This invention generally relates to reclosable bags having slider-actuated plastic zippers. In particular, the invention relates to slider-actuated reclosable bags having a header or flap with holes or slits for mounting a stack of bags on a wicket.
Reclosable bags are finding ever-growing acceptance as primary packaging, particularly as packaging for foodstuffs such as cereal, fresh fruit and vegetables, snacks and the like. Such bags provide the consumer with the ability to readily store, in a closed, if not sealed, package any unused portion of the packaged product even after the package is initially opened.
Reclosable bags comprise a receptacle having a mouth with a plastic zipper for opening and closing. In recent years, many zippers have been designed to operate with a slider mounted thereon. As the slider is moved in an opening direction, the slider causes the zipper sections it passes over to open. Conversely, as the slider is moved in a closing direction, the slider causes the zipper sections it passes over to close. Typically, a zipper for a reclosable bag includes a pair of interlockable profiled closure strips that are joined at opposite ends of the bag mouth. The profiles of interlockable plastic zipper parts can take on various configurations, e.g. interlocking rib and groove elements having so-called male and female profiles, interlocking alternating hook-shaped closure elements, etc. Reclosable bags having slider-operated zippers are generally more desirable to consumers than bags having zippers without sliders because the slider eliminates the need for the consumer to align the interlockable zipper profiles before causing those profiles to engage.
Reclosable bags are commonly used by deli clerks in grocery stores to package cheese and deli meats sold to consumers. To facilitate handling of the reclosable bags by the deli clerks, the bags often include a header having one or more holes for mounting a stack of bags to one or more dispensing posts. The reclosable bags are typically mounted to the dispensing posts in bag packs consisting of a predetermined number of bags. The dispensing posts may, e.g., take the form of a U-shaped wicket wherein the legs of the U-shaped wicket penetrate respective holes formed in the header of each bag. The header may take the form of a top header extending upward from the zippered mouth of the bag or a bottom header extending downward from the bottom of the bag.
U.S. Pat. No. 5,682,730 discloses a plurality of plastic bags formed into unitary packs for shipping and loading onto dispensing posts. This is done by stacking the bags and then assembling them into a unitary pack by penetrating the stack with a heated or ultrasonic pin or punch element to form apertures. The bags in the pack are heat-welded or ultrasonically welded together along the periphery of the apertures. To maintain the integrity of the bag pack during shipping, the bag is mounted to dispensing posts in the form of a wicket prior to shipment.
More specifically, U.S. Pat. No. 5,682,730 discloses a reclosable bag having a bottom header with two holes for mounting the plastic bag to a pair of dispensing posts. The holes are spaced apart along a lateral line running generally parallel to the zipper. The bottom header includes a line of perforations that allows the bag to be torn away from the header after the bag has been filled with product. The embodiment illustrated in U.S. Pat. No. 5,682,730 has a bottom header that includes a pair of opposing header panels connected by a fold. The fold forms a primary bottom, while a seal line of thermal fusion forms a secondary bottom at the junction of the receptacle and the header. This patent further states that one of the header panels can be eliminated. The top of the bag U.S. Pat. No. 5,682,730 has a slider-actuated zipper. The zipper comprises two profiled zipper parts that have respective fins or flanges thermally fused to the inner surfaces of the receptacle panels.
An alternative to the aforementioned flanged zipper design is the so-called flangeless or string zipper, which has substantially no flange portions above or below the interlockable zipper strips. In the case of a string zipper, the bag making film is joined to the backs of the bases of the zipper strips. String zippers can be produced at much greater speeds, allow much greater footage to be wound on a spool, thereby requiring less set-up time, and use less material than flanged zippers, enabling a substantial reduction in the cost of manufacture and processing.
U.S. patent application Ser. No. 10/367,450 discloses a reclosable bag in which respective marginal portions of the bag film are sealed to the backs of respective flangeless zipper strips and in which the resulting string zipper is actuated by means of a slider.
There is a continuing need for new designs of wicketed reclosable bags that can be manufactured at low cost.
