This invention generally relates to flexible containers, such as pouches, bags or other packages, having a reclosable plastic zipper. In particular, the invention relates to reclosable bags, pouches or other packages for containing vacuum, pressure or liquid.
To ensure hermeticity or airtightness, packagers have typically sealed their flexible containers to an extent that they are not reclosable after the seal is broken. Many flexible containers that were reclosable typically did not retain the desired vacuum, pressure or liquid containment feature that existed prior to the container being opened for the first time.
In many different applications, it is desirable to provide a reclosable container that, under normal or expected conditions of usage, will not leak fluid when the zipper is reclosed. Such a container should maintain a leakproof condition even when there is a large differential in pressure between the interior and exterior of the container. As used herein, the term “leakproof” does not mean free of leaks under all temperature/pressure conditions, but rather free of leaks over a range of temperatures and pressures expected to occur during normal usage of the reclosable container.
One use for hermetically resealable containers is in the field of food product packaging. After a package of food has been opened and a portion of the food product removed, the remaining food product can be stored by closing the reclosable feature and then evacuating the interior space of the package via a fixture that penetrates a package wall. It is highly desirable that such packages, containing perishable food product in a vacuum, be leakproof, i.e., hermetic. By preventing exposure to air, the life span of the perishable food product can be extended.
In other situations, it is desirable to provide a reclosable package capable of holding liquid without leaking during normal usage when the zipper is reclosed. Preferably such a package would be able to withstand a predetermined pressure differential (interior/exterior) without liquid leaking out of the package.
In accordance with another product application, a reclosable bag may be filled at ambient atmosphere instead of being evacuated. If such a bag were placed under extremely low pressure, e.g., while being air-lifted via a cargo plane having a depressurized cargo bay, then a large differential in pressure would exist between the interior and exterior of the bag. In this situation, the internal pressure may be about 15 psi, while the external pressure is negligible. It is desirable that the bag not develop a leak and that the zipper not pop open under such conditions.
Many existing form-fill-seal (FFS) machines operate on bag making film and do not incorporate equipment for attaching zipper assemblies to the bag making film. Although zipper application machines are available that can be coupled to the FFS machine to provide the zipper application function, operators of FFS machines who do not wish to purchase a zipper applicator require that bag making film with pre-attached zippers be available for purchase. This film can then be run through the FFS machine. Although the packager may need to modify his FFS machine to handle bag making film with pre-attached zippers, the major capital investment of a zipper application system can be avoided.
There is a need for improvements in the construction of hermetically resealable flexible containers that can withstand a large pressure differential (internal versus external) without leaking and that can be formed, filled and sealed without the FFS machine needing to perform any zipper application step.
Flexible containers that are hermetically resealable are disclosed herein. The disclosed resealable containers are of a type that comprises front and rear panels forming an interior volume that is accessible by means of a resealable plastic zipper attached to the front panel only. Each zipper comprises a pair of extruded plastic zipper strips. The zipper strips are flattened and joined to each other at the ends and are further joined to each other, without substantial deformation of the closure profiles, in respective transition areas substantially contiguous with the flattened ends. These transition areas of zipper strip joinder assist in providing a leakproof transition from the openable section of the zipper to where the closure profiles have been fused and flattened (i.e., crushed).
One aspect of the invention is a reclosable package comprising: a zipper comprising first and second zipper strips that have respective portions fused together in first and second zipper end seals, the first zipper strip comprising a length of a first closure profile having at least two projecting elements and first and second flanges extending in opposite directions and connected to the first closure profile, respective portions of the first and second flanges being flattened within the boundaries of the first and second zipper end seals, and the second zipper strip comprising a length of a second closure profile having at least one projecting element that fits between the at least two projecting elements of the first closure profile and a third flange connected to the second closure profile, respective portions of the third flange being flattened within the boundaries of the first and second zipper end seals, the first and second zipper end seals respectively comprising first and second substantially flat portions and first and second transition areas respectively connected to the first and second substantially flat portions on first, second and third sides, wherein along the first and third sides of each of the first and second transition areas, each of the two projecting elements of the first and second closure profiles that are furthest apart from each other is fused to some portion of the one of the first and second zipper strips of which the respective one of the furthest-apart projecting elements does not form a part; and wherein along a second side of and within each of the first and second transition areas, the first and second closure profiles are deformed and fused together but not flattened, the respective ends of the fused material along the second side being integrally connected to the fused material of the first and third sides, respectively, the third flange being longer than the first flange and extending beyond the first and second zipper end seals in an elevational direction; and a receptacle comprising top and bottom seals, a first panel connected to and extending between the top and bottom seals, and a second panel connected to and extending between the top and bottom seals, the first and second panels bounding an interior volume of the receptacle, wherein each of the first through third flanges is joined to the first panel and not joined to the second panel.
