Not applicable
Not applicable
Not applicable
1. Field of the Invention
The present invention relates to a reclosable pouch and a closure mechanism therefor.
2. Description of the Background of the Invention
A reclosable pouch for storage of items typically includes a closure mechanism disposed at, or adjacent to, a mouth of the pouch. Frequently, the closure mechanism for a reclosable pouch includes an extruded male closure element disposed on one sidewall of the reclosable pouch that interlocks with a complementary extruded female closure element disposed on an opposite sidewall of the reclosable pouch. In many cases, the male closure element has an elongate solid core arrow-shaped male closure profile, and the female closure element has an elongate solid core channel-shaped female closure profile.
In other cases, a portion of the male or closure profile has a hollow portion. For example, one elongate extruded male closure profile has a hollow circular head portion disposed on a solid shaft portion. Another elongate extruded hollow male closure profile has a hollow circular or trapezoidal interlocking portion that is disposed directly on a backing member. Yet another male closure assembly includes an array of non-elongate arrow-shaped male closure elements, each of which has a barbed head portion disposed on a hollow cylindrical shaft portion.
One closure mechanism includes a first non-extruded elongate arrow-shaped closure profile that fits interlockingly within a hollow core of a second non-extruded larger elongate hollow arrow-shaped closure profile. Both the first and second closure profiles have an opening into a base of a hollow shaft portion and a hollow head portion. The first closure profile extends into the opening in the base of the second closure profile and nests within the hollow shaft and head thereof. Each closure profile has a multi-layer portion of a sidewall that is formed by either folding and overlapping a portion of a pouch sidewall or laminating a separate strip onto a pouch sidewall and then crimping or stamping the multi-layer portion into the arrow shape.
Yet another type of closure mechanism includes elongate interlocking tongue and groove profile strips that can be clamped together on opposite sides of a bag or pouch to seal the sidewalls of the bag or pouch therebetween. Such tongue and groove profile strips may be secured to or separate from an outer surface of each sidewall of the bag or pouch. In one example, the tongue profile strip has a hollow bulbous tongue portion that snap-fits into the groove profile strip.
Other non-interlocking portions of a closure element also may have a hollow profile. For example, some closure elements have elongate hollow circular bumper ridge or seal bead profiles disposed adjacent to a male and/or female closure profile. Other closure elements include an elongate hollow circular bumper ridge disposed inside an elongate channel-shaped female closure profile.
Grip ridges may also be disposed on a sidewall of a reclosable pouch adjacent to the closure profiles to provide increased traction for a user trying to open and/or close the closure profiles. The grip ridges are often disposed on a surface of a backing member or the sidewall of the reclosable pouch such that a cross-sectional profile of the pouch is thicker at the grip ridge, including a thickness of both the grip ridge and the backing member, than at an adjacent portion of the pouch including a thickness of only the backing member.
In accordance with one aspect of the present invention, a reclosable pouch includes opposing first and second sidewalls defining a mouth of the pouch, a first closure element disposed along the first sidewall adjacent the mouth and having a first elongate male interlocking profile, and a second closure element disposed along the second sidewall opposite the first closure element and having second and third elongate male interlocking profiles. Each male interlocking profile includes a male interlocking member disposed on a hollow shaft. The second and third male interlocking profiles further define an elongate female interlocking profile therebetween such that the first male profile releasably interlocks into the female interlocking profile.
In accordance with another aspect of the present invention, a closure strip includes a plurality of spaced male closure elements. Each male closure element has an elongate male interlocking profile including a male interlocking member disposed proximate an end of a shaft having a hollow core. A pair of adjacent male closure elements defines a substantially complementary elongate female closure element therebetween.
In accordance with yet another aspect of the present invention, an elongate closure profile includes a first male interlocking profile adjacent to a second male interlocking profile. Each male interlocking profile includes a first shaft wall spaced from a second shaft wall and a male interlocking member disposed across a distal end of the shaft walls. The first male interlocking profile and the second male interlocking profile define a female interlocking profile therebetween configured to interlockingly accept an opposing interlocking profile.