The present invention is directed to a reclosable bag having a bottom flap with holes configured to allow a stack of bags to be mounted on a wicket, a slider-actuated string zipper installed in a mouth at the top of the bag and a string zipper, not actuated by a slider, installed at the bottom of the bag. The invention is further directed to a method of manufacturing such bags. The string zipper at the bottom of the bag is not intended to be opened once it has been closed.
One aspect of the invention is a reclosable bag comprising: a receptacle comprising first and second walls joined at their sides, the first and second walls comprising respective upper marginal portions that form a mouth at a top of the receptacle and respective lower portions at a bottom of the receptacle; a first string zipper comprising a first pair of mutually interlockable zipper parts respectively joined to the upper marginal portions of the first and second walls; a second string zipper comprising a second pair of mutually interlockable zipper parts respectively joined to the lower portions of the first and second walls, the zipper parts of the second pair being interlocked with each other; a slider mounted on the first string zipper for opening and closing the first string zipper; and a flap extending downward from the bottom of the receptacle.
Another aspect of the invention is a method of manufacturing a reclosable bag, comprising the following steps: (a) folding a web of bag making film so that a first portion of the web on one side of the fold has an extension portion that extends beyond an edge of a second portion of the folded web; (b) joining the backs of first and second flangeless zipper strips to one of the first and second web portions before or after the folding step; (c) joining the backs of third and fourth flangeless zipper strips to the other of the first and second web portions before or after the folding step, the first and third zipper strips being mutually confronting to form a first string zipper, and the second and fourth zipper strips being mutually confronting to form a second string zipper that is further away from the folded edge of the web than the first string zipper is; (d) cutting respective portions of the first and second web portions adjacent the first string zipper to remove the folded edge of the web; and (e) inserting a slider on the first string zipper.
A further aspect of the invention is a method of manufacturing a reclosable bag, comprising the following steps: (a) folding a web of bag making film so that a first portion of the web on one side of the fold has an extension portion that extends beyond an edge of a second portion of the folded web; (b) joining the back of a first flangeless zipper strip to the second web portion in a zone proximal to where the fold will or has been formed; (c) joining the back of a second flangeless zipper strip to the first web portion in a zone that will confront the first flangeless zipper strip when the web is in the folded state; (d) joining the back of a third flangeless zipper strip to the second web portion in a zone proximal to the edge of the second web portion; (e) joining the back of a fourth flangeless zipper strip to the first web portion in a zone that will confront the third flangeless zipper strip when the web is in the folded state; (f) cutting respective portions of the first and second web portions adjacent the first and second flangeless zipper strips to remove the folded edge of the web; and (g) inserting a slider on the first and second flangeless zipper strips.
Yet another aspect of the invention is a reclosable bag comprising: a receptacle having a top and a bottom; a first string zipper attached to the top of the receptacle for providing access to an interior volume of the receptacle; a second string zipper attached to the bottom of the receptacle; a slider mounted on the first string zipper for opening and closing the first string zipper; and a flap extending downward from the bottom of the receptacle, the flap comprising a discontinuity and a line of weakened tear resistance that traverses an area disposed between the second string zipper and the discontinuity.
A further aspect of the invention is a method of manufacturing a reclosable bag, comprising the following steps: (a) arranging film material to form opposing walls and a flap connected to one of the walls; (b) joining a first portion of the film material to a back of a first flangeless zipper strip before or after the arranging step; (c) joining a second portion of the film material to a back of a second flangeless zipper strip before or after the arranging step; (d) joining a third portion of the film material to a back of a third flangeless zipper strip before or after the arranging step; (e) joining a fourth portion of the film material to a back of a fourth flangeless zipper strip before or after the arranging step; (f) aligning the first and second flangeless zipper strips with each other; (g) aligning the third and fourth flangeless zipper strips with each other; (h) after steps (b), (c) and (f) have been performed, mounting a slider onto the aligned first and second flangeless zipper strips, with the first portion of the film material being disposed between a first side wall of the slider and a back of the first flangeless zipper strip, and the second portion of the film material being disposed between a second side wall of the slider and a back of the second flangeless zipper strip; and (i) joining fifth and sixth portions of the film material to each other and joining seventh and eighth portions of the film material to each other for forming a receptacle in concert with the first and second opposing walls and the first and second string zippers, the flap being connected to the receptacle.