Another aspect of the invention is a reclosable package comprising: a zipper comprising first and second zipper strips that have respective portions fused together in first and second zipper end seals, the first zipper strip comprising a length of a first closure profile and first and second flanges extending in opposite directions and connected to the first closure profile, respective portions of the first and second flanges being flattened within the boundaries of the first and second zipper end seals, and the second zipper strip comprising a length of a second closure profile interlockable with the first closure profile and a third flange connected to the second closure profile, respective portions of the third flange being flattened within the boundaries of the first and second zipper end seals, the first and second zipper end seals respectively comprising first and second transition areas disposed at opposite ends of the first and second closure profiles, and first and second substantially flat portions that respectively border the first and second transition areas on three sides thereof, the first transition area comprising first sections of the first and second closure profiles that have been deformed and at least partially fused together but not flattened, and the second transition area comprising second sections of the first and second closure profiles that have been deformed and at least partially fused together but not flattened, the third flange being longer than the first flange and extending beyond the first and second zipper end seals in an elevational direction; and a receptacle comprising top and bottom seals, a first panel connected to and extending between the top and bottom seals, and a second panel connected to and extending between the top and bottom seals, the first and second panels bounding an interior volume of the receptacle, wherein each of the first through third flanges is joined to the first panel and not joined to the second panel.
A further aspect of the invention is a reclosable package comprising: a zipper comprising first and second zipper strips that have respective portions fused together in first and second zipper end seals, the first zipper strip comprising a length of a first closure profile and first and second flanges extending in opposite directions and connected to the first closure profile, respective portions of the first and second flanges being flattened within the boundaries of the first and second zipper end seals, and the second zipper strip comprising a length of a second closure profile interlockable with the first closure profile and a third flange connected to the second closure profile, respective portions of the third flange being flattened within the boundaries of the first and second zipper end seals, the first and second zipper end seals respectively comprising first and second transition areas disposed and connected to opposite ends of the first and second closure profiles, and first and second substantially flat portions that respectively border the first and second transition areas on three sides thereof, the first transition area comprising first sections of the first and second closure profiles that have been deformed and at least partially fused together but not flattened, and the second transition area comprising second sections of the first and second closure profiles that have been deformed and at least partially fused together but not flattened, wherein third and fourth sections of the first and second closure profiles that are respectively adjacent the first and second sections form channels therebetween, the channels within the third section being either sealed at one end thereof by the first transition area or communicating with channels formed by the first section that are sealed except where they communicate with the channels formed by the third section, and the channels within the fourth section being either sealed at one end thereof by the second transition area or communicating with channels formed by the second section that are sealed except where they communicate with the channels formed by the fourth section, the third flange being longer than the first flange and extending beyond the first and second zipper end seals in an elevational direction; and a receptacle comprising top and bottom seals, a first panel connected to and extending between the top and bottom seals, and a second panel connected to and extending between the top and bottom seals, the first and second panels bounding an interior volume of the receptacle, wherein each of the first through third flanges is joined to the first panel and not joined to the second panel.
Yet another aspect of the invention is a method of manufacture comprising the following steps: (a) interlocking first and second zipper strips of a plastic zipper tape, the first zipper strip comprising a first closure profile and first and second flange extending from the first closure profile in opposite directions, the second zipper strip comprising a second closure profile and a third flange extending further from the second closure profile than the first flange extends from the first closure profile, the first and second closure profiles in combination comprising at least three projecting elements; (b) applying heat and pressure or ultrasonic vibrations and pressure in first and second zones of the interlocked zipper strips, each of the first and second zones extending from an elevation lower than the first and second closure profiles to an elevation higher than a top edge of the first flange, and having a predetermined dimension in first and second areas of overlap with the interlocked first and second closure profiles, whereby the first and second closure profiles are flattened in first and second sections having a length equal to the predetermined dimension, the midpoints of the first and second sections being separated by one zipper length, the first and third flanges are flattened at least in respective areas directly above the first and second sections of the first and second closure profiles, and the second flange is flattened at least in respective areas directly below the first and second sections of the first and second closure profiles; (c) before step (b) is performed, applying heat and pressure or ultrasonic vibrations and pressure in first and second transition regions having intermediate portions that will be respectively overlapped by the first and second zones in step (b), heat and pressure or ultrasonic vibrations and pressure being applied to an extent that upon completion of step (c), the projecting elements of the first and second closure profiles that are furthest apart from each other will become fused to respective portions of the other zipper strip in the first and second transition regions, and the first and second closure profiles will be heated but not flattened in the first and second transition regions, wherein upon completion of steps (b) and (c), the unflattened portions of the first and second closure profiles in the first transition region form first and second transition areas on opposite sides of a first flattened section of the first and second closure profiles, and the unflattened portions of the first and second closure profiles in the second transition region form third and fourth transition areas on opposite sides of a second flattened section of the first and second closure profiles; (d) after step (b) has been performed, applying pressure in the first and second transition regions to an extent that surface irregularities formed on the first through third flanges during step (b) are flattened without flattening the first through fourth transition areas; and (e) cutting the first and second zipper strips along first and second lines that respectively intersect the first and second zones to create an individual zipper.
