Not applicable.
The present invention relates to an improved reclosable storage bag made from polymeric film. Particularly, the present invention relates to a bag with a closure mechanism of interlocking profiles that is adapted for high speed and cost effective manufacturing.
Thermoplastic films are used in a variety of applications. For example, thermoplastic films are used in sheet form for applications such as drop cloths, vapor barriers, and protective covers. Thermoplastic films can also be converted into plastic bags, which may be used in a myriad of applications. The present invention is particularly useful for reclosable bags constructed from thermoplastic film.
Polymeric bags are ubiquitous in modern society and are available in countless combinations of varying capacities, thicknesses, dimensions, and colors. The bags are available for numerous applications including typical consumer applications such as long-term storage, food storage, shopping, and trash collection. Like many other consumer products, increased demand and new technology have driven innovations in polymeric bags improving the utility and performance of such bags. The present invention is an innovation of particular relevance to reclosable storage bags of polymeric film.
Polymeric bags are manufactured from polymeric film produced using one of several manufacturing techniques well known in the art. The two most common methods for manufacture of polymeric films are blown-film extrusion and cast-film extrusion. In blown-film extrusion, the resulting film is tubular while cast-film extrusion produces a generally planar film. The present invention is generally applicable to bags manufactured from a blown-film extrusion process resulting in tubular film stock and cast film which results in monolayer film stock.
In blown film extrusion, polymeric resin is fed into an extruder where an extrusion screw pushes the resin through the extruder. The extrusion screw compresses the resin, heating the resin into a molten state under high pressure. The molten, pressurized resin is fed through a blown film extrusion die having an annular opening. As the molten material is pushed into and through the extrusion die, a polymeric film tube emerges from the outlet of the extrusion die.
The polymeric film tube is blown or expanded to a larger diameter by providing a volume of air within the interior of the polymeric film tube. The combination of the volume of air and the polymeric film tube is commonly referred to as a bubble between the extrusion die and a set of nip rollers. As the polymeric film tube cools travelling upward toward the nip rollers, the polymeric film tube solidifies from a molten state to a solid state after it expands to its final diameter and thickness. Once the polymeric film tube is completely solidified, it passes through the set of nip rollers and is collapsed into a collapsed polymeric tube, also referred to as a collapsed bubble.
Cast film is extruded from a flat die into a flat web or sheet. Typically, the film is extruded onto a chilled roller to facilitate quick cooling of the film for improved throughput.
Reclosable plastic bags are available in a variety of different sizes and configurations. Most commonly, reclosable plastic bags have one or more pairs of opposing, interlocking closures near the top opening of the reclosable bag. The closure may generally be opened and closed many times and are typically designed to ensure that the contents of the reclosable plastic bag are securely contained within the bag when the opposing closures, or interlocking profiles, are mutually engaged.
The closures of reclosable bags can be opened and closed in a number of different ways. For example, a slider or zipper device can be incorporated into the bag design to facilitate the engagement and disengagement of the opposing closures. However, many reclosable bags have closures that are designed to be opened by physically pulling the closures apart. The present invention provides an improved system and method of manufacturing a reclosable bag with pull-apart closures, commonly referred to as press to close reclosable bags. The assembly of closure elements for press to close bags is typically referred to as a zipper even though an actual sliding zipper is not employed.
U.S. Pat. No. 3,565,147 (the '147 patent) discloses a plastic bag having male and female resealable interlocking elements integrally incorporated for selectively opening and closing the top of the bag. Since the '147 patent discloses forming the interlocking elements integrally with the bag film material, the formation of the bag takes an undesirably long time to form due to the additional cooling time required of the fasteners to prevent deformation of the fastening elements.
It is further known that interlocking elements, also referred to as zipper elements, may be formed separately from the bag material and then sealed onto the bag material. However, this bag manufacturing technique requires the use of non-continuous motion which leads to an undesirably slow rate of manufacture. It also known to place the zipper elements on to the bag material in a molten state as the bag film material is formed. However, the speed of this bag manufacturing technique is limited to the rate at which the molten zipper may be properly formed.
In consideration of the shortcomings of the above discussed prior art, it would be desirable to provide a system and method for manufacturing a reclosable bag that may be formed with a continuous process. It would further be desirable to provide such a bag that takes advantage of high-speed manufacturing processes utilizing blown-film roll stock. The present invention represents a novel solution to address these needs.