The present invention is directed toward apparatuses, methods, kits, and combinations for opening and/or closing a reclosable pouch. While the present invention may be embodied in many different forms, several specific embodiments are discussed herein with the understanding that the present disclosure is to be considered only as an exemplification of the invention and is not intended to limit the invention to the embodiments illustrated. For example, where the invention is illustrated herein with particular reference to a reclosable thermoplastic pouch, it will be understood that any other pouch, such as a bag (for example a paper, plastic, or foil bag, a handbag, a shopping bag, or a shoulder or duffle bag), a sack (for example, a carrier or courier sack), a purse, a pocketbook, a suitcase, or the like can, if desired, be substituted in whole or in part for the reclosable pouch in the apparatuses, methods, kits, and combinations herein described.
It has been discovered that the closure assemblies described herein are unique assemblies exhibiting improved performance as closure mechanisms. Such closure assemblies exhibit improved functioning as closure assembly mechanisms including, for example, improved opening and/or closing of a reclosable pouch, retaining the closure assembly in an open and/or closed position, and/or improved tactile feel to a user. The closure assemblies of the present invention also exhibit improved ease of use, and/or reduce or minimize an amount of material required to produce a closure assembly.
Turning now to
As seen in
A female closure element 22 has an elongate interlocking profile substantially complementary to the profile of the male closure element 20 and includes a channel 39 defined by a pair of opposed channel walls or sides 40 that are hollow, a bottom wall 42, and a female interlocking members, such as pair of in-turned hooks or barbs 44, for interlocking engagement with the barbs 38 of the male closure element 20. Each channel side 40 further includes an interior or inner wall 46 spaced from an exterior or outer wall 48 and a bottom flange 50 extending laterally outwardly from a base end of the outer wall. The inner wall 46 and the outer wall 48 converge together at or near a distal end of the profile and are spaced from each other at the pouch sidewall end of the profile so that the inner wall 46 is independently attached to the pouch sidewall 12 at a predetermined distance from the outer wall 48. The bottom wall 42 and each flange 50 are substantially coplanar and are attached to the pouch sidewall 12. The inner wall 46, outer wall 48, and pouch sidewall 12 define a hollow core 52 inside each channel side 40. The hollow core 52 in one embodiment may extend an entire elongate length of the female closure element 22, or the hollow core may be interrupted by sections of material at intermediate locations between ends of the female closure element. In another embodiment (not shown), a channel 39 may have any number of walls to define any number of shapes and/or configurations so long as the channel can be configured to interlock and/or engage a male interlocking member. Illustratively, the channel 39 may be bowl-shaped, U-shaped, V-shaped, W-shaped, and/or concave shaped, and combinations thereof.
The profile of the male closure element 20 is received within the profile of the female closure element 22 with the barbs 38 interlockingly engaging the hooks 44 to seal or close the pouch sidewalls 12, 14 together at a mouth 16. A user may alternatingly engage and disengage the male closure element 20 and the female closure element 22 by pressing the closure elements together as shown in
In
In
In
In
The hollow core male and female closure elements 20 and 22, and the various embodiments disclosed herein, may cause such closure elements to have a wider and softer tactile sensation to a user than similarly sized solid core closure elements. The hollow core male and female closure elements 20 and 22 also generally require less material than similarly sized solid core closure elements and can be extruded at higher rates of speed than similarly sized solid core closure elements.
Turning now to
The pleated grip ridge profiles 106 are formed in flanges 120 extending laterally outwardly from each opposite end of the male/female profile set 102. Each grip ridge profile 106 has an asymmetrical saw tooth shape including a first portion 122 disposed substantially orthogonally to the flange 120 and a second portion 124 that is angled toward the closure element. The asymmetrical saw tooth shape of the grip ridge profile 106 provides more aggressive gripping traction directed away from the male/female profile set 102 than in the opposite direction in order to provide additional gripping traction when opening the interlocking profiles 104. However, any other ridge profile shape having a first portion and a second portion angularly disposed from the first portion could be used, such as rectangular shapes, wave shapes, circular shapes, and/or polygonal shapes, and combinations thereof (not shown). A hook 126 disposed along an outer end of each set of grip ridge profiles 106 is angled toward the interlocking profiles 104 to provide additional gripping structure and to make it easier for a user to isolate the edge of the closure strip 100 when trying to open interlocked closure strips 100. In some embodiments, all sections of the closure strip profile may have substantially the same thickness, or in other embodiments some sections of the closure strip profile may be thicker than other sections for structural and/or aesthetic reasons.
