Recombinant bacterial cells and methods for producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

Information

  • Patent Grant
  • 12031123
  • Patent Number
    12,031,123
  • Date Filed
    Wednesday, May 17, 2023
    a year ago
  • Date Issued
    Tuesday, July 9, 2024
    5 months ago
  • Inventors
    • Westbrook; Adam William
  • Original Assignees
    • Genecis Bioindustries Inc.
  • Examiners
    • Epstein; Todd M
    Agents
    • COOLEY LLP
Abstract
The disclosure provides recombinant bacterial host cells that metabolize and convert glycerol or volatile fatty acids (VFAs) to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV. The disclosure further provides methods of producing PHBV using the recombinant bacteria disclosed herein.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (GNBI_001_02WO_SeqList_ST26.xml; Size: 467,880 bytes; and Date of Creation: May 17, 2023) are herein incorporated by reference in its entirety.


FIELD

The disclosure relates to recombinant bacteria and methods for producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate).


BACKGROUND

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a polyhydroxyalkanoate-type microbial biopolymer that is biocompatible and biodegradable and could serve as a viable alternative for many petroleum-derived polymers. The many useful features of PHBV, for example, absorption capacity, low cytotoxicity, piezoelectricity, and thermoplasticity, render it a very promising material with broad applications in a wide range of applications, in particular biomaterial applications. Amongst the different biomaterial applications, PHBV may be suited for absorbable surgical sutures, drug release and delivery systems, medical packaging, and tissue engineering such as biodegradable medical implants, biosensors, porous scaffolds, and tissue patches.


The vast array of potential applications of PHBV may be achieved by varying properties such as composition, molecular weight (MW) and crystallinity, which affect the mechanical and thermal characteristics of the biopolymer. These properties are influenced by, for example, the species or strains of microbes, carbon source, and growth parameters. There are inherent difficulties in maintaining consistent polymer properties (i.e. Mw and composition) and in achieving a specific composition (i.e. tailoring 3-hydroxyvalerate (HV) content) when the microbial culture is highly heterogeneous. A recombinant approach that generates specific strains that modulates the expression level or activity of specific enzymes, including heterologous enzymes, involved in metabolic pathways may provide an avenue for controlling production of PHBV with consistent polymer properties (such as, a desired Mw) and specific compositions.


SUMMARY

The disclosure provides recombinantly-modified bacterial host cells that exhibit improved production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV from substrates, such as, volatile fatty acids (VFAs) and glycerol. The disclosed recombinant bacterial host cells have been engineered to express catalytic proteins that enhance flux through metabolic pathways, thereby promoting uptake of the substrates and their conversion to PHBV. Notably, the disclosed recombinantly-modified bacterial host cells may be used for the small-scale and large-scale production of PHBV per the methods disclosed herein.


The disclosure provides bacterial host cells, comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway.


In embodiments, the bacterial host cells comprise: a first operon comprising: (a) a nucleic acid molecule encoding a PhaC protein, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein; a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the BktB protein is a Cupriavidus gilardii QJ1 BktB protein, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein; and a sleeping beauty mutase (Sbm) operon comprising a promoter, wherein each of the first and the second operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2). In embodiments, the bacterial host cells are capable of converting glycerol to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV.


The disclosure further provides bacterial host cells comprising: comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, (e) a nucleic acid molecule encoding a LvaE protein, (f) a nucleic acid molecule encoding a propionate-CoA transferase, (g) a nucleic acid molecule encoding a FadE protein, (h) a nucleic acid molecule encoding a FadB protein, and (i) a nucleic acid molecule encoding a AtoB protein, wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway. In embodiments, the bacterial host cells are capable of converting one or more volatile fatty acids (VFAs) to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV.


The disclosure also provides methods of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) using the bacterial host cells disclosed herein, as well as methods of metabolizing glycerol or VFAs using the bacterial host cells disclosed herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows metabolic pathways for the conversion of acetate, propionate, and butyrate to PHBV. ABU, 4-aminobutyrate; AACE-CoA, acetoacetyl-CoA; ACE, acetate; ACE-CoA, acetyl-CoA; ACE-P, acetylphosphate; ACON, aconitate; BUAL, butyraldehyde; BUT, butyrate; BUT-CoA, butyryl-CoA; CIT, citrate; CRT-CoA, crotonyl-CoA; FUM, fumarate; GLU, glutamate; GLY, glyoxylate; HB, 3-hydroxybutyrate; HB-CoA, (R)-3-hydroxybutyryl-CoA; HV, (R)-3-hydroxyvalerate; HV-CoA, (R)-3-hydroxyvaleryl-CoA; ICIT, isocitrate; KG, ketoglutarate; KVAL-CoA, ketovaleryl-CoA; MAL, malate; MMAL-CoA, L-methylmalonyl-CoA; OAA, oxaloacetate; PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate); PRO, propionate; PRO-CoA, propionyl-CoA; SSAL, succinate semialdehyde; SUC, succinate; SUC-CoA, succinyl-CoA.



