A invention concerns a recoil mechanism for reducing the recoil of a gun. When a gun, as a mechanical system, is fired, the bullet travels along the gun's barrel and exits its muzzle. The resulting reactive force is imparted to the gun in the form of recoil. Apart from the gun's recoil phenomenon which is caused upon firing in the chamber because of the bullet's charge, the produced explosion gives to the gun's frame an instantaneous kinetic energy, annihilating any inertia phenomenon, which was prevailing in the reference system between the gun and the user before the explosion.
For the avoidance of the recoil phenomenon the current technology for portable guns like semi-automatic pistols, automatic pistols, submachine-guns and/or other heavy weaponry, the recoil systems, use in most cases, a recoil spring. Different technical solutions are used for the increase of the inertia of the reference system between the gun and the user, which nevertheless are restricted to small improvements in the present case, like:
The invention is a recoil mechanism for a gun that reduces the adverse effect of recoil. The invention is based on a magnet's presence, which in cooperation with successive springs, of the same or different diameter, of coil or wire type, controls the acceleration and the deceleration of the slide's reciprocating motion in a gun. Also by the mechanical only method, wherein one of the successive springs, having the same axial or another axial arrangement level and in succession with the mentioned successive springs, takes part in the motion, with a time lag. This happens because the ends of one of the springs do not abut from the beginning reference points in the gun, but only after the firing of each bullet. The result of all this function is the greatest possible control of the gun's recoil.
The invention also includes a new recoil spring plug that is threaded to the front end or to the rear end of the recoil spring for adjusting the biasing force exerted by the recoil spring, by deactivating the coils of the spring that have been threaded into the plug. By threading more or less of the spring into the plug, the recoil bias of the spring can be adjusted so that the recoil action can be tuned. The recoil spring plug can be used with the recoil mechanism of the invention or alone in a conventional recoil mechanism.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its uses, reference is made to the accompanying drawings and descriptive matter in which preferred embodiments of the invention are illustrated.
In the drawings:
Referring to the drawings,
In
The second spring 2 in chamber A has a front end that abuts diaphragm Y and a rear end that abuts nut 7.
When the springs 5 and 2 are installed in the slide K they are under a minimum compression. The third spring, 3 is positioned in chamber B and is trapped by the set screw 6, but since the length of the spring is shorter than chamber's length, the two ends of the spring 3 are at a distance, on the one hand, from the set screw's surface, and on the other hand, from the collar's surface.
The system's function upon firing is as follows.
An instant before the firing of the gun, the spring 2 and the spring 5 are under minimum compression while the spring 3, which is positioned in the chamber B, is under zero compression. The front surface of the slide K under the gun-barrel muzzle and the front surface of the cylinder 1, adjoin the magnet M.
Upon firing the force of the gases generated in the gun-barrel and on the slide, reach a point that overcomes the attraction between the magnet M and the slide K. The slide is then violently set into, rearward motion, cutting the lines of force between it and the magnet. This start of the recoil action compresses the spring 5 which pushes the cylinder 1 to the rear. The spring 2, and the magnet's attraction, does not permit the cylinder 1 to move immediately to recoil. Thereby the slide K continues its recoil until it hits a step S between the large and small diameter portions of the cylinder 1.
At step or point S of the cylinder 1, the slide K hits the cylinder 1, and further compression of spring 5 is interrupted. As the gases continue to increase their pressure in the gun-barrel, they get to the point which is critical for the magnet's attraction on the cylinder. Here, the continuous recoil of the slide sets also the cylinder 1 to recoil, and pulls it away from the magnet M.
Upon this phase, the slide K, the spring 5, the cylinder 1 and the set screw 6, recoil as an assembly which compresses the spring 2. Since the axle 4 is not moving towards any direction and since the cylinder 1 recoils, compressing meanwhile the spring 2, the set screw 6, because of the fact that it is screwed in the cylinder 1, reduces the space that contains the spring 3 in the chamber B between the set screw 6 and the collar 8. Up to this moment, wherein the expansion takes place from the bullet's firing, and which expansion acts over the slide K, only two springs function as a retroaction system, since they are positioned successively, to with the first spring 5 and the second spring 2 function as one. Since the slide's recoil is continued with decelerated movement, and with the movement of the cylinder also, and while the spring 2 approaches ⅗ completion, then the third spring 3 abuts on the set screw 6 and the collar 8. The decelerated movement of the slide K and of the cylinder 1 meets the third spring 3 in total inertia, hence the spring 3 absorbs the most of the rest of the slide's recoil energy, before the spring 3 compresses to its maximum extent.