In one embodiment, the closure strip 100 is an extruded polymeric material having a symmetrical overall profile for ease of manufacture and to prevent unbalanced shrinking or necking of the closure strip during extrusion. The entire closure strip 100 may be applied directly to a pouch sidewall (not shown). Alternatively, the closure strip 100 may be prepared for application to a pouch sidewall 130 by trimming one set of ridges 106a off of the closure strip as indicated by dashed lines in
In one embodiment shown in
Turning now to
Each closure strip 222 includes a plurality of elongate hollow-back interlocking male closure profiles 224 regularly spaced in parallel relation to each other and to the mouth edge 220. Although three male closure profiles 224 are shown in
Each pair of adjacent male closure profiles 224 further defines an elongate female closure profile 238 therebetween. Each female closure profile 238 defines a channel having sidewalls defined by adjacent shaft walls 226 and transition walls 228 of the adjacent male closure profiles 224, the interconnecting wall 232 therebetween, and a barb wall portion 240 of the head wall 230. The female closure profile 238 is sized and configured to interlockingly accept the head portion of an opposing male profile 224 as best shown in
Each closure strip 222 further includes an elongate flange 242 extending laterally from an outer transition wall 228 on an end male closure profile 224 and an elongate flange 244 extending laterally from an outer transition wall on an opposite end male closure profile. The flange 242 is disposed on one of the pouch sidewalls 212 or 214 such that the head portions of the male closure profiles 224 point toward the interior side of the pouch sidewall 212 or 214. The flange 242 may be attached to either the interior side or an exterior side of the pouch sidewalls 212, 214. Alternatively, the flange 242 may be formed integrally with the pouch sidewalls 212 or 214 (not shown). Each flange 244 may include at least one elongate grip rib 246 formed therein to facilitate gripping of the closure strip 222 by a user when opening and/or closing the reclosable pouch 210. The grip ribs 246 may have, for example, a saw tooth shaped profile as shown in
The closure strip 222 on the pouch sidewall 212 is laterally offset from the closure strip on the on the pouch sidewall 214 such that a male closure profile 224 on one closure element is directly opposite a female closure profile 238 on the opposite closure element as shown in
The closure strip 222 may be extruded, for example, by any sufficient extrusion technique known to those skilled in the art from any suitable thermoplastic material for providing a resealable or interlocking closure element. Other manufacturing techniques or materials that would form a suitable closure element 220 may also be used as described herein. In one embodiment, the closure strip 222 is extruded having an interlocking profile that is a single layer. In another embodiment, the closure strip 222 may be extruded having an interlocking profile that has two or more layers, and the layers may be the same or different materials.
The entire closure strip 222 is both elastically and resiliently deformable in a spring- or accordion-like manner in a lateral direction because the male closure profiles 224 have hollow cores 234 and openings 236. As a result, the closure strip 222 may feel softer to the user and provide a wider finger contact area in comparison to closure strip of a similar size having non-hollow back profiles. This resilient lateral deformability also helps facilitate pressing the male closure profiles 224 into the female closure profiles 238. The closure strip 222 also provides a relatively thin cross sectional area of material that may provide advantages for higher speed processing during production and may require less material than a closure strip having solid closure profiles of similar size.
Referring now to
A base member 266 may be secured and/or separately extruded on to, for example, a like polymer to an inside surface 262 of each pouch sidewall 212 and 214 in an offset opposing relation such that the male closure profiles 224 on one closure mechanism 260 are opposite the female closure profiles 238 on the opposing closure mechanism. Such offset relation allows the reclosable pouch 210 to be sealed or closed along the mouth 216 by the opposing closure mechanisms 260 without undue distortion and/or wrinkling of the pouch sidewalls 212, 214 as shown in
Grip traction enhancers, such as elongate grip ridges 268, are located on the interior surface 262 of each pouch sidewall 212, 214 between a mouth edge 220 thereof and each closure mechanism 260. The grip ridges 268 provide enhanced traction for a user to grip the pouch sidewalls 212, 214 when opening and/or closing the reclosable pouch 210. Other traction enhancing formations, such as, for example, the grip ridges shown in
Turning now to
The male profile 300 may be attached directly to a reclosable pouch sidewall or the male profile may be attached to an intermediate base strip (not shown) to form a closure strip for subsequent application to a reclosable pouch sidewall. In one embodiment, the male profile 300 having a hollow shaft core 318 may tend to provide a higher opening force to closing force ratio than a similarly sized solid core male profile when interlocked with a complimentary female profile because the shaft walls 304 and 306 can flex inwardly as the female interlocking closure element is urged over the head wall 308 and hooks 314, 316. For example, in one embodiment, the male profile 300 was extruded from a polymer material to have a final dimension of 0.123 inches wide by 72 mils thick, which resulted in a 0.36 pound closing force, an 8 pound external opening force, and a 10 pound internal opening force.