FIG. 2 shows cultivation results for acetate consumption in strains engineered for high Sbm pathway carbon flux.



FIG. 3 shows cultivation results for acetate and propionate co-utilization for HB and HV co-production.



FIG. 4 shows cultivation results for the conversion of butyrate to HB or succinate.



FIG. 5 is a line graph depicting the molecular weight of PHBV produced by the strains listed in Table 7.



FIG. 6 is a bar graph depicting the wt % of PHBV, mol % of HV and the Mw of PHBV produced by the strains listed in Table 8.



FIG. 7 is a bar graph depicting the wt % of PHBV, mol % of HV and the Mw of PHBV produced by the strains listed in Table 9.





DETAILED DESCRIPTION
Definitions

Throughout the disclosure, a reference may be made using an abbreviation of a gene name or a polypeptide name, and it is understood that such an abbreviated gene or polypeptide name represents the genus of genes or polypeptides, respectively. Such gene names include all genes encoding the same polypeptide and homologous polypeptides having the same physiological function. Polypeptide names include all polypeptides that have the same activity (e.g., that catalyze the same fundamental chemical reaction).


Unless otherwise indicated, the accession numbers referenced herein are derived from the NCBI database (National Center for Biotechnology Information) maintained by the National Institute of Health, U.S.A.


EC numbers are established by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). The EC numbers referenced herein are derived from the KEGG Ligand database, maintained by the Kyoto Encyclopedia of Genes and Genomics, sponsored in part by the University of Tokyo.


The term “recombinant”, or a derivative thereof as used herein refers to a cell or a polynucleotide molecule that has been modified by the introduction of a heterologous polynucleotide sequence, or that the cell is derived from a cell so modified. For example, recombinant cells express genes that are not found in identical form within the native (non-recombinant) form of the cells, or the recombinant cells express, as a result of deliberate human intervention, native genes that are otherwise abnormally expressed, underexpressed or not expressed at all. The terms “recombination,” “recombining,” and generating a “recombined” polynucleotide molecule refer generally to the assembly of two or more polynucleotide fragments wherein the assembly gives rise to a chimeric polynucleotide made from the assembled parts.


The term “poly(3-hydroxybutyrate-co-3-hydroxyvalerate)”, “PHBV”, or “PHBV polymer”, or a derivative thereof as used herein refers to a polyhydroxyalkanoate-type polymer that can be produced by bacteria through fermentation of a carbon source, for example, sugar, lipids, polyol, or fatty acids. PHBV is a copolymer of 3-hydroxybutyric acid (HB) and 3-hydroxyvaleric acid (HV; also known as 3-hydroxypentanoic acid). PHBV can have varying HB and HV content. PHBV is biocompatible, biodegradable, and non-toxic, and is useful in the production of bioplastics. The many useful features of PHBV include absorption capacity, low cytotoxicity, piezoelectricity, and thermoplasticity. PHBV has a broad range of applications, including biomaterial applications such as production of absorbable surgical sutures, drug release and delivery systems, medical packaging, and tissue engineering, e.g. biodegradable medical implants, biosensors, porous scaffolds, and tissue patches.


The term “acyl-CoA synthetase” as used herein refers to an enzyme which can catalyze the esterification, in some cases concomitant with transport, of fatty acids into metabolically active CoA thioesters for subsequent degradation or incorporation into phospholipids. Acyl-CoA synthetase enzymes can be categorized based on their specificity to short, medium, or long chain fatty acids. For example, short chain acyl-CoA synthetase catalyzes chemical reactions with fatty acid with fewer than 6 carbons. Medium chain acyl-CoA synthetase catalyzes chemical reactions with fatty acids with 6 to 12 carbons. Acyl-CoA synthetase includes, but is not limited to, fatty acid-CoA ligase. In embodiments, an acyl-CoA synthetase comprises an enzyme under the enzyme classification numbers EC 6.2.1.1, EC 6.2.1.2, EC 6.2.1.3, EC 6.2.1.17, or EC 6.2.1.40. Additionally, one of ordinary skill in the art will appreciate that some enzymes classified under a different enzyme class can have acyl-CoA synthetase activity as well. Such non-specific “acyl-CoA synthetase” are, therefore, also included in this definition. Nucleic acid sequences encoding acyl-CoA synthetase are known in the art, and such acyl-CoA synthetase are publicly available.