According to one embodiment of the present invention, a bag is formed from a continuous web of polymeric film by a first bag converting process. A multi-layer continuous web of polymeric film with opposing first and second folded edges may be supplied to the converting process. The continuous web may comprise a lower layer extending from the first to the second edge, a first upper flap above the lower layer extending from the first edge towards a longitudinal central axis of the continuous web, and a second upper flap above the lower layer extending from the second edge towards the longitudinal central axis. A length of the continuous web may extend lengthwise in a machine direction. In at least one embodiment of the present invention, the bag converting process may fold a web of material accordingly to arrive at the above-described configuration of the continuous web.
Once the multi-layer web is provided as described above, a zipper material that extends in the machine direction may be provided to the converting process. The zipper material may comprise upper and lower mutually interlocking sections and upper and lower mounting surfaces. An adhesive may be applied to each mounting surface of the zipper material. The lower mounting surface of the zipper material may be affixed to an inner surface of the lower layer of the continuous web and the upper mounting surface of the zipper material may be affixed to inner surfaces of the first and second flaps of the continuous web by the adhesive. Once the zipper material is affixed to the continuous web, the continuous web may be slit in the machine direction into a first web half and a second web half along the central axis of the continuous web in the machine direction. A plurality of side seals may then be formed in each web half by a burn through seal operation. Each side seal may seal the first and second flaps to the lower layer of the continuous web and the burn through seals may further sever the polymeric film of the continuous web to form a plurality of individual bags.
In certain embodiments of the present invention, a gap may be defined between a distal edge of the first flap and a distal edge of the second flap. The gap may be formed by removal of a center strip from an upper layer of the web of polymeric film. The lower mounting surface of the zipper material may be affixed to the inner surface within the gap between the distal edge of the first and second flaps. Furthermore, the zipper material may be slit in conjunction with the continuous web such that it separates apart first and second sections of the zipper material. The distal edge of the first flap may be moved towards the first folded edge and the distal edge of the second flap may be moved towards the second folded edge prior to affixing the zipper material to the continuous web. The distal edge of the first and second flaps may also be moved back towards each other once the zipper material is affixed to the continuous web.
In at least certain embodiments, the upper zipper section may be comprised of first and second zipper sections. Each upper zipper section may have a separate base with a separate mounting surface. The lower zipper section may comprise first and second lower sections. The first and second lower zipper sections may share a common base with a single mounting surface. The mounting surface of the first upper zipper section may be mounted to the first flap and the mounting surface of the second upper section may be mounted to the second flap. Each of the zipper sections may further comprise an interlocking profile opposite from its base. Additionally, the plurality of side seals may be formed by a rotary sealing drum comprising a plurality of sealing bars.
In a further embodiment of the present invention, a bag is formed from a tube of polymeric film by a second bag converting process. In the bag converting process the tube of polymeric film may be collapsed to form a collapsed tube. The collapsed tube may have upper and lower layers, opposing first and second folded edges, and a machine direction. A center strip may be removed from the upper layer of the collapsed tube with a length of the center strip extending in the machine direction. The removal of the center strip may then form first and second flaps in the upper layer of the collapsed tube. A distal edge of the first and second flaps may then be moved away from each other and towards the first and second folded edges to expose a central inner surface of the lower layer of the collapsed tube.
Once the central inner surface of the lower layer of the collapsed tube is exposed, zipper stock comprising first and second upper and first and second lower sections may be supplied to the collapsed tube. Each section of the zipper stock may comprise a mounting surface and an adhesive may be applied to each mounting surface. The mounting surface of the first and second lower zipper sections may be affixed to the collapsed tube by the adhesive. The distal edge of the first and second flaps may be folded or moved back towards each other and thereafter the mounting surface of the first upper zipper sections may be affixed to an inner surface of the first flap by the adhesive. The mounting surface of the second front upper section may also be affixed to an inner surface of the second flap by the adhesive. Once the zipper stock is affixed to the collapsed tube, the collapsed tube may be slit into a first collapsed tube half and a second collapsed tube half. A plurality of burn through side seals may be formed in each collapsed tube half by a rotary drum severing the polymeric film of the collapsed tube at each side seal to form a plurality of individual bags.
In at least one embodiment, pressure may be applied to the zipper stock and the collapsed tube by a set of rollers to ensure adequate adhesion between the two once the zipper stock is placed on the collapsed tube. Additionally, the mounting surface of the lower zipper section may be affixed to the collapsed tube at a central inner surface of the collapsed tube. The mounting surface of the first upper zipper section may be affixed to the inner surface of the first flap proximate to a distal edge of the first flap and the mounting surface of the second front upper zipper section may be affixed to the inner surface of the second flap proximate to a distal edge of the second flap. The lower zipper sections may share a common base with a single mounting surface. The first lower zipper section may be interlocked with the first front zipper section and the second rear zipper section may be interlocked with the second front zipper section. Furthermore, each side seal formed on each collapsed tube half may be generally perpendicular to the machine direction. The rotary drum may feed the individual bags to a belt material handler and the belt material handler may feed the individual bags onto an indexing table. The first upper and lower zipper sections may be separated from the second upper and lower zipper sections when slitting the collapsed tube into a first collapsed tube half and a second collapsed tube half.