Other aspects of the invention are disclosed and claimed below.
Reference will now be made to the drawings in which similar elements in different drawings bear the same reference numerals.
A reclosable bag in accordance with one embodiment of the invention is shown in
The bag depicted in
Bags of the type depicted in
Alternatively, the bags can be sealed to each other by ultrasonic pins during the process of forming holes for dispensing posts.
As seen in
The string zipper 106 is not intended to be reclosable and thus is designed to not open during normal usage of the reclosable bag. Although string zipper 106 has a construction similar to that of string zipper 4, string zipper 106 has smaller dimensions and is made of low-slip material. In particular, zipper strip 8′ comprises a base and two generally arrow-shaped rib-like male closure elements or members projecting from the base, while zipper strip 6′ comprises two pairs of hook-shaped gripper jaws connected by a sealing bridge. The male profiles respectively interlock with the female profiles to maintain the closure of string zipper 106. In the disclosed embodiment, the profile of each male member has a stem flanked by shoulders or teeth that converge at the tip of the profile. Each female profile comprises a pair of gripper jaws extending from a base or root of the female profile. Each jaw comprises a wall and a hook integrally formed at the distal end of the respective wall. The hooks are inclined and generally directed toward each other, the distal ends of the hooks defining a mouth that communicates with a groove defined by the walls and root of the female profile. Each pair of jaws receives and interlocks with a respective male member, as seen in
The plastic material used in the extrusion of the zipper strips 6′ and 8′ is selected or treated to provide low-slip surfaces. Because the string zipper 106 is intended to remain closed during usage, no opening mechanism, such as a slider or pull flaps, is provided. The bag making film is attached to the backs of the zipper strips 6′ and 8′, so that no peeling action is generated by the internal forces exerted when the bag is filled with product. After the bag making film has been joined to the backs of the zipper strips of string zipper 106, the ends of the zipper strips are fused together by the application of ultrasonic wave energy.
Referring to
The string zipper 4 is shown on a larger scale in
Still referring to
The end face of upper edge 30 of the base 14 that carries the male closure elements 20 and 28 is inclined at about a 45° angle to facilitate loading of the slider onto the zipper from above without snagging on a corner of the upper edge. The bottom edge of the base 14 cooperates with a retaining ledge on the slider (to be described later) to increase the slider pull-off resistance. For the same purpose, a rib 26 is formed on zipper part 6, the rib 26 cooperating with a retaining ledge on the other side of the slider.
To open the closed zipper, the zipper parts 6 and 8 are pushed apart with sufficient force by the slider plow (item 42 in
Numerous configurations for the interlockable male and female members are known in the art. The present invention is not limited to use with male members having an arrow-shaped head. Male members having expanded heads with other shapes may be used. For example, instead of an expanded head having a pointed tip, the front face of the expanded head may be rounded. In other words, the head could have a semicircular profile instead of a triangular profile. Alternatively, the expanded head of the male member could have a trapezoidal profile. In addition, although
Nor is the invention limited to having two female profiles on one zipper strip and two male profiles on the other zipper strip. In the first place, the string zipper could have one complementary set of male and female profiles, or it could have more than two complementary sets of male and female profiles. Furthermore, in the case of two complementary sets of male and female profiles, one zipper part could have one male profile and one female profile, while the other zipper part has one female profile and one male profile. Other variations should be apparent to persons skilled in the art of reclosable packaging.