The term “acetate-CoA transferase” as used herein refers to an enzyme that can act upon a fatty acid substrate and an acetyl-CoA substrate to catalyze a reversible chemical reaction to produce acetate and a corresponding acyl-CoA. The enzyme can also act upon a VFA substrate and an acetyl-CoA substrate to produce a corresponding acyl-CoA and acetate. A person of ordinary skill in the art would readily understand that the enzyme is capable of catalyzing the reversible reaction in both forward and reverse directions. In embodiments, an acetate CoA transferase has broad substrate specificity for short-chain acyl-CoA thioesters with the activity decreasing when the length of the carboxylic acid chain exceeds four carbons. The enzyme includes, but is not limited to, short-chain acyl-CoA:acetate-CoA transferase. In embodiments, an acetate-CoA transferase is an enzyme under the enzyme classification number EC 2.8.3.8. The terms “acetate” and “acetic acid” are used interchangeably herein. Similarly, the use of any term which describes an organic acid likewise includes, and is used interchangeably with, the corresponding salt form of the organic acid. In embodiments, the acetate-CoA transferase comprises a first subunit, optionally a MELS_RS00170 polypeptide or an AtoA polypeptide, and a second subunit, optionally a MELS_RS00175 polypeptide or AtoD polypeptide. In embodiments, the acetate-CoA transferase comprises a MELS_RS00170 polypeptide and a MELS_RS00175 polypeptide. In embodiments, the acetate-CoA transferase comprises an AtoD polypeptide and an AtoA polypeptide.


The term “propionate-CoA transferase” as used herein refers to an enzyme that acts upon substrates acetyl-CoA and propionate. Propionate-CoA transferase catalyzes a chemical reaction with its substrates to produce acetate and propionyl-CoA. The enzyme can also include, but is not limited to, acetyl-CoA:propionate-CoA transferase, propionate-coenzyme A transferase, propionate-CoA:lactoyl-CoA transferase, propionyl-CoA:acetate-CoA transferase, or propionyl-CoA transferase. In embodiments, a propionate-CoA transferase comprises an enzyme under the enzyme classification number EC 2.8.3.1.


The term “β-ketothiolase” as used herein refers to an enzyme that acts upon substrates acetyl-CoA and acyl-CoA. β-ketothiolase catalyzes a chemical reaction to produce 3-oxoacyl-CoA and CoA. The enzyme can also include, but is not limited to, acetyl-CoA synthetase, acetyl-CoA acyltransferase, acyl-CoA ligase, 3-ketoacyl-CoA thiolase, or fatty acid oxidation complex subunit beta. In embodiments, a β-ketothiolase comprises an enzyme under the enzyme classification number EC 2.3.1.16.


The term “polyhydroxyalkanoate synthase” as used herein refers to an enzyme that acts upon substrates hydroxybutyryl-CoA and poly(hydroxybutyrate)n. Polyhydroxyalkanoate synthase catalyzes a chemical reaction to produce poly(hydroxylalkanoate)n+1 and CoA. The chemical reaction can yield hydroxylalkanoate polymers. The enzyme can also include, but is not limited to, poly(3-hydroxyalkanoate) polymerase, poly(3-hydroxybutyrate) polymerase, or polyhydroxyalkanoic acid synthase. In embodiments, a polyhydroxyalkanoate synthase comprises an enzyme under the enzyme classification number EC 2.3.1. In embodiments, a polyhydroxyalkanoate synthase comprises short-chain polyhydroxyalkanoate synthase. In embodiments, a polyhydroxyalkanoate synthase polymerizes (R)-HB-CoA and (R)-HV-CoA to produce PHBV.


The term “methylmalonyl-CoA mutase” as used herein refers to an enzyme that catalyzes interconversion of succinyl-CoA and methylmalonyl-CoA. In embodiments, methylmalonyl-CoA mutase comprises an enzyme under the enzyme classification number EC 5.4.99.2.


The term “methylmalonyl-CoA mutase interacting protein”, or a derivative thereof as used herein refers to a protein that interacts with methylmalonyl-CoA mutase and is a member of the G3E family of P-loop GTPases. In embodiments, a methylmalonyl-CoA mutase interacting protein comprises methylmalonyl-CoA mutase-interacting GTPase. The enzyme can also include, but is not limited to, GTPase ArgK, G-protein chaperone, or YgfD protein. In embodiments, a methylmalonyl-CoA mutase interacting protein comprises an enzyme under the enzyme classification number EC 3.6.5.


The term “methylmalonyl-CoA decarboxylase” as used herein refers to an enzyme that acts upon substrate methylmalonyl-CoA and catalyzes decarboxylation of methylmalonyl-CoA into propionyl-CoA. The enzyme can also include, but is not limited to, transcarboxylase. In embodiments, a methylmalonyl-CoA decarboxylase comprises an enzyme under the enzyme classification number EC 4.1.1.