Illustratively, any of the closure elements disclosed herein may be extruded as a single layer or in multiple layers by any convenient extrusion process known to those skilled in the art, and, for example, from a thermoplastic material similar to that used for a pouch wall, or any other extrudable material suitable for forming an closure element having and elongate profile. The closure elements could also be formed in single or multiple layers by other suitable processes, such as by hand forming, molding, carving, etching, folding and crimping, aggregation, or accumulation of other materials, such as, for example, wax, rubber, metal, cloth, polymeric material, plastic, and/or any other suitable flexible material, and combinations thereof. For example, and referring now to
The intermediate male profile 300a includes two laterally spaced base wall portions 302a and 302b that form a gap 360 between adjacent ends 362a, 362b of the base wall portions. The gap 360 in one embodiment is a size so that the die swell of the extrudate causes the ends 362a and 362b to fuse together shortly after exiting the extrudate aperture 352, thereby forming the enclosed hollow shaft core 318 and the seam 312 of the male profile 300 shown in
In one embodiment, the die plate 350 is configured to provide for a wall thickness of the base wall portions 302a and 302b of between about 0.1 inches and about 2 inches, or between about 0.2 inches and 1 inch, or about 0.55 inches. The die plate 350 is also configured to provide for a gap 360 between about 0.001 inches and about 1 inches, or between about 0.005 inches and about 0.5 inches, or about 0.015 inches. The die plate 350 is also configured to provide for an overall width of the base wall portions and the gap between about 0.2 inches and about 3 inches, or between about 0.5 inches and about 1.5 inches, or about 0.72 inches. The die plate 350 is also configured to provide for a total height of the profile 300a between about 0.1 inches and about 1.5 inches, or between about 0.2 inches and about 0.75 inches, or about 0.335 inches. The die plate 350 is also configured to provide for wall thickness of the shaft walls 304 and 306 between about 0.01 inches and 0.5 inches, or about between about 0.03 inches and about 0.1 inches, or about 0.0459 inches thick. The die plate 350 is also configured to provide for an initial minimum space between the shaft walls between about 0.01 inches and about 0.5 inches, or between about 0.1 inches and about 0.2 inches, or about 0.13 inches. The die plate 350 is also configured to provide for a wall thickness of the head wall 308 between about 0.01 inches and 0.3 inches thick, or between about 0.03 inches and about 0.1 inches, or about 0.045 inches thick along a centerline thereof. The die plate 350 is also configured to provide for both α and β between about 0° and 30°, or between about 5° and 15°, or about 10° immediately upon exiting the extrudate aperture 352. Alternatively, the angles α and/or β may be larger or smaller to form final shaft walls that are bowed outwardly or inwardly, and other dimensions may be used to form differently configured closures. The intermediate male profile 300a is then drawn and cooled after being extruded to form the male profile 300 shown in
In other embodiments of the present invention a closure mechanism for a reclosable pouch is provided where the closure mechanism has at least one elongate male closure profile and at least one elongate female closure profile. The elongate male closure profile in one embodiment includes at least one hollow core shaft and at least one male interlocking member disposed on the shaft. In yet another embodiment the female closure profile includes at least one hollow core channel wall and at least one female interlocking member. Illustratively, a closure mechanism includes at least one elongate male closure profile with at least one hollow core shaft and at least one elongate female closure profile with solid channel walls. Alternatively, a closure mechanism includes at least one elongate female closure profile with at least one hollow core channel wall and at least one elongate male closure profile with solid walls.
In other embodiments, at least one male interlocking member is configured to engage and interlock with at least one female interlocking member; and/or at least one female interlocking member is configured to engage and interlock with at least one male interlocking members.
A male closure profile of the present invention may also have at least one ridge having an enclosed hollow core disposed adjacent to a shaft of the male closure profile.
A closure mechanism of the present invention may also include a male closure profile that is disposed on one sidewall of a reclosable pouch, and on the opposite side of the reclosable pouch a female closure profile is disposed on the other sidewall of the reclosable pouch. The male interlocking member and the female interlocking member may be independently configured to engage and/or interlock each other. The male and/or female closure profile may be secured to the sidewall and/or separately extruded on to the sidewall.