Referring again to
In the slider-zipper assembly shown in
The slider 10 shown in
The slider 10 also comprises a plow or divider 42 that depends downward from a central portion of the top wall 32 to an elevation below the lowermost portions of each side wall. The plow partitions the tunnel inside the slider and is disposed between opposing sections of the zipper strips that pass through the tunnel. The tip of the plow 42 is truncated and has rounded edges and flattened corners at opposing ends for facilitating insertion of the plow between the zipper profiles without snagging.
The plow 42 comprises a beam having a cross-sectional shape that is a rectangle with rounded corners. The axis of the beam is generally perpendicular to the top wall of the slider. As the slider is moved in the opening direction (i.e., with the closing end leading), the plow 42 pries the impinging sections of zipper strips 6 and 8 apart. The plow 42 divides the opening end of the slider tunnel into respective passages for the separated zipper strips to pass through.
As partly seen in
The ledges 38 and 40 further comprise respective inclined bottom surfaces 50 and 52 that extend downward and outward from the respective inner edges of the generally horizontal surfaces. The inclined surfaces 50 and 52 are each substantially planar, with the respective planes of these inclined surfaces intersecting at a line inside the tunnel that is generally parallel to the longitudinal axis of the slider. The inclined surfaces 50 and 52 serve to guide the respective zipper strips 6 and 8 into the slider tunnel during insertion of the slider onto the zipper. The sliders are typically inserted at spaced intervals onto a zipper-film assembly that is being intermittently advanced in a machine direction by automated slider insertion equipment.
The generally horizontal surfaces of the retaining ledges latch under the zipper profiles and assist in retaining the slider on the zipper, while the inclined bottom surfaces of the retaining ledges assist in slider insertion onto the zipper by guiding or funneling the respective zipper parts into the slider passageway, including the passages on opposing sides of the plow.
The slider may be made in multiple parts and welded together or the parts may be constructed to be snapped together. The slider may also be of one-piece construction. The slider can be made using any desired method, such as injection molding. The slider can be molded from any suitable plastic, such as nylon, polypropylene, polystyrene, acetal, polyketone, polybutylene terephthalate, high-density polyethylene, polycarbonate, or ABS. To reduce the cost of manufacture, the slider may be designed to reduce the amount of material used and to increase the speed with which such sliders can be injection molded. Suitable injection-molded slider designs are fully disclosed in U.S. patent application Ser. No. 10/412,438.
Reclosable packages of the type depicted in
The operations performed continuously during continuous advancement include: folding a web of film so that one side of the web extends beyond the edge of other (short) side of the web, the extending portion being hereinafter referred to as the “flap”; introducing one string zipper at an angle and sealing it to the two sides of the web a short distance from the fold; introducing another string zipper at an angle and sealing it to the two sides of the folded web proximal to the edge of the short side of the folded web; trimming the folded edge of film at a point proximal to the nearest string zipper; and forming a line of perforations in the flap (i.e., the extended portion of the long side of the folded web) at a point beyond the edge of the short side of the folded web.