The term “propionyl-CoA:succinate CoA transferase” as used herein refers to an enzyme that acts upon substrates propionyl-CoA and succinate. The enzyme catalyzes the transfer of CoA from propionyl-CoA to succinate. The enzyme produces the products propionate and succinyl-CoA. In embodiments, a propionyl-CoA:succinate CoA transferase comprises an enzyme under the enzyme classification number EC 2.8.3. In embodiments, the bacterial host cell shows reduced or eliminated expression and/or activity, of propionyl-CoA:succinate CoA transferase.


The expression “at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of butyryl-CoA to succinate”, or a derivative thereof as used herein refers to an enzymatic pathway that starts with butyryl-CoA as a substrate and through at least one enzyme produces the product succinate. This pathway may involve the production of intermediates such as butyraldehyde and succinate semialdehyde. In embodiments, the pathway for conversion of butyrl-CoA to succinate comprises enzymes CoA-dependent propanal dehydrogenase, optionally PduP, β-alanine transaminase, optionally KES23458, and NADP+-dependent succinate semialdehyde dehydrogenase, optionally GabD.


The term “CoA-dependent propanal dehydrogenase” or “CoA-dependent propionaldehyde dehydrogenase” as used herein refers to an enzyme that reversibly converts 1-propanal (propionaldehyde) to propionyl-CoA (propionyl-CoA). In some instances, CoA-dependent propanal dehydrogenase enzymes, for example PduP, may have preferences for substrates with 2-4 or 2-6 carbons, and are able to reversibly convert butyryl-CoA to butyraldehyde. In some instances, CoA-dependent propanal dehydrogenase enzymes may have specificity for aldehydes containing 4 carbons. In embodiments, a CoA-dependent propanal dehydrogenase comprises an enzyme under the enzyme classification number EC 1.2.1.10.


The term “CoA-acylating aldehyde dehydrogenase” as used herein refers to an enzyme that can convert acetyl-CoA and butyryl-CoA to the corresponding aldehydes. In some instances, CoA-acylating aldehyde dehydrogenase enzymes may have preferences for substrates with 2-4 or 2-6 carbons, and are able to convert butyryl-CoA to butyraldehyde. In embodiments, a CoA-acylating aldehyde dehydrogenase comprises an enzyme under the enzyme classification number EC 1.2.1.27.


The term “β-alanine transaminase” as used herein refers to an enzyme that acts upon substrates β-alanine and pyruvate. β-alanine transaminase catalyzes a chemical reaction to produce 3-oxopropionate and L-alanine. The enzyme can also include, but is not limited to, β-alanine:pyruvate aminotransferase, β-alanine: pyruvate transaminase, Ω-amino acid aminotransferase, or Ω-amino acid:pyruvate aminotransferase. In embodiments, a β-alanine transaminase comprises an enzyme under the enzyme classification number EC 2.6.1.18.


The term “NADP+-dependent succinate semialdehyde dehydrogenase”, or a derivative thereof as used herein refers to an enzyme that acts upon substrates NADP+, H2O, and succinate semialdehyde. NADP+-dependent succinate semialdehyde dehydrogenase catalyzes a chemical reaction to produce succinate, NADPH and two H+ ions. The enzyme can include, but is not limited to, succinic semialdehyde dehydrogenase (NADP+), succinyl semialdehyde dehydrogenase (NADP+), succinate semialdehyde:NADP+ oxidoreductase, or NADP-dependent succinate-semialdehyde dehydrogenase. In embodiments, a NADP+-dependent succinate semialdehyde dehydrogenase is an enzyme under the enzyme classification number EC 1.2.1.79.


The expression “at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of butyryl-CoA to 3-hydroxybutyryl-CoA”, or a derivative thereof as used herein refers to an enzymatic pathway that starts with butyryl-CoA as a substrate and through at least one enzyme produces the product 3-hydroxybutyryl-CoA. This pathway may involve the production of intermediates such as, for example, crotonyl-CoA. In embodiments, the pathway for conversion of butyryl-CoA to 3-hydroxybutyryl-CoA comprises enzymes acyl-CoA dehydrogenase, optionally a short-chain acyl-CoA dehydrogenase, optionally at least one of PP_2216, BC_5341, MELS_RS10970, and FadE, and an enoyl-CoA hydratase/isomerase, optionally at least one of H16_RS27940, PhaJ, and PaaZ.


The term “acyl-CoA dehydrogenase”, or a derivative thereof as used herein refers to an enzyme that catalyzes the dehydrogenation of acyl-coenzymes A (acyl-CoAs) to 2-enoyl-CoAs. Acyl-CoA dehydrogenase enzymes can be categorized based on their specificity to short, medium, or long chain fatty acids. For example, short-chain acyl-CoA dehydrogenase catalyzes fatty acid oxidation of acyl-CoAs with 4-6 carbons. In embodiments, an acyl-CoA dehydrogenase comprises an enzyme under the enzyme classification number EC 1.3.8.7 or EC 1.3.8.8. Additionally, one of ordinary skill in the art will appreciate that some enzymes classