The present invention relates generally to pipelined FFT processors. More particularly, the present invention relates to a single path delay feedback pipelined fast Fourier transform processor.
Fourier transforms are well understood mathematical operations used to obtain a frequency varying representation of a time varying signal. The inverse Fourier transform performs the opposite operation. Though the Fourier transform is a useful analytical tool for continuous functions, it cannot transform a discrete function, nor can it transform a sequence of samples, which is a more common occurrence in most applications. The discrete Fourier transform (DFT) fulfils this purpose.
The DFT is an important functional element in many digital signal-processing systems, including those that perform spectral analysis or correlation analysis. The purpose of the DFT is to compute the sequence of {X(k)} of N complex-valued numbers given another sequence of data {x(n)}of length N, as expressed by the formula
It can be observed from these formulas that for each value of k, a direct computation of X(k) involves N complex multiplications and N−1 complex additions. Thus, to compute all N values of the DFT would require N2 complex multiplications and N2−N complex additions. This general form solution can be decomposed using a divide-and-conquer based approach, to reduce the computational complexity associated with the DFT. Using the divide and conquer approach splits the data sequence into parts and processes each part separately. Each separate part can be further divided. This decomposition forms the basic fast Fourier transform (FFT) operation, where the most commonly used decimating factors are 2 or 4 (leading to the radix-2 or radix-4 FFT implementations of the DFT). In a divide-and-conquer approach the computation of the DFT is decomposed into nested DFTs of progressively shorter length until the DFT has been reduced to its radix. Twiddle factors, which effectively perform a phase rotation in the complex plane, are generated as the divide-and-conquer algorithm proceeds. For a radix-2 decomposition, a length-2 DFT is performed on the input data sequence {x(n)}. The results of the first stage of length-2 DFTs are combined using a length-2 DFT and then the resulting value is rotated in the complex plane by multiplication of the resulting value by the appropriate twiddle factors. This process continues until all N values have been processed and the final output sequence {X(k)} is generated. The decomposition of the input sequence into a series of smaller sequences can reduce the complexity associated from completing a DFT from a complexity of order N2 to order N log2N.
Many previous solutions have improved the throughput of an FFT processor while balancing the FFT latency against the area requirements of the FFT processor by using pipeline processor based architecture. In a pipeline processor architecture the primary concern is increasing throughput and decreasing latency while attempting to also minimize the area requirements of the processor architecture. A common pipeline FFT architecture achieves this by implementing a single length-2 DFT (using a radix-2 butterfly operation performed in a butterfly unit) for each stage in the DFT recombination calculation. It is also possible to implement less than or more than one butterfly unit per recombination stage, however, in a real-time digital system it is sufficient to match the computing speed of the FFT processor with the input data rate. If the data acquisition speed is one sample per cycle then it is sufficient to have a single butterfly unit per recombination stage.
A brief review of previous pipeline FFT architectures is herein provided in order to place the FFT processor in accordance with the invention into perspective. In this discussion, algorithms implementing the radix-2, radix-4, and more complex systems will be covered. Input and output order will be assumed to be in whatever form is most appropriate for the algorithm. If a different order is required then the appropriate reordering buffer can be provided at the input or output of the pipeline FFT for the cost of the memory associated with implementing the buffer. Systems that provide in-order input are most suitable for systems where data is arriving one sample at a time and can be processed immediately. Out-of-order input is most appropriate in buffered data where the data can be pulled from the buffer in any order. All of the architectures presented are based on the Decimation-In-Frequency (DIF) decomposition of the DFT. Input and output data is complex and all arithmetic operations are also complex. For the radix-2 algorithms a constraint that N is a power-of-2 applies. The radix-4 algorithm constrains N to powers-of-4 and the radix-8 algorithm (R23SDF) constrains N to powers-of-8. For clarity, all of the control and twiddle factor hardware requirements have been omitted.
In view of the above described prior art, it is apparent that it would be desirable for an FFT processor to be provided that reduces the complexity of the hardware required for implementation. It would be desirable to additionally provide an FFT processor that can be implemented in a reduced semiconductor area. It would be desirable to produce an FFT that can obtain this reduced hardware complexity and semiconductor area for any power-of-2 length FFT operation.
It is an object of the present invention to obviate or mitigate at least one disadvantage of previous pipelined FFT processors.