In yet another embodiment, a closure mechanism has at least one base member attached to at least one side of the male closure profile opposite the male interlocking member and defines at least one hollow core shaft. Alternately, the closure mechanism has at least one base member attached to at least one side of the female closure profile opposite the female interlocking member and defines at least one hollow core cannel wall.
A female interlocking member of the present invention may have at least one hook or barb extending from at least one wall of a hollow core channel wall, and may be configured to engage and/or interlock with a male interlocking member including, for example, engaging and/or interlocking at least one male hook or barb of the male interlocking member. In yet another embodiment, the female interlocking member has two female barbs that may or may not be spaced apart extending from the hollow core channel wall. The hooks or bards may be independently configured to independently engage and/or interlock with a male interlocking member including, for example, engaging and/or interlocking at least one male hook or barb of the male interlocking member.
A male interlocking member of the present invention may also have at least one hook or barb extending from at least one hollow core shaft of the male interlocking member, and is configured to engage and/or interlock with a female interlocking member including, for example, engaging and/or interlocking at least one female hook or barb of the female interlocking member.
Illustratively, a closure mechanism of the present invention may include a male interlocking member having a first male barb and a second male barb; and a female interlocking member having a first female barb and a second female barb. The first male barb and second male barb may be independently configured to independently interlock and/or engage the first female barb and/or the second female barb; and the first female barb and second female barb may be independently configured to independently interlock and/or engage the first male barb and/or the second male barb. In a fully interlocked configuration, at least one of the male barbs and at least one of the female bars are interlocked and engaged.
In another embodiment, a closure mechanism has a male interlocking member and/or a female interlocking member that has at least one wall having at least one pleat. The pleats may, for example, assist in improving the interaction and/or engagement of the male and female interlocking members, and/or may improve the seal of the closure mechanism when the male and female interlocking members are engaged in an interlocking position.
In other embodiments of the present invention, an elongate male closure profile is provided having at least one shaft that has a first shaft wall laterally spaced from a second shaft wall, a hollow core disposed between the first shaft wall and the second shaft wall, a base end, and a distal end opposite the base end; and at least one male interlocking member proximate the distal end of the shaft. In one embodiment, the shaft walls converge proximate the distal end.
In another embodiment, a male closure profile has at least one ridge having a hollow core laterally adjacent a base end of a shaft and a flange extended laterally outwardly from the ridge opposite the shaft. The ridge may include a first ridge wall extended angularly upwardly from the base end of a shaft wall and a second ridge wall extended angularly downwardly from an end of the first ridge wall opposite the base end of the shaft wall.
A male closure profile of the present invention may also have at least one backing member disposed across a base end of a first shaft wall and a second shaft wall defining an enclosed hollow core between the first shaft wall and the second shaft wall.
In yet other embodiments of the present invention, an elongate female closure profile is provided having a channel member that has at least one interior wall defining an interior of the channel and a female interlocking member; and at least one exterior wall laterally spaced from the interior wall. At least one of the interior walls and at least one of the exterior walls may also define a hollow core therebetween. The channel member may have any number of walls to define any number of shapes and/or configurations so long as the channel can be configured to interlock and/or engage an interlocking member, for example, a male interlocking member. Illustratively, the channel may be bowl-shaped, U-shaped, V-shaped, W-shaped, and/or concave shaped, and combinations thereof.
In yet other embodiments, a female closure profile has an interior wall and an exterior wall that meet or converge proximate a distal end thereof.
In still other embodiments, a female closure may also have a flange extending laterally from a base end of an exterior wall.
In another embodiment, a female closure profile has an interior wall having a first interior channel wall, a second interior channel wall, and a base interior channel wall extending laterally from a base end of the first interior channel wall to a base end of the second interior channel wall.
A female closure profile in one embodiment provides a female interlocking member having at least one female barb extending into a channel from an interior wall near the distal end thereof. In one embodiment, the female interlocking member has at least two female barbs extending into the channel from the interior wall between a distal end of the interior wall and a base end of the interior wall opposite the distal end.
In yet another embodiment, a female closure profile has at least one backing member disposed across an interior wall and an exterior wall opposite the distal end of where the interior wall and exterior wall converge.