The operations performed intermittently during dwell times include: inserting sliders on the string zipper adjacent to which the folded edge of the film was trimmed; forming slider end stops at spaced intervals on that same string zipper; presealing the other string zipper at spaced intervals; forming pairs of holes in the flap at spaced intervals; and cutting the zipper-film assembly with a hot knife that both seals and severs to form separate packages. Other operations are performed during intermittent advancement of the zipper-film assembly. For example, during each intermittent advancement, the zipper is pried open by a stationary separator assembly at a point upstream of the slider insertion zone. In addition, downstream of the slider insertion zone, a previously inserted slider is held stationary while the zipper-film assembly moves relative thereto, such relative movement of the slider closing a corresponding section of the upper string zipper. The transition from continuous advancement of the film to intermittent advancement of the film is accomplished by a conventional dancer assembly. The foregoing operations will now be described in more detail with reference to
At the same time, a pair of closed string zippers 70 and 72, each comprising a respective pair of mutually interlocked flangeless zipper strips, are unwound from a respective reel (not shown), fed continuously at an angle and guided into respective positions between the opposing sides of the folded web 60. The zipper 72 is placed proximal to the fold 76, while the zipper 70 is placed adjacent the edge 73 of the web. At a zipper sealing station, opposing portions of the web are joined to the backs of the mutually interlocked zipper strips of string zipper 70 by a pair of mutually opposing conventional heated sealing bars 75 (only one of which is visible in
The zipper sealing station is conventional apparatus. As the folded web 60 with closed string zipper 72 advances continuously between the opposing sets of sealing bars 74, the respective zipper strips have their backs sealed to the opposing portions of the bag making film, thereby continuously attaching incoming sections of the moving string zipper to adjoining sections of the moving web. The sealing is accomplished by electrically heating the sealing bars 74, the heat being conducted through respective endless barrier strips (not shown) made of Teflon or similar material, which circulate on respective sets of rollers (not shown). Each Teflon barrier strips passes between a respective side of the folded web and a respective sealing bar In the gaps between the opposing sealing bars, the web and string zipper are sandwiched between and held together by the Teflon barrier strips, which move with the web and zipper and prevent the bag making film from sticking against the stationary heated sealing bars during conduction heat sealing. The Teflon barrier strips and intervening web and zipper pass through the nips of a series of guide rollers (not shown). The apparatus that seals zipper 70 to the opposing sides of the web may have the same construction.
Immediately downstream from the zipper sealing stations, the folded edge of the web 60 above the zipper 72 is cut by a pair of stationary knives 78 (only one of which is visible in
Again referring to
The trimmed and perforated zipper-film assembly then wends its way through a conventional dancer assembly (not shown in either
Referring to
Upstream of the slider insertion zone, a separator assembly 80 disengages the strips of string zipper 72 while the zipper-film assembly is advanced one package length. The separator assembly 80 comprises a central splitter plate separated by gaps from upper and lower guides disposed above and below the splitter plate. Only the upper guide 82 of the separator assembly is visible in
In the slider insertion zone, a pusher assembly 81 comprises a pusher 88 that pushes a slider 10 onto the zipper 72. The pusher 88 is extended by actuation of an air cylinder 90. When the pusher 88 is retracted, the next slider must be automatically fed to a pre-insertion position directly in front of the pusher. This is accomplished by a conventional pneumatic slider feeding system (not shown).
The upper and lower guides of the separator assembly 80 further comprise respective blades that extend in cantilevered fashion into the slider insertion zone, as taught in U.S. patent application Ser. No. 10/436,433 entitled “Method and Apparatus for Inserting Sliders During Automated Manufacture of Reclosable Bags”. These blades are disposed to brace the respective zipper strips against deflection as the slider 10 is pushed onto the zipper.
Downstream of the slider insertion zone, the zipper is clamped by a clamping assembly 83 comprising a retractable separator plate 84 that is interposed between the strips of an open section of the zipper 72. The clamping assembly 83 further comprises upper and lower zipper clamps that clamp the zipper strips against the extended separator plate 84. Only the upper zipper clamp 86 is visible in
Thus, the upper and lower guides of the separator assembly 80, and the upper and lower clamps of the clamping assembly 83 serve to stabilize the zipper during slider insertion. The interposition of the splitter plate (not shown) and the separator plate 84 between the zipper strips upstream and downstream, respectively, of the slider insertion zone means that the zipper is maintained in an open state, with a gap between the zipper strips, in the zone where the slider is inserted. The zipper strips are held in respective positions such that the slider plow 42 (see
During the same dwell time that a slider is being inserted, a slider end stop structure 67 is being formed on the zipper at an ultrasonic stomping station downstream from the slider insertion device. This slider end stop structure 67 will be bisected later during cutting by a hot knife 100 to form two slider end stops 66 (see
While the slider end stops 67 are being formed on the string zipper 72, the string zipper 70 is being pre-sealed at package length intervals by another ultrasonic stomping assembly comprising a horn 61 and an anvil (not shown in
During each dwell time, other ultrasonic apparatus forms a pair of holes 116 in that portion (i.e., flap 112) of the long side of the web that extends beyond the edge of the short side of the web. For example, a pair of ultrasonic horns 62 and 62′ are designed to form respective pairs of circular holes 116 in each package length section of the flap 112. The anvils that cooperate with horns 62 and 62′ are not shown in
After each dwell time, the zipper-film assembly is advanced. During each intermittent advancement, a slider stopper assembly 87 restrains a slider 10 so that a respective section of zipper is closed. The slider stopper assembly 87 comprises a stopper element 96 coupled to an air cylinder 98. The stopper element 96 is movable from a retracted position to an extended position by actuation of the air cylinder 98. The stopper element 96 is in its extended position when the advancement of the zipper-film assembly begins. In this extended position, the stopper element 96 interferes with the slider and blocks it from advancing with the zipper. This causes a displacement of the slider relative to the zipper in a zipper closing direction, thereby closing a section of zipper. Before the advancement of one package length is completed, the stopper element 96 is retracted, which allows the slider to advance past the retracted stopper element.