The result is that any further recoil of the slide before it hits the frame and since the gases' expansion is completed, the cylinder 1 and the slide K begin to move in opposite directions, with maximum acceleration, with the further result being improved firing speed of the gun. This is caused by the inertia of spring 3, which acts as an extra powerful suspension against the slide, with direction opposite of the slide's recoil direction, hence minimizing the intensity and the duration of the recoil. The time lag, which is caused by the magnet's presence, causes the gases' maximum expansion and gives bigger initial speed to the bullet, with the consequence of the bullet's firing range increasing. The spring 3 has also positive effect on the slide's axial motion, since the slide's time of roll back to the initial position is faster.
Beyond the magnet's mentioned support method by the axle's extension, another magnet support method is by the use of a base, like the base 9 of
The system may function also without a magnet, by using only the mechanical parts, but in this case the bullet will not have longer firing range.
Since the invention being expanded beyond its limits, but by the proper forming of the invention's main parts, like the cylinder's and axle's shape, the springs' resistance force and dimensions, while the spring 3 maintains the specifications of its freedom, the system can fit any gun type.
Turning now to
Plug 10 has a rear chamber D that is open toward the rear of the gun and that receives the front portion of the first, main or only recoil spring 5. The rear chamber D has a preferably cylindrical inner surface with a diameter that is large enough to receive the spring 5 for free compression of the spring 5 in chamber D during a firing cycle. Plug 10 also has a front chamber C that has the same or a similar diameter as the rear chamber D for freely receiving one or more turns or coils of a front end of spring 5, in the front chamber C. A small diameter intermediate chamber in plug 10 has a helical groove 12 with two or more turns into which turns of spring 5 are screwed or threaded. In order to reduce the biasing effect of spring 5 and thus “tune” the recoil effect of the main recoil spring 5, a number of turns of spring 5 are screwed into groove 12 until one or more front turns of the spring 5 are in front chamber C. Chamber C thus acts as a storage chamber for these front turns.
The front turns of spring 5 can be compressed in chamber C if, by screwing spring 5 into groove 12, the front end of spring 5 engages an inner surface 11 if a front wall of plug 10. This effectively eliminates the turns of spring 5 that are in groove 12 and in chamber C, from contributing their biasing effect to the counter-recoil effect of spring 5 during a firing cycle of the gun. A user of the gun can thus change the extent to which the spring 5 is screwed into groove 12 until the desired recoil effect if achieved.
In
The outer front surface 13 of plug 10 engages the front inner surface of the gun slide (not shown) or the inside surface of the base in an embodiment that combines the plug 10 with the recoil mechanism of
As shown in
Said in another way, the pitch or distance between turns of the groove 12, which is shown at 14 in
In inventor has found that this locking effect is even further advanced when the gun is fired since the further strong compression of spring 5 during recoil, dynamically locks the plug to the spring even further.
The purpose of the plug is to allow the user of the gun to adjust the recoil dias of spring 5. This ability to tune the recoil is advantageously in many gun types, and in particular for the very widely used M1911 0.45 ACP pistol.
To further enhance the engagement between the turns of coils of spring 5 and the groove 12, and as shown in
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
20030100056 | Feb 2003 | GR | national |
This is a continuation-in-part of U.S. patent application Ser. No. 10/522,271 filed Jan. 25, 2005 and now U.S. Pat. No. ______, which was a 371 application of PCT/GR2004/000008 filed Feb. 6, 2006, both of which are incorporated here by reference, and which claims priority on Greek patent application 20030100056 filed Feb. 6, 2003, which priority claim is repeated here.
Number | Date | Country | |
---|---|---|---|
Parent | 10522271 | Jan 2005 | US |
Child | 12108315 | US |