In a first aspect of the present invention there is provided a pipelined fast Fourier transform (FFT) processor for receiving an input sequence. The processor comprises at least one FFT triplet for receiving the input sequence and for outputting a final output sequence representing an FFT of the input sequence. The at least one FFT triplet has first, second and third butterfly modules that are connected in series by selectable multipliers. The selectable multipliers selectively perform trivial co-efficient multiplication and complex co-efficient multiplication on output sequences of adjacent butterfly modules. Each of the at least one FFT triplets terminates in a twiddle factor multiplier. The multiplier applies a twiddle factor to an output of the third butterfly module of its respective triplet.
In an embodiment of the first aspect of the present invention, each butterfly module includes a radix-2 butterfly unit and a feedback memory, where preferably for an input sequence of N samples, an output sequence X(k, n) of each butterfly module is equal to
In another embodiment of the present invention at least one of the selectable multipliers is integrated in an adjacent butterfly module. In another embodiment the selectable multipliers each include a multiplier and a switch for bypassing the multiplier. In a further embodiment, the first and second butterfly modules are connected by a selectable multiplier for selectively applying trivial co-efficient multiplication and the second and third butterfly modules are preferably connected by a selectable multiplier for performing trivial co-efficient multiplication and a selectable multiplier for performing complex co-efficient multiplication. In a further embodiment for an input sequence having N samples, the feedback memories for the first, second and third butterfly modules hold N2, N/4 and N/8 samples, respectively. In another embodiment the processor is for receiving an input sequence of length N, where (log2N)mod3=1, the processor has a plurality of FFT triplets in seriatim and further includes an FFT terminator having a butterfly unit and a corresponding memory sized to hold a single sample, the FFT terminator for receiving the output sequence from the final twiddle factor multiplier and for performing a butterfly operation on the received output sequence to render an FFT of the input sequence. In an alternate embodiment, the processor is for receiving an input sequence of length N, where (log2N)mod3=2, the processor has a plurality of FFT triplets in seriatim and further includes an FFT terminator having first and second butterfly units each butterfly unit having a corresponding memory sized to hold two samples and a single sample respectively, the first butterfly unit is connected to the second butterfly unit by a selective multiplier for selectively multiplying the output of the first butterfly unit by −j, the FFT terminator receives the output sequence from the final twiddle factor multiplier and performs a pair of butterfly operations on the received output sequence to render an FFT of the input sequence. In a further embodiment twiddle factor multiplier is a cordic rotator.
In a second embodiment of the present invention there is provided a pipelined FFT processor for receiving an input sequence of N samples. The processor comprises at least one FFT triplet. The at least one FFT triplet has a first FFT stage, a second FFT stage and a third FFT stage. The first FFT stage has a first stage radix-2 butterfly unit for receiving the input sequence and for providing a first stage output sequence in accordance with a butterfly operation performed on the input sequence, the first stage radix-2 butterfly unit has a first feedback memory connected thereto. The second FFT stage has a selectable multiplier for selectively multiplying the first stage output sequence by a trivial co-efficient, and a second stage radix-2 butterfly unit for providing a second stage output sequence in accordance with the butterfly operation performed on the output of the selectable multiplier, the second stage radix-2 butterfly unit has a second feedback memory connected thereto. The third FFT stage has a multiply selectable multiplier for selectively multiplying the second stage output sequence by at least one of the trivial co-efficient, and a complex co-efficient, a third stage radix-2 butterfly unit for providing a butterfly output in accordance with the butterfly operation performed on the output of the multiply selectable multiplier, the third stage radix-2 butterfly unit has a third feedback memory connected thereto, and a multiplier for multiplying the butterfly output by a twiddle factor, to provide an output sequence corresponding to an FFT of the input sequence.
In an embodiment of the second aspect of the present invention, each of the first, second and third stage output sequences X(k,n) is equal to
In another embodiment at least one of the butterfly units includes an integrated pre-multiplication function for applying a trivial co-efficient multiplication to a received input sequence. In a further embodiment the FFT processor includes an FFT terminator determined in accordance with the length N of the input sequence. In one embodiment, the FFT terminator includes a butterfly module having a memory sized to store a single sample, for receiving as a terminator input, the output of the third FFT stage multiplier and for performing a butterfly operation on the terminator input to render an FFT of the input sequence of N samples. In an alternate embodiment, the FFT terminator includes a first butterfly module having a memory sized to store a pair of samples, for receiving-as a terminator input, the output of the third stage multiplier and for performing a butterfly operation on the terminator input, and a second butterfly module connected to the first butterfly module of the terminator by a selectable multiplier, the selectable multiplier for selectively multiplying the output of the first butterfly module of the terminator by −j the second butterfly module having a memory sized to store a single sample and for performing a butterfly operation on the selectively multiplied output of the first butterfly module of the terminator to render an FFT of the output sequence.
