The disclosure relates to a recoil shock absorber that is especially, but not exclusively, for shoulder-fired firearms, such as rifles and shotguns. Such firearms are known to cause a strong rear-ward kick in the direction of the operator of the firearm when discharged.
Embodiments of the present invention provide significant firearm recoil force reduction and can be integrated within a traditional firearm stock. Embodiments of the present invention provide selectable and adjustable hydraulic damping, the ability to easily interchange springs for optimum spring rates, built in over-pressurization protection (which allows the product to safely depressurize when overloaded while retaining baseline functionality), and a provision for non-linear spring rates (e.g., bifurcated, progressive, or tri-furcated rates are possible).
The combination of any of these features allows an operator of the firearm to adjust the recoil device to suit specific needs at the time of operation (e.g., for that day). Embodiments also allow a manufacturer to use, for example, a single molded device to meet multiple application requirements with a minimum amount of product manufacturing variation, providing a significant advantage in manufacturing costs, quality, and variation reduction. In one example embodiment, the device may include a limited number of mechanical parts, many of which can be molded of composite or other similar material to provide for economical manufacturing costs.
One example embodiment of the present invention is a recoil shock absorber that includes a body assembly, plunger assembly, and return spring. The body assembly is shaped such that it can be installed in a stock of a firearm and includes a shock tube, cylinder end, and accumulator chamber. The shock tube includes an opening at its distal end, the cylinder end is rotatably coupled to the shock tube at the distal end, and the accumulator chamber is coupled to the cylinder end. The cylinder end includes multiple openings that can be selectably aligned with the shock tube opening. Alignment of the shock tube opening and a particular one of the cylinder end openings creates a resulting orifice and pathway from the shock tube, through the cylinder end, and to the accumulator chamber. The plunger assembly is slidably coupled to the body assembly and includes a piston at the proximal end of the shock tube. The piston and the shock tube are in slideable relation such that when the plunger assembly is introduced into the body assembly the piston is introduced into the shock tube. The return spring is coupled to the piston and the shock tube.
In such embodiments, the shock tube opening may be selectably aligned with a particular opening of the cylinder end by rotating the shock tube using an interface at the proximal end of the recoil shock absorber in the plunger assembly, and the shock tube may be adjusted to enable partial alignment of the shock tube opening with a particular opening of the cylinder end.
Another example embodiment is a recoil shock absorber that includes a body assembly, plunger assembly, and return spring. The body assembly is shaped such that it can be installed in a stock of a firearm and includes a shock tube, cylinder end, and accumulator chamber. The shock tube includes an opening at its distal end, the cylinder end is rotatably coupled to the shock tube at the distal end, and the accumulator chamber is coupled to the cylinder end. The cylinder end includes a tapered protrusion that can be adjustably aligned with the shock tube opening. Alignment of the shock tube opening and a particular part of the cylinder end tapered protrusion creates a resulting orifice and pathway from the shock tube, through the cylinder end, and to the accumulator chamber. The plunger assembly is slidably coupled to the body assembly and includes a piston at the proximal end of the shock tube. The piston and the shock tube are in slideable relation such that when the plunger assembly is introduced into the body assembly the piston is introduced into the shock tube. The return spring is coupled to the piston and the shock tube.
In such embodiments, the shock tube opening may be adjustably aligned with a particular part of the cylinder end tapered protrusion by rotating the shock tube using an interface at the proximal end of the recoil shock absorber in the plunger assembly. The cylinder end tapered protrusion may taper from a first depth to a second depth, where the first depth is less than the second depth, and in many embodiments the first depth may be approximately zero and the second depth may be approximately equal to the size of the shock tube opening. In many of the above embodiments, the shock tube may be rotated using a common choke key. In some embodiments the cylinder end may include at least one return path with a check valve, and in further or other embodiments the recoil shock absorber may include an over-pressurization relief mechanism to vent excess pressure to the accumulator chamber while allowing the recoil shock absorber to continue to function as a shock absorber. Some embodiments may include a mechanical spring element that provides a progressive force rate over the linear stroke of the device, or multiple mechanical spring elements each configured to provide a different force rate over the linear stroke of the device, in which case at least one of the multiple mechanical spring elements may provide a progressive force rate over the linear stroke of the device.
The foregoing will be apparent from the following more particular description of example embodiments of the present disclosure, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of the present disclosure.
A description of example embodiments of the invention follows.
The outside diameter of the piston 125 and the inside diameter of the shock tube 130 may be a close mechanical fit such that when a volume of the hydraulic chamber of the shock tube 130 (e.g., filled with oil or other fluid) is reduced by introduction of the piston 125, hydraulic fluid (e.g., oil) is forced out of the shock tube 130 through an opening 305 (
After the firearm is discharged and the plunger assembly 110 has been compressed axially into the body assembly 105, a return spring 150 moves the plunger assembly 110 and the body assembly 105 away from each other and into their original pre-discharge positions. During movement of the plunger assembly 110 and the body assembly 105 away from each other, the piston 125 moves away from the cylinder end 135, drawing hydraulic fluid back into the shock tube 130 from the accumulator chamber 140. The cylinder end 135 can include at least one return path 165a,b with a suitable mechanism for check relief (e.g., a check ball, valve plate etc.) that allows the hydraulic fluid to quickly move back to the shock tube 130 with little resistance. The check relief prevents hydraulic fluid from moving out of the shock tube via the return path(s) 165a,b during compression of the device 100 (i.e., during discharge of the firearm).
In another embodiment, the cylinder end may include one or more tapered ramp profile(s), where a ramp begins at a minimum depth (e.g., zero) and increases in depth circumferentially until reaching a maximum depth a certain rotational distance away from the minimum. In such case, the opening 305 of the shock tube 130 is paired with a particular depth of the tapered ramp, creating an orifice size dependent on the rotational relative position of the shock tube and cylinder end. In this construction, rotating the shock tube 130 with respect to the cylinder end results in a virtually infinitely adjustable hydraulic orifice. For embodiments including one ramp (tapered protrusion), the ramp may start at a depth of zero projection, for example, above the surface plane of the cylinder end and end at a maximum projection about 350 degrees circumferentially away from the starting point. For embodiments including two ramps, each ramp may start at a unique minimum projection and end at a unique maximum projection about 170 degrees circumferentially away from the starting point of the particular ramp. Thus, each ramp can have a different taper profile. It will be appreciated by one skilled in the art, given the above description, that the cylinder end may have any number of such ramps.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application is a divisional of U.S. patent application Ser. No. 15/074,200, filed Mar. 18, 2016, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/135,361, filed Mar. 19, 2015, the entireties of which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2607443 | Mayo | Aug 1952 | A |
2702099 | Lautz | Feb 1955 | A |
2973694 | Herlach et al. | Mar 1961 | A |
3528531 | Schweller et al. | Sep 1970 | A |
3561575 | Allinquant | Feb 1971 | A |
3707797 | Ruth | Jan 1973 | A |
3763970 | Anderson | Oct 1973 | A |
4388855 | Sokolovsky | Jun 1983 | A |
4439943 | Brakhage | Apr 1984 | A |
4546959 | Tanno | Oct 1985 | A |
4729280 | Metz | Mar 1988 | A |
6880684 | Evans et al. | Apr 2005 | B1 |
7159505 | Trendall | Jan 2007 | B2 |
7681351 | Bucholtz et al. | Mar 2010 | B2 |
7854221 | Gore | Dec 2010 | B1 |
8939059 | Coffman, II | Jan 2015 | B2 |
9417032 | Chiang | Aug 2016 | B1 |
9677640 | Svara | Jun 2017 | B2 |
20060254414 | Kuczynko et al. | Nov 2006 | A1 |
20110138668 | Thomas | Jun 2011 | A1 |
20170211650 | Sakamoto | Jul 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20170284765 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
62135361 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15074200 | Mar 2016 | US |
Child | 15628437 | US |