Other aspects of the invention are disclosed and claimed below.
It should be appreciated that the elements depicted in the various drawings are not drawn to scale (except for
Reference will now be made to the drawings in which similar elements in different drawings bear the same reference numerals.
The present invention is directed to hermetically resealable pouches or bags having an interior volume bounded by front and rear panels, with a containment zipper attached to the front panel only. In accordance with the embodiments disclosed herein, the containment zipper has three flanges joined to the front panel only of the completed reclosable pouch or bag. The zipper strips are flattened and joined to each other at the ends and are further joined to each other, without substantial deformation of the closure profiles, in respective transition areas substantially contiguous with the flattened ends. These transition areas of zipper strip joinder assist in providing a leakproof transition from the openable section of the zipper to where the closure profiles have been fused and flattened (i.e., crushed).
With the ends of the zipper sealed using the techniques disclosed hereinafter, the bag or pouch with front panel containment zipper can be rendered suitable for containing vacuum, pressure or liquid without leaking, even after the bag or pouch has been opened and reclosed. By sealing the zipper to the front panel instead of to both panels, the zipper will be exposed to less stress under pressure. More specifically, by placing the zipper on the front panel, forces due to internal pressure will act perpendicularly to the zipper and all in one direction. With all the force acting on the zipper in one direction, resistance to opening will be maximized. The front panel design is also effective in transferring the stresses of the internal pressure to the film and away from the zipper. Higher internal pressures can be accommodated to the point where the package film fails before the zipper closure fails.
Further, in order to produce a reclosable pouch, bag or package that will contain vacuum, pressure and/or liquids, it was determined that there should be hard and intimate contact between the closure profiles when the zipper is closed. More specifically, it was determined that, in order to ensure that the zipper performs its containment function in an acceptable manner, the percentage of the area of intimate contact between closure profiles should lie within a predetermined range. As used herein, the term “intimate contact”, in the context of a close zipper, means those portions of the area at the interface of the interlocked closure profiles that do not show any clearance between the respective closure profile elements, such as hooked elements and posts or backup elements, which viewed under a microscope. The areas without clearance can be displayed by cutting the zipper with a razor blade and placing the cross section under magnification. A magnified image of the closure profiles (i.e., a so-called “shadowgraph”) is produced, and then the portions of the profiles that display intimate contact can be marked on the image.
The minimum and maximum intimate contact area may be expressed as percentage, whereby the area of lineal contact is divided by the total available lineal surface of one profile. It was determined that the minimum percentage of intimate contact area that would still enable the zipper to perform satisfactorily as a containment zipper was 33%, whereas the maximum percentage of intimate contact area that would still enable the zipper to open and reclose was 76%. It is believed that any zipper having an intimate contact area percentage in the range of 33 to 76% can be effectively placed in a reclosable package that will contain vacuum, pressure and/or liquid during normal usage. Once a containment zipper has been selected, the package designer must then select a proper film strength and film seal integrity for the specific application.
In addition, the respective closure profiles of the zipper should have the same shape and configuration of elements, so that thermoplastic zipper material is substantially symmetrically and evenly distributed across the interlocked profiles. This will facilitate the formation of zipper end stomps or joints having flat surfaces and constant thickness.
If the minimum design criteria for the closure profiles are met, the reclosable package will only be limited by the material strength of the package components, i.e., the web material, the web-to-web and web-to-zipper seals, and the zipper material.
Many different types of zippers are suitable for use as containment zippers. In accordance with various embodiments disclosed hereinafter, a containment zipper is incorporated into a pouch or bag in such a way that the pouch or bag is able to withstand a large pressure differential between the interior and the exterior of the pouch or bag without leaking or popping open. Alternatively, the pouch or bag is suitable for containing liquid without leaking or popping open under the expected conditions of normal usage.