In a third embodiment of the present invention, there is provided a method of performing an FFT on a sequence of N samples in an FFT processor having a butterfly module. The method comprises the steps of repeating the following steps of receiving and buffering, generating and selectively multliplying, for all integers 1≦x≦log2N. The step of receiving and buffering includes receiving and buffering
samples at a time from a sequence having N samples. The step of generating includes generating a 2-point FFT using the nth and
samples. The step of selectively multiplying includes selectively multiplying the generated 2-point FFT sequence by a complex valued multiplicand. Following the repetition of the above steps the method includes the step of terminating the FFT using a termination sequence determined in accordance with a (log2N)mod3 relationship.
In an embodiment of the third aspect of the present invention the complex valued multiplicand is selected from a list including
and a complex twiddle factor determined by the twiddle factor decomposition. In embodiments where (log2N)mod3=1, the step of terminating the FFT includes buffering a sample received from the final selective multiplication and performing a 2-point FFT using the buffered sample and the subsequent sample in the sequence to obtain the FFT of the sequence of N samples. In embodiments where (log2N)mod3=2, the step of terminating the FFT includes buffering a pair of samples received from the final selective multiplication and performing pair-wise 2-point FFTs using the two buffered samples and the two subsequent samples in the sequence; selectively multiplying the result of the pair-wise 2-point FFT by −j; and buffering a sample received from the selective multiplication of the pair-wise 2-point FFT and performing a 2-point FFT using the buffered sample and the subsequent sample in the sequence to obtain the FFT of the sequence of N samples.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying Figures.
The invention is described with reference to the following drawings wherein:
The present invention provides a system and method for performing FFTs in a triplet manner. One embodiment of the present invention provides a triplet based FFT processor that allows for a physical implementation in a reduced semiconductor area due to a reduction in the hardware complexity in comparison to numerous systems of the prior art.
Embodiments of the present invention improve upon prior similar work by minimization of butterfly multiplicative complexity while maintaining a simple butterfly architecture. The multiplicative complexity of a radix-8 decomposition in a radix-2 decimation-in-frequency FFT processor is described. The multiplicative complexity of the butterfly can be any power-of-two radix but a practical limit is reached in the processor contemplated here due to the increased process control complexity overwhelming the hardware gains made using the techniques described.
The hardware gains made by embodiments of the present invention are accomplished in a single-path delay feedback pipelined fast Fourier transform processor, generally implemented in a VLSI chip, by recoding the FFT operation. A butterfly unit for generating an output mapping of
from an input sequence of x(n) having N samples is preferably implemented. This butterfly unit preferably employs appropriate simple adder and subtractor hardware with 2-to-1 multiplexers.
A butterfly module, having a butterfly unit and an appropriately sized feedback memory, is used in three FFT stages forming an FFT triplet. The FFT stages are, subject to process control and timing circuitry, in communication with other digital input from source signals, memory, or other FFT stages such that the overall data processing rate matches or exceeds the rate of the input sequence, also referred to as the digital input signal. This allows the FFT processor to perform successive transforms without pause.
The cycle of the FFT processor of an embodiment of the present invention is such that its data processing rate preferably matches or exceeds the rate of the digital input signal and thus the FFT can operate on successive transforms without pause. The twiddle factor decomposition technique is used to determine the complex twiddle coefficients that may be terminated on any power-of-8 boundary such that the FFT operation can proceed using the standard radix-2 single-path delay feedback architecture such that the processor can thus perform any power-of-2 FFT by switching into a radix-2 multiplicative complexity FFT architecture in the final stages of the FFT. This can be achieved by terminating the twiddle factor decomposition one stage early in a power-of-4 length FFT and two stages early in a strictly power-of-2 length FFT. The use of the triplet of the present invention for any input sequence length that is a power of 2 is described in more detail below in conjunction with
One motivation in the development of the method and system of the present invention was the reduction of the butterfly multiplier complexity while maintaining the simple butterfly architecture of the radix-2 algorithms. The coefficient-recoding method is based upon a twiddle factor decomposition technique. The recoded radix-2 method and system has the multiplicative complexity of the radix-8 decomposition while maintaining the structure and advantages of the radix-2 decomposition.