A female interlocking member of the present invention may have a female closure element configured to interlock and/or engage a complementary male interlocking member. In yet another embodiment, a male interlocking member of a male closure element is configured to engage a complementary female interlocking member.
In embodiments with multiple male closure profiles and/or multiple elongate male closure profiles with multiple shafts and/or male interlocking members, each shaft and male interlocking member may be independently shaped and/or configured.
In embodiments with multiple elongate female closure profiles and/or multiple elongate female closure profiles with multiple channel members and/or exterior walls the shape and/or configuration of each channel and/or exterior wall can be independently shaped and/or configured.
A male or female hook or barb useful in the present invention can be of any shape and/or size as long as it can be configured to engage and/or interlock with a corresponding male, or female interlocking member on a closure mechanism by, for example, catching another hook or barb of the corresponding male or female interlocking member. Additionally, single or multiple hooks or barbs can be used on a male or female interlocking member. Illustratively, a hook or barb can be a protrusion; a bump; a convex shape; a sharp point projecting in reverse direction to a main axis, such as an arrow; a curved or sharply bent point; and/or a projection that is not necessarily sharp or pointed, but has an acute or obtuse end, such as a square, rectangle, blunt or rounded tip. Combinations of hooks and barbs can be used in the present invention.
The reclosable pouches, closure elements, and/or associated structures and profiles of the present invention may be extruded as a single layer or as two or more layers, and different portions may be single or multiple layers. Different layers may be the same or different materials. For example, different layers may be co-extruded and bonded at the same time, or the different layers may be individually extruded and bonded at different times.
The hollow portion of either the hollow core shaft or the hollow core channel may also include material to provide additional structural support to the male or female closure profile. Illustratively, the material may be a foam, such as, for example, a polymer, and/or a foamable resin. A polymer useful in the present invention includes, for example, an alkylene aromatic polymer, a rubber-modified alkylene aromatic polymer, a hydrogenated alkylene aromatic polymer and copolymers, an alpha-olefin homopolymer, a linear low density polyethylene, a copolymer of ethylene with a copolymerizable, a mono-ethylenically unsaturated monomer; a copolymer of propylene with a copolymerizable, a mono-ethylenically unsaturated monomer; a copolymer of ethylene with an alkane, and a thermoplastic polyurethanes, thermoplastic elastomers (TPE's), and combinations thereof. Other material useful in the present invention to provide structural support includes the material described in U.S. Pat. No. 6,844,055. Still other material useful in the present invention to provide structural support includes the material described in U.S. Pat. No. 3,723,586. Yet other material useful in the present invention to provide structural support includes the material described in U.S. Pat. No. 4,824,720. Other material useful in the present invention to provide structural support includes the material described in U.S. Pat. No. 6,844,055. Techniques useful in preparing a foamable composition include those described in U.S. Pat. No. 5,817,705. Other techniques useful in preparing a foamable composition include those described in U.S. Pat. No. 4,323,528. Combinations of the above materials to provide additional structural support may also be used in the present invention. Other additives, such as, for example, a stabilizer, a filler, and/or a reinforcing material; a blowing agent; a nucleating agent; an extrusion aid; an antioxidant; a flame retardant; a colorant; and/or a pigment; and combinations thereof, may also be incorporated into the materials to provide structural support.
Reclosable pouches, closure strips, closure elements, closure profiles, and/or grip ridges useful in the present invention can be made by various techniques known to those skilled in the art including those described in, for example, Geiger, et al., U.S. Pat. No. 4,755,248. Other useful techniques to make reclosable pouches, closure strips, closure elements, closure profiles, and/or grip ridges of the present invention include those described in, for example, Zieke et al., U.S. Pat. No. 4,741,789. Other useful techniques to make reclosable pouches, closure strips, closure elements, closure profiles, and/or grip ridges of the present invention include those described in, for example, Porchia et al., U.S. Pat. No. 5,012,561. Another technique for making reclosable pouches, closure strips, closure elements, closure profiles, and/or grip ridges of the present invention include those described in, for example, Pawloski et al., U.S. Patent Application Publication No. 2003/0236158. The reclosable pouches, closure strips, closure elements, closure profiles, and/or grip ridges of the present invention may also be made by the process disclosed in Forman U.S. Pat. No. 5,944,425. Additional examples of making a reclosable pouch, closure strips, closure elements, and/or grip ridges as described herein include, for example, a cast post-applied process, a cast integral process, a hybrid of the cast post-applied and cast integral processes, a water bath extrusion process for extruding the closure mechanisms combined with post application of the closure mechanisms to a reclosable pouch sidewall film using lamination techniques in conjunction with a hot knife sealer process, and/or a blown process.