In addition, during each dwell time, a hot cutting knife 100 (which may comprise a solitary blade or a pair of opposed blades) cuts and forms side seals in the film on both sides of the cut, thereby severing a bag (not shown in
A stack of wicketed slider bags can be used to package produce, deli meats, or other products. Because the bottom of the bag is open, the packer can simply lift the top layer of the bag bottom, insert the product and then close the bottom of the bag by pressing the zipper strips of the string zipper 70 closed.
In accordance with an alternative embodiment of the automated production line disclosed above, the web of film material and the string zippers could be moved intermittently through the section depicted in
A reclosable bag having the structure depicted in
Instead of starting with a single web that is folded, one could begin with two webs that will be sealed on two sides with respective string zippers being attached at opposing ends of each receptacle. The use of two webs would again entail the three variations, for each string zipper, of: (1) placing the string zipper between the webs and sealing the sides of the zipper to the respective webs; (2) sealing one side of the string zipper to one web, placing the other web in opposing relationship, and then sealing the other side of the string zipper to the other web; and (3) sealing one flangeless zipper strip to one web, sealing the other flangeless zipper strip to the other web, and then interlocking the zipper strips while attached to the respective webs.
The invention does not require that the slider have a plow or separating finger. The slider-zipper assembly could be designed so that the side walls of a straddling slider cam or push the zipper open, without the aid of a plow or separating finger, when the slider is moved in an opening direction.
While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for members thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
As used in the claims, the verb “joined” means fused, bonded, sealed, adhered, etc., whether by application of heat and/or pressure, application of ultrasonic energy, application of a layer of adhesive material or bonding agent, interposition of an adhesive or bonding strip, etc. As used in the claims, the term “string zipper” means a zipper comprising two interlockable closure strips that have substantially no flange portions.
This application is a continuation-in-part and claims priority from U.S. patent application Ser. No. 10/367,450 filed on Feb. 14, 2003, now U.S. Pat. No. 6,951,421 and entitled “Reclosable Packaging Having Slider-Operated String Zipper”.
Number | Name | Date | Kind |
---|---|---|---|
3808649 | Ausnit | May 1974 | A |
4791710 | Nocek et al. | Dec 1988 | A |
4923701 | Van Erden | May 1990 | A |
4947525 | Van Erden | Aug 1990 | A |
5566429 | Martinez et al. | Oct 1996 | A |
5682730 | Dobreski | Nov 1997 | A |
5794315 | Crabtree et al. | Aug 1998 | A |
5851071 | Arnell | Dec 1998 | A |
5931581 | Garberg et al. | Aug 1999 | A |
6138329 | Johnson | Oct 2000 | A |
6213641 | Price | Apr 2001 | B1 |
6536951 | Sill | Mar 2003 | B1 |
20040136618 | Ausnit et al. | Jul 2004 | A1 |
20040161170 | Linton et al. | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20040161171 A1 | Aug 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10367450 | Feb 2003 | US |
Child | 10602784 | US |