As described above, a DFT of size Nis defined by the equation
where WN is the Mth twiddle factor and is defined by the equation
WN=e−j2π/N
The method of the present invention will be derived by considering the first three steps of the divide and conquer decomposition of the DFT equation together. After three decomposition steps the equations for n and k are defined by the following formulas
Applying the equations in (2) to the DFT equation (1) with three decomposition steps produces the following equation
Expanding the innermost equation yields the equation
where
represents a butterfly operation and has the form
The expression in (4) can be further decomposed using a standard divide and conquer approach until a standard radix-2 decimation in frequency FFT is obtained. However, by reducing the twiddle coefficients using a second decomposition step, two butterfly architectures with a smaller circuit area can be obtained. By combining the two twiddle factor terms in equation (4) and minimizing the following equation is obtained
Substituting equation (6) back into equation (4) and expanding the n2 and n3 summations yields
where Y(k1,k2,k3,n4) can take either of the forms presented in equation (9) and equation (10).
For an N=16 FFT this equation yields the signal flow graph shown in
Alternately, the recoded butterfly equation Y(k1,k2,k3,n4) can take the form
The signal flow graph for an N=16 FFT for this recoding is shown in
By terminating the twiddle factor decomposition early in power-of-4 or strictly power-of-2 length FFTs and continuing with the standard radix-2 decomposition it is possible to build Fast Fourier Transforms for any power-of-2 length. For noise-related reasons, the decomposition in equation (9) and
By mapping the recoded twiddle coefficients generated using the method described above into the R2SDF architecture a Recoded Radix-2 Single-path Delay Feedback (RR2SDF) architecture is obtained.
The implementation preferably uses a butterfly unit performing a butterfly operation described by the following equation, which can be implemented using the butterfly unit illustrated in
In the first N/2s cycles, where s is the butterfly stage number beginning at one the butterfly unit, collects data in its feedback memory by bypassing the adder and subtractor hardware. This is achieved by setting the select signal, Sn to zero. In the following N/2s cycles the butterfly unit performs a 2-point FFT on the incoming data and the data stored in the feedback registers during the first N/2s cycles. The butterfly unit's first output X(n) is sent to the stage multiplier, which may be followed by a unity multiplier (i.e. a wire), a constant multiplication by WNN/8, or a complex twiddle coefficient multiplier. The choice of multipliers is programmed by process control. The butterfly unit's second output X(n+N/2) is sent back into the feedback memory to be delayed for N/2s cycles. After being delayed, the second output, X(n+N/2), is sent to the stage multiplier. This cycle is repeated until all N data points have been processed. The completed FFT output will leave the final unit in bit-reversed order. Due to the pipelined nature of the FFT processor, multiple FFTs can be performed consecutively without pausing.
The butterfly operation of
In the butterfly unit, the first N/2s cycles, where s is the butterfly stage number beginning at one, the FFT collects data in the feedback memory by bypassing the butterfly unit adder and subtractor hardware. This is achieved by setting the select signal, Sn on the 2-to-1 output multiplexers to zero. In the following N/2s cycles the butterfly unit performs a 2-point FFT on the incoming data and the data stored in the feedback registers during the first N/2s cycles. For FFT stages that require a pre-multiplication by −j this multiplication is a trivial operation requiring the real and imaginary components of the input signal to be swapped and inversion of the add-subtract sense on the imaginary data path through the butterfly unit. For the first 3N/2s+2 inputs a unity pre-multiplication is performed and for the final N/2s+2 inputs the −j complex multiplication is performed. The butterfly unit's first output X(n) is sent to the stage multiplier, which may be followed by a unity multiplier (i.e. a wire), a constant multiplication by WNN/8 or a complex twiddle coefficient multiplier, and which choice is programmed by process control. The butterfly unit's second output X(n+N/2) is sent back into the feedback memory to be delayed for N/2s cycles. After being delayed, the second output, X(n+N/2), is sent to the stage multiplier. The completed FFT output will leave the final unit in bit-reversed order. Due to the pipelined nature of the FFT processor, multiple FFTs can be performed consecutively without pausing.
