The present application has the same assignee as U.S. Pat. No. 8,297,174 issued on Oct. 30, 2012 and entitled “Apparatus and Method for Gun Recoil Mitigation,” and U.S. application Ser. No. 13/165,192 filed on Jun. 21, 2011 now U.S. Pat. No. 8,418,389 and entitled “Recoil Reduction Apparatus and Method for Weapon.” The entire contents of U.S. Pat. No. 8,297,174 and U.S. application Ser. No. 13/165,192 are incorporated by reference herein.
The invention relates in general to recoil reduction in weapons and in particular to recoil reduction in small and medium caliber weapons.
Traditional weapons may include an operating group having, for example, a bolt carrier and its subcomponents. The operating group recoils toward the user in order to cycle the weapon. Typically, the operating group may impact a surface at the end of its stroke. The impact may cause a “kick” that may be felt by the user. In some instances, many rounds of ammunition may be fired by an individual in a short period of time. The kick of the weapon may be painful or harmful to the user, particularly when using semi-automatic or automatic weapons. Many devices and methods have been used to minimize or eliminate kick. Some of these devices are not be desirable because they add too much weight to the weapon or are too costly.
Conventional methods for mitigating weapon recoil include muzzle brakes, breech venting, improved buttstock designs, improved buffer designs and bolt/slide designs that redirect bolt momentum. Because both gas venting momentum and operating group momentum may contribute to recoil, conventional recoil mitigation methods may, at best, only partially mitigate recoil. Partial mitigation of recoil may occur because the conventional methods do not address both the momentum produced by venting gases and the momentum produced by the operating group. Thus, a need exists for an apparatus and method to mitigate recoil caused by both gas venting momentum and operating group momentum.
There is a long-felt and unsolved need for an effective recoil reduction apparatus that adds little or no weight to a weapon and is relatively inexpensive. This need is particularly great for automatic and semi-automatic weapons.
One aspect of the invention is a weapon having a forward end and a rear end, a housing and a receiver translatably disposed in the housing. One end of a barrel is fixed to the receiver. The barrel is translatable with respect to the housing. A pair of recoil rods has first ends that are fixed to the receiver on opposite sides of the barrel. The recoil rods are translatable with respect to the housing and parallel to the barrel. Respective recoil springs are disposed around each recoil rod with first ends of the recoil springs abutting a forward surface of the housing.
A bolt and bolt carrier are translatably disposed in the receiver. A bolt carrier return spring is disposed in the housing between the bolt carrier and a rear surface of the housing. A gas chamber is disposed on the barrel. The gas chamber includes a piston and a gas port. The gas port includes an opening therein. An operating rod is translatably disposed in the opening in the gas port and translatable by the gas piston toward the bolt carrier. An operating rod spring is disposed in the receiver. The operating rod spring biases the operating rod toward the gas piston.
A bolt carrier return rod may be disposed inside the bolt carrier return spring and extend between the bolt carrier and the rear surface of the housing.
The operating rod and the piston may not be fixed to each other. The operating rod may include a spring stop. The operating rod may be disposed inside the operating rod spring and the operating rod spring may be fixed between the spring stop and a surface of the receiver.
Another aspect of the invention is a method that includes providing a weapon, firing a round in the weapon, and then translating the barrel and the receiver of the weapon rearward in unison with respect to the housing of the weapon. The operating rod of the weapon is translated rearward with respect to the housing and into contact with the bolt carrier. The bolt and bolt carrier are translated rearward with respect to the housing until the bolt carrier impacts the rear surface of the receiver. The operating rod is translated forward into contact with the piston and the bolt carrier and bolt are translated forward.
The step of translating the operating rod rearward with respect to the housing and into contact with the bolt carrier may be performed using propellant gas operating on the piston.
The step of translating the bolt and the bolt carrier rearward with respect to the housing until the bolt carrier impacts the rear surface of the receiver may be performed using force applied by the operating rod.
The step of translating the operating rod forward into contact with the piston may be performed using the operating rod spring.
The step of translating the bolt carrier and the bolt forward may be performed using the bolt carrier return spring.