Illustratively, a reclosable pouch wall of the present invention can be made of any flexible material suitable for packaging a sample, article, and/or substance, including, for example, any suitable thermoplastic film. A flexible material useful in the present invention includes, for example, polyethylene (for example, low density polyethylene, and linear low density polyethylene), substantially linear copolymers of ethylene and a C3-C8 alpha-olefin, polypropylene, polyvinylidene chloride, polyvinyl chloride, vinyl, and/or other polymers, in single or multiple layer, and combinations thereof. Additionally, the reclosable pouch wall can be constructed of any flexible material including, for example, paper and/or metal, including, for example, aluminum foil or sheets. The flexible material may be transparent or semi-transparent (to permit viewing of the sample, article, and/or substance in the reclosable pouch), translucent, lucent, clear, and/or opaque, at least in part, depending on the application in which the reclosable pouch will be utilized.
Two or more surfaces described herein may be attached together in a permanent or non-permanent manner by any fastening, securing, and/or joining techniques known to those skilled in the art. Examples include mechanically, chemically, and/or heat fastening, securing, and/or joining together two or more surfaces of a metal, a plastic, a polymer, a glass, a rubber, a paper, and/or a ceramic, and combinations thereof. A chemical agent useful in the present invention to fasten, secure, and/or join two or more surfaces includes, for example, an adhesion promoter, a binding agent (for example, a cyanoacrylate adhesive, or an epoxy putty), a bonding agent (for example, a hot melt adhesive), a crosslinking agent, a curing agent (for example, a UV light curing adhesive), a fixative agent, a sticking agent, and/or a vulcanizing agent, and combinations thereof. Exemplary chemical agents useful in the present invention include those described in, for example, The Handbook of Industrial Chemical Additives—2nd Edition, Gower Publishing Limited (Mar. 28, 1998). Additional examples of chemical agents useful in the present invention include those described in the Merck Index, Thirteenth Edition, John Wiley & Sons, 13th edition (October 2001). Heat fastening, securing, and/or joining techniques useful in the present invention include, for example, ultrasound, heat or sonic staking, and/or laser welding or joining techniques. Mechanical techniques useful in the present invention, include, for example, the use of tabs, protrusions, clamps, fasteners, ties, fastening strips (for example, Velcro®), adhesive tape (for example, two sided tape), rivets, soldering, brazing, and/or welding, and combinations thereof. Alternatively, a surface of polymer, for example, may be extruded directly on to another surface (for example, a like polymer) capable of binding to the polymer. Combinations of the above fastening, securing, and/or joining techniques and agents can be used in the present invention.
The present invention provides apparatuses, methods, kits, and combinations useful for opening and/or closing a reclosable pouch. For example, the reclosable pouches, closure strips, closure elements, grip ridges, and profiles disclosed herein may have specific applicability for use on reclosable thermoplastic pouches, such as the pouches frequently used by consumers to store food and other items. The reclosable pouches, closure strips, closure elements, grip ridges, and profiles disclosed herein may also be used on other container and fastener applications and/or for other uses. A benefit of the hollow and pleated profiles disclosed herein is that they generally require less material to make; have a softer and wider tactile feel to a consumer; are easier to engage and seal because, for example, the overall amount of material may be uniform throughout the profile; can be structurally taller and at the same time use less material than similar solid or semi-solid profiles; require less cooling during manufacture compared to solid profiles, allowing, for example, higher production speeds while reducing energy costs; and have increased lateral deformability or stretchiness than similarly sized solid profiles. The reclosable pouches, closure strips, closure elements, grip ridges, and profiles disclosed herein may also be readily adapted for use with a slider closure mechanism.