The implementations described above in reference to
Note that the butterfly architecture between the two RR2SDF decompositions is the same, however the placement of the trivial multiplication by WNN/8 is different. When attempting to meet a noise specification the memory buffer requirement of the second and fifth buffers will be larger in the alternate RR2SDF decomposition over the standard decomposition previously shown. This is especially significant in the case of the second buffer, which has N14 complex memory storage elements.
A comparison of the number of complex multipliers, adders, and memory units for the previously discussed pipeline processor FFT architectures is shown in Table 1. In this table all values have been listed using the base-4 logarithm where applicable, in order to ease comparisons of radix-2, radix-4, and radix-8 architectures.
In Table 1 it appears as though the performance of the RR2SDF architecture is the same as the R22SDF architecture. In practice however, the RR2SDF architecture typically has only log8N−1 complex multipliers (requires 4 real multipliers and 2 real adders per complex multiplier) and log8N−1 constant complex multipliers (requires 2 real constant multipliers and 2 real adders per operation) compared to the log4N−1 complex multipliers in the conventional R22SDF architecture. The RR23SDF and R23SDF architectures have a comparable number of operators, however unlike the R23SDF architecture the RR2SDF architecture is not limited to power-of-8 FFT lengths but is capable of all power-of-2 FFT lengths. The R23SDF architecture requires additional registering stages in the butterfly unit that need not be present in the RR2SDF architecture. The order of the constant multiplication in the standard RR2SDF architecture allows better practical hardware performance for the second stage memory for a given noise performance specification over the alternate RR2SDF or R23SDF architectures.
One skilled in the art will appreciate that the triplet of the present invention can be used in series with other triplets to design an FFT processor for any power-of-8 length of input string. The FFT processor of the present invention requires a minimum number of butterfly operations for a sequence of a given length. For an FFT operation on a sequence of length-N there are three different terminating conditions for the FFT that allow for any power-of-2 length FFT to be implemented. These three terminating conditions are related to the length of the input sequence N, and can be quickly determined by evaluation of (log2N)mod3. When (log2N)mod3=0 the FFT requires no FFT terminator, as the number of required butterfly operations has been performed by the series of FFT triplets. When (log2N)mod3=1, the triplets have performed all but one of the required butterfly operations. Thus, when (10g2 N)mod3=1 the FFT processor requires an FFT terminator having a single terminating butterfly as shown in
Step 312 corresponds to the operation of the second butterfly module in the triplet. In step 314 one quarter of the samples are buffered. Upon buffering N/4 samples, the buffered and newly arriving samples are used to generate a new pairwise 2-point FFT sequence in step 316. Steps 316 and 314 are repeated until all N samples in the sequence have been appropriately processed. The pairwise FFT sequence of step 316 is selectively multiplied by a complex valued multiplicand in step 318.
Step 320 corresponds to the operation of the third butterfly module in the triplet. In step 322 one eighth of the samples provided by step 318 are buffered. A 2-point FFT is generated on the basis of the buffered samples and newly arriving samples in step 324. The generation of the FFT sequence is continued for all pairings in the memory, and steps 322 and 324 are repeated until all N samples have been processed. The result of step 324 is selectively multiplied by a complex valued twiddle factor in step 326.
In step 328 an appropriate termination sequence, determined in accordance with the [log2N]mod3 relationship, is then applied to the output of the third butterfly module in the triplet.
The method and system of the present invention allow for a simplified design to be implemented for an FFT processor. The FFT processor of the present invention utilises a repetitive structure, the FFT triplet, along with an easy to determine terminating element, the sequence terminator. The repetitive use of the FFT triplet along with the appropriate terminator allows for the extendability of the FFT processor of the present invention to accommodate an input sequence of any length N, where N=2Q, and Q is a non-negative integer. As noted above the architecture of the present invention provides an implementation no larger than prior art solutions, and at the same time provides applicability to all sequence whose length is a power-of-2, as opposed to a power-of-8 used by the R23SDF implementation of the prior art.
The above-described embodiments of the present invention are intended to be examples only. Alterations, modifications and variations may be effected to the particular embodiments by those of skill in the art without departing from the scope of the invention, which is defined solely by the claims appended hereto.
This application claims the benefit of U.S. Provisional Patent Application No. 60/487,975, filed Jul. 18, 2003, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60487975 | Jul 2003 | US |