
6371643 | Saad et al. | Apr 2002 | B2 |
6386762 | Randall et al. | May 2002 | B1 |
6394652 | Meyer et al. | May 2002 | B2 |
6398411 | Metzger | Jun 2002 | B2 |
6443617 | Tetenborg | Sep 2002 | B2 |
6461042 | Tomic et al. | Oct 2002 | B1 |
6461043 | Healy et al. | Oct 2002 | B1 |
6481890 | VandenHeuvel | Nov 2002 | B1 |
6487758 | Shaffer et al. | Dec 2002 | B2 |
6491433 | Shabram, Jr. et al. | Dec 2002 | B2 |
6539594 | Kasai et al. | Apr 2003 | B1 |
6550965 | Shaffer et al. | Apr 2003 | B2 |
6550966 | Saad et al. | Apr 2003 | B1 |
6553740 | Delisle | Apr 2003 | B2 |
6571430 | Savicki et al. | Jun 2003 | B1 |
6574939 | Heijnen et al. | Jun 2003 | B1 |
6581249 | Savicki et al. | Jun 2003 | B1 |
6582122 | Shimizu | Jun 2003 | B2 |
6592260 | Randall et al. | Jul 2003 | B1 |
6594872 | Cisek | Jul 2003 | B2 |
6637937 | Bois | Oct 2003 | B2 |
6637939 | Huffer | Oct 2003 | B2 |
6686005 | White et al. | Feb 2004 | B2 |
6691383 | Linton | Feb 2004 | B2 |
6692147 | Nelson | Feb 2004 | B2 |
6703046 | Fitzhugh et al. | Mar 2004 | B2 |
6712509 | Cappel | Mar 2004 | B2 |
6786712 | Cisek | Sep 2004 | B2 |
6789946 | Plourde et al. | Sep 2004 | B2 |
6854886 | Piechocki et al. | Feb 2005 | B2 |
6874938 | Price et al. | Apr 2005 | B2 |
6877898 | Berich et al. | Apr 2005 | B2 |
6953542 | Cisek | Oct 2005 | B2 |
6954969 | Sprehe | Oct 2005 | B1 |
6955465 | Machacek et al. | Oct 2005 | B2 |
6962439 | Taheri | Nov 2005 | B2 |
6994535 | Pawloski | Feb 2006 | B2 |
7004632 | Hamilton et al. | Feb 2006 | B2 |
7017240 | Savicki | Mar 2006 | B2 |
7036988 | Olechowski | May 2006 | B2 |
7087130 | Wu et al. | Aug 2006 | B2 |
7137736 | Pawloski et al. | Nov 2006 | B2 |
7163706 | Shepard et al. | Jan 2007 | B2 |
RE39505 | Thomas et al. | Mar 2007 | E |
7234865 | Piechocki | Jun 2007 | B2 |
7241046 | Piechocki et al. | Jul 2007 | B2 |
7260871 | Borchardt et al. | Aug 2007 | B2 |
7270479 | Nelson | Sep 2007 | B2 |
7305742 | Anderson | Dec 2007 | B2 |
7322747 | Borchardt | Jan 2008 | B2 |
7334682 | Goepfert | Feb 2008 | B2 |
7347624 | Savicki, Sr. et al. | Mar 2008 | B2 |
RE40284 | Thomas et al. | May 2008 | E |
7410298 | Pawloski | Aug 2008 | B2 |
7437805 | Berich | Oct 2008 | B2 |
7517484 | Wu | Apr 2009 | B2 |
7534039 | Wu | May 2009 | B2 |
7543361 | Borchardt et al. | Jun 2009 | B2 |
7553082 | Yoder | Jun 2009 | B2 |
7585111 | Turvey et al. | Sep 2009 | B2 |
7651271 | Withers | Jan 2010 | B2 |
7674039 | McMahon et al. | Mar 2010 | B2 |
7674040 | Dowd et al. | Mar 2010 | B2 |
7736058 | Tanaka et al. | Jun 2010 | B2 |
7967509 | Turvey et al. | Jun 2011 | B2 |
8272107 | Turvey et al. | Sep 2012 | B2 |
20020064582 | Carabetta et al. | May 2002 | A1 |
20020090151 | Skeens et al. | Jul 2002 | A1 |
20020153273 | Mallik et al. | Oct 2002 | A1 |
20020173414 | Leighton | Nov 2002 | A1 |
20030169948 | Fenzl et al. | Sep 2003 | A1 |