The invention has been described in an illustrative manner, and it is to be understood that the terminology used is intended to be in the nature of description rather than of limitation. All patents and other references cited herein are incorporated by reference in their entirety. Many modifications, equivalents, and variations of the present invention are possible in light of the above teachings, therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
2499898 | Anderson | Mar 1950 | A |
2715759 | Poux | Aug 1955 | A |
2791807 | Morin | May 1957 | A |
2886085 | Sanger | May 1959 | A |
2994117 | McMullin | Aug 1961 | A |
3325084 | Ausnit | Jun 1967 | A |
3338285 | Jaster | Aug 1967 | A |
3343233 | Gould | Sep 1967 | A |
3462332 | Goto | Aug 1969 | A |
3557413 | Engle | Jan 1971 | A |
3608439 | Ausnit | Sep 1971 | A |
3679511 | Ausnit | Jul 1972 | A |
3679531 | Wienand et al. | Jul 1972 | A |
3808648 | Billarant et al. | May 1974 | A |
4187068 | Vassar | Feb 1980 | A |
4212337 | Kamp | Jul 1980 | A |
4256685 | Vassar | Mar 1981 | A |
4419159 | Herrington | Dec 1983 | A |
4430070 | Ausnit | Feb 1984 | A |
4484352 | Katzin | Nov 1984 | A |
4522678 | Zieke | Jun 1985 | A |
4540537 | Kamp | Sep 1985 | A |
4603434 | Herrington | Jul 1986 | A |
4665557 | Kamp | May 1987 | A |
4701358 | Behr et al. | Oct 1987 | A |
4755248 | Geiger et al. | Jul 1988 | A |
4787880 | Ausnit | Nov 1988 | A |
4812056 | Zieke | Mar 1989 | A |
4829641 | Williams | May 1989 | A |
4929225 | Ausnit et al. | May 1990 | A |
4929487 | Tilman et al. | May 1990 | A |
5088162 | Allan | Feb 1992 | A |
5088164 | Wilson et al. | Feb 1992 | A |
5097570 | Gershenson | Mar 1992 | A |
5113555 | Wilson et al. | May 1992 | A |
5172980 | Provost | Dec 1992 | A |
5179767 | Allan | Jan 1993 | A |
5189765 | Singhal | Mar 1993 | A |
5209574 | Tilman | May 1993 | A |
5211481 | Tilman | May 1993 | A |
5216787 | Custer et al. | Jun 1993 | A |
5219588 | England et al. | Jun 1993 | A |
5242646 | Torigoe et al. | Sep 1993 | A |
5259904 | Ausnit | Nov 1993 | A |
5293672 | Tominaga et al. | Mar 1994 | A |
5343659 | Zaleski | Sep 1994 | A |
5369847 | Naya et al. | Dec 1994 | A |
5371925 | Sawatsky | Dec 1994 | A |
5384942 | Siegel | Jan 1995 | A |
5403094 | Tomic | Apr 1995 | A |
5480030 | Sweeny et al. | Jan 1996 | A |
5509734 | Ausnit | Apr 1996 | A |
5527112 | Dais et al. | Jun 1996 | A |
5614232 | Torigoe et al. | Mar 1997 | A |
5747126 | Van Erden et al. | May 1998 | A |
5797170 | Akeno | Aug 1998 | A |
5890810 | Barlow | Apr 1999 | A |
5933927 | Miller et al. | Aug 1999 | A |
5944425 | Forman | Aug 1999 | A |
5988492 | Capy et al. | Nov 1999 | A |
6080252 | Plourde | Jun 2000 | A |
6082897 | Galomb | Jul 2000 | A |
6138329 | Johnson | Oct 2000 | A |
6154934 | Matthews | Dec 2000 | A |
6167597 | Malin | Jan 2001 | B1 |
6185796 | Ausnit | Feb 2001 | B1 |
6217215 | Tomic | Apr 2001 | B1 |
6299353 | Piechocki et al. | Oct 2001 | B1 |
6367976 | Bannister | Apr 2002 | B1 |
6371644 | Forman | Apr 2002 | B1 |
6519918 | Forman et al. | Feb 2003 | B2 |
6789946 | Plourde et al. | Sep 2004 | B2 |
20020168118 | Price | Nov 2002 | A1 |
20030219174 | Piechocki | Nov 2003 | A1 |
20040001650 | Piechocki et al. | Jan 2004 | A1 |
20040013323 | Withers | Jan 2004 | A1 |
20040052434 | Bell | Mar 2004 | A1 |
20040058103 | Anderson et al. | Mar 2004 | A1 |
20040066988 | Yi Li | Apr 2004 | A1 |
20040136618 | Ausnit et al. | Jul 2004 | A1 |
20040252915 | Nelson | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
U 2-15437 | Jan 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20060171609 A1 | Aug 2006 | US |