In an alternative embodiment of the present invention a reclosable bag may be formed from a web of polymeric film. Front and rear panels of the reclosable bag may be joined at a first side and a second side by opposing first and second side seals and at a folded bottom edge. The reclosable bag may be selectively closable at a top end opposite from the bottom edge by a zipper. The zipper may comprise a lower section and an upper section. The lower section may be affixed to an inner surface of the rear panel by a first layer of adhesive and the upper section may be affixed to an inner surface of the front panel by a second layer of adhesive.
In certain embodiments, the front and rear panels may be formed from upper and lower layers of a collapsed tube of polymeric film. Furthermore, the bottom edge of the reclosable bag may comprise a section of a folded edge of the collapsed tube. The top end of the reclosable bag may comprise a center section of the collapsed tube with the collapsed tube slit generally along a centerline in a machine direction of the collapsed tube. Additionally, the lower and upper sections of the zipper may be adapted to be pulled apart to open the bag and pressed together to close the bag.
It is contemplated that the present invention may be utilized in ways that are not fully described or set forth herein. The present invention is intended to encompass these additional uses to the extent such uses are not contradicted by the appended claims. Therefore, the present invention should be given the broadest reasonable interpretation in view of the present disclosure, the accompanying figures, and the appended claims.
A full and complete understanding of the present invention may be obtained by reference to the detailed description of the present invention and the preferred embodiments when viewed with reference to the accompanying drawings. The drawings can be briefly described as follows.
1, 2a2 and 2b-2f provide cross-sectional views of a continuous web as the web is formed into a plurality of reclosable bags according to the methods of
The present disclosure illustrates one or more preferred embodiments of the present invention. It is not intended to provide an illustration or encompass all embodiments contemplated by the present invention. In view of the disclosure of the present invention contained herein, a person having ordinary skill in the art will recognize that innumerable modifications and insubstantial changes may be incorporated or otherwise included within the present invention without diverging from the spirit of the invention. Therefore, it is understood that the present invention is not limited to those embodiments disclosed herein. The appended claims are intended to more fully and accurately encompass the invention to the fullest extent possible, but it is fully appreciated that certain limitations on the use of particular terms is not intended to conclusively limit the scope of protection.
The extrusion process begins by molten polymeric resin being extruded through a die to form a web of molten polymeric film. The direction that the film is extruded out of the die is commonly referred to as the machine direction. The direction of extrusion may also be referred to as the lengthwise direction of the web. Hence, the length of the web extends parallel with the machine direction. The direction transverse to the machine direction is commonly referred to as the cross direction.
The polymeric resin used in the extrusion process may vary. However, for forming polymeric bags, a polyethylene resin is commonly used. In the current state of the art for polymeric bags, a blend of various polyethylene polymers may be used. A polymer blend can have linear low-density polyethylene (LLDPE) as the primary component, but other polymers may be utilized including, but not limited to, other polyethylene resins such as high-density polyethylene (HDPE) or low-density polyethylene (LDPE). Other than polyethylene and other related polymers, additives may also be included with the polymeric resin, such as coloring additives, anti-blocking agents, and/or odor control additives.
As shown in
As further shown in
Illustrated in
Rather than roll stock 102 comprising a collapsed tube of polymeric film as discussed above, in an alternative embodiment, roll stock 102 can be comprised of a single layer of a continuous web of polymeric film 107 as shown in the cross-sectional view of
Once flaps 106h and 106i are moved towards the position shown in
As further shown in
As further shown in
Once the adhesive is applied to the mounting surfaces of the zipper stock 114, the zipper stock 114 may be placed on to web 106 with the mounting surface of lower common base 114ab2 placed into contact with an inner surface of the lower layer 106b of web 106, as shown in the cross-sectional view of
As additionally shown in
Once the upper zipper sections 114c and 114d are affixed to web 106, web 106 can be slit along its central axis so that it is split into a first and second web halves 106l and 106m as shown in
Once the web 106 is split into halves 106l and 106m, the two halves may enter side-sealing operation 130 as further shown in
As further illustrated in
As further shown in
Shown in
Now turning to
As previously noted, the specific embodiments depicted herein are not intended to limit the scope of the present invention. Indeed, it is contemplated that any number of different embodiments may be utilized without diverging from the spirit of the invention. Therefore, the appended claims are intended to more fully encompass the full scope of the present invention.