The invention will be better understood, and further objects, features and advantages of the invention will become more apparent from the following description, taken in conjunction with the accompanying drawings.
In the drawings, which are not necessarily to scale, like or corresponding parts are denoted by like or corresponding reference numerals.
A weapon with a novel recoil reduction apparatus reduces peak recoil produced from firing ammunition. Peak recoil can be reduced without the expense of adding weight to the overall weapon system. In other words, compared to a known weapon that fires the same ammunition, the inventive weapon generates lower peak recoil while also weighing the same or less. The recoil reduction weapon does not require the use of a counterweight. The recoil reduction weapon may fire ammunition in a variety of modes, for example, single-shot, burst, semi-automatic and automatic. The weapon design principle is not limited to a single caliber of weapon and is scalable over a range of calibers. In some embodiments, the design principle is embodied in small and medium caliber weapons.
The combination of a translatable receiver and a gas-powered operating rod enables the weapon to reduce peak recoil. The translatable receiver allows the receiver to translate freely within the housing when the cartridge is fired. The rearward moving receiver compresses the recoil springs, thereby distributing the recoil energy over a longer period of time. Once the receiver has reached the end of its rearward stroke, the recoil springs return the receiver to its forward position. Meanwhile, the gas system in the weapon redirects gases produced from propelling the bullet to push on an operating rod that separates the bolt-carrier from the barrel. This separation enables the bolt to move rearward with respect to the recoiling receiver and enables extraction of the spent case and chambering of a new cartridge during counter recoil.
The combination of the translatable receiver and the gas-powered operating rod distributes the recoil energy over a longer portion of the weapon cycle, thereby reducing the overall peak recoil forces. Overall peak recoil forces are a source of poor accuracy, fatigue, and injury among shooters of weapons.
A bolt 38 and bolt carrier 40 are translatably disposed in receiver 22. A bolt carrier return spring 42 is disposed between a rear surface of bolt carrier 40 and a rear surface 44 of housing 18. Bolt carrier return spring 42 may be disposed around a rod 46 (
As seen in
Firing a cartridge in weapon 10 produces a recoil force that causes barrel 12, gas chamber 48, piston 52, operating rod 58 and receiver 22 to all translate together rearward (direction of arrow A) against the force of recoil springs 34. After fired round 66 passes by barrel gas port 50, propellant gas enters gas chamber 48 and impinges on piston 52. Piston 52 contacts operating rod 58 and moves operating rod 58 rearward such that operating rod 58 contacts bolt carrier 40 and moves bolt carrier 40 rearward, thereby disengaging bolt 38 from barrel 12. Operating rod 58 is not mechanically fixed to piston 52. Depending on the caliber of weapon 10, operating rod 58 may translate rearward the same or more than piston 52. Rearward translation of operating rod 58 is constrained by operating rod spring 60.
As bolt 38 and bolt carrier 40 move rearward, the spent cartridge in barrel 12 is extracted by bolt 38 and falls away from the breech of barrel 12. Bolt 38 and bolt carrier 40 continue to move rearward against the force of bolt carrier return spring 42. Bolt 38 and bolt carrier 40 continue to move rearward even after operating rod 58 is no longer in contact with bolt carrier 40. Operating rod spring 60 translates operating rod 58 forward until operating rod 58 makes contact with piston 52 and moves piston 52 back to its original position in port 54.
Bolt carrier 40 reaches the end of its rearward stroke by contacting a rear surface of receiver 22. Then, bolt carrier return spring 42 moves bolt carrier 40 and bolt 38 forward. On the forward stroke, bolt 38 engages a new cartridge from ammunition magazine 16 and pushes the new cartridge into barrel 12.
While the invention has been described with reference to certain embodiments, numerous changes, alterations and modifications to the described embodiments are possible without departing from the spirit and scope of the invention as defined in the appended claims, and equivalents thereof.
The inventions described herein may be manufactured, used and licensed by or for the United States Government.
Number | Name | Date | Kind |
---|---|---|---|
4269109 | Stoner | May 1981 | A |
4467697 | Witt et al. | Aug 1984 | A |
20130036900 | Mueller | Feb 2013 | A1 |