A reclosable pouch or bag in accordance with one embodiment of the invention is schematically represented in cross section in
Still referring to
The structure of the containment zipper attached to front panel 2a is only schematically represented in
The zipper shown in
The three-flange zipper seen in
Before pouches or bags of the type shown in
In accordance with the embodiments disclosed herein, the zipper tape is subjected to heat and pressure and/or ultrasonic vibrations and pressure in so-called “transition regions” spaced along the zipper tape at regular intervals, one transition region per length of zipper tape equal to one zipper. A system for forming such transition regions on a zipper tape is schematically depicted in
As seen in
At station 90, a transition region on zipper tape 4′ is pressed between a first set of mutually opposing heated grooved bars (only one of which is visible in
Two heated grooved bars of the type shown in
The grooved bars at station 90 may be designed to apply heat and light pressure to the flanges in the transition region 110 (see
Such a state is depicted in
However, in the alternative, the transition areas may be formed in a manner such that the hooks of the monohook elements are fused together and there are no channels such as those depicted in
If necessary, the formation of transition areas may involve one or more operations performed by respective sets of heated grooved bars located at different stations in the machine. The temperatures and pressure at those stations may be varied as required. For example, the state of fusion depicted in
At the start of the next work cycle, the zipper tape 4′ is indexed forward until the same zipper section that was pressed at station 90 arrives at ultrasonic welding 92. Station 92 comprises an ultrasonic horn (seen in
Two bars of the type shown in
If further flattening of the flanges above and below the transition areas is not desired, a horn and an anvil having rectangular faces without grooves and having a width equal to the width of neck portion 104, seen in
Welding and sealing of thermoplastic material by ultrasonic vibrations is an established process. A typical ultrasonic welding apparatus in which a workpiece is fed through an ultrasonic weld station comprises an anvil and an oppositely disposed resonant horn. The frontal surface of the horn and the anvil are urged toward mutual engagement, for coupling the ultrasonic vibrations from the activated horn into the thermoplastic material of the workpiece, thereby effecting ultrasonic welding. The horn is energized from a power supply that provides electrical high-frequency power at a predetermined ultrasonic frequency to an electro-acoustic transducer, which, in turn, provides mechanical vibrations at that frequency to a booster or coupling horn for coupling these vibrations to the horn.
Alternatively, station 92 could employ heated bars having the same size and shape seen
At the start of the next work cycle, the zipper tape 4′ is again indexed forward until the same zipper section that was partially flattened at station 92 arrives at station 94, where it is pressed between a set of mutually opposing heated grooved bars (only one of which is visible in
Alternatively, the work done at stations 90 and 94 could be accomplished using ultrasonic vibrations instead of heated bars. Or, alternatively, the work done at station 92 could be accomplished using heated bars instead of ultrasonic vibrations.
In accordance with the preferred method of manufacture, the heated areas are then cooled by being placed in contact with surfaces of chilled or unheated bars. The zipper tape 4′ is again indexed forward until the same zipper section that was pressed at station 94 arrives at the cooling station 96, where it is pressed between a set of mutually opposing chilled or unheated grooved bars (only one of which is visible in
The transition area between crushed and non-crushed closure profiles needs to be correctly formed for containment applications. To successfully form a tight transition area, the zipper processing machine can be set up with grooved bars that are specially designed for the particular zipper being employed. Although
The result of the foregoing operations is seen in
During the zipper formation by the apparatus depicted in
The web with attached containment zippers can be fed directly to an FFS machine (vertical or horizontal) on site or, in the alternative, the web with attached containment zippers can be rolled up and transported for feeding into an FFS machine located at a different site.
In accordance with one embodiment of the invention, the web 2 of bag making film with zippers 4 attached at intervals therealong is fed to a VFFS machine 120 (shown in
A completed package having a containment zipper attached to the front panel only is shown in
While the invention has been described with reference to various embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation to the teachings of the invention without departing from the essential scope thereof. Therefore it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
As used in the claims, the term “joined” means fused, welded or heat sealed. As used in the claims, the term “package” means a bag, pouch or other flexible container. As used in the claims, the term “panel” includes, but is not limited to, a discrete piece of web material, a portion of a folded piece of web material or two portions of a folded piece of web material joined at a seam. Further, in the absence of explicit language in any method claim setting forth the order in which certain steps should be performed, the method claims should not be construed to require that steps be performed in the order in which they are recited.