20030177619 | Cisek | Sep 2003 | A1 |
20030210836 | Strand | Nov 2003 | A1 |
20030223654 | Gerrits | Dec 2003 | A1 |
20030223657 | Belias et al. | Dec 2003 | A1 |
20030232112 | Whitmore et al. | Dec 2003 | A1 |
20040001651 | Pawloski | Jan 2004 | A1 |
20040078939 | Pawloski | Apr 2004 | A1 |
20040078940 | Ishizaki | Apr 2004 | A1 |
20040131283 | Sprague et al. | Jul 2004 | A1 |
20040234171 | Dais et al. | Nov 2004 | A1 |
20040234173 | Saad et al. | Nov 2004 | A1 |
20040256761 | Pawloski | Dec 2004 | A1 |
20050034427 | Higer et al. | Feb 2005 | A1 |
20050063616 | Chang | Mar 2005 | A1 |
20050141786 | Piechocki et al. | Jun 2005 | A1 |
20050207679 | Armstrong | Sep 2005 | A1 |
20050271308 | Pawloski | Dec 2005 | A1 |
20050276524 | Taheri | Dec 2005 | A1 |
20050281921 | Langston et al. | Dec 2005 | A1 |
20050286810 | Sprague et al. | Dec 2005 | A1 |
20050286811 | Sprague et al. | Dec 2005 | A1 |
20050286812 | Sprague et al. | Dec 2005 | A1 |
20060008185 | Borchardt | Jan 2006 | A1 |
20060008187 | Armstrong | Jan 2006 | A1 |
20060078232 | Trinko | Apr 2006 | A1 |
20060165316 | Cheung | Jul 2006 | A1 |
20060257533 | Plourde et al. | Nov 2006 | A1 |
20070155607 | Bassett et al. | Jul 2007 | A1 |
20070183692 | Pawloski | Aug 2007 | A1 |
20070206888 | Chang | Sep 2007 | A1 |
20080137995 | Fraser et al. | Jun 2008 | A1 |
20080159662 | Dowd et al. | Jul 2008 | A1 |
20080226202 | Dais et al. | Sep 2008 | A1 |
20080226203 | Dais et al. | Sep 2008 | A1 |
20080232722 | Pawloski et al. | Sep 2008 | A1 |
20080285897 | Taheri | Nov 2008 | A1 |
20080292222 | Snoreck | Nov 2008 | A1 |
20090034885 | McGruder | Feb 2009 | A1 |
20090052809 | Sampson | Feb 2009 | A1 |
20090097781 | Tang | Apr 2009 | A1 |
20090190860 | Kettner et al. | Jul 2009 | A1 |
20090214141 | Borchardt et al. | Aug 2009 | A1 |
20090232421 | Turvey | Sep 2009 | A1 |
20090257685 | Matias | Oct 2009 | A1 |
20090304311 | Noguchi et al. | Dec 2009 | A1 |
20100014786 | Pawloski et al. | Jan 2010 | A1 |
20100166341 | McMahon et al. | Jul 2010 | A1 |
20120106874 | Pawloski | May 2012 | A1 |
20120106875 | Pawloski | May 2012 | A1 |
20120106876 | Pawloski | May 2012 | A1 |
Number | Date | Country |
---|---|---|
1226817 | Oct 1966 | DE |
2504863 | Aug 1976 | DE |
8600867 | Feb 1986 | WO |
Entry |
---|
Printout of website page “http://www.perdue.com/products/subcategory-features.html?category—id=29” on Dec. 1, 2010. |
Printout of website page “http://www.daymarksafety.com/deptitem/I/P342/n/8.5—×—8.5%22—Day—of—the—Week—Bags/” on Dec. 1, 2010. |
Printout of website page “http://www.daymarksafety.com/deptitem/I/P243/n/Acrylic—Portion—Bag—Dispenser/” on Dec. 1, 2010. |
Printout of webstie page “http://www.glad.com.au/glad-products/food-management/glad-go-between/” on Dec. 14, 2010. |
Number | Date | Country | |
---|---|---|---|
20120213455 A1 | Aug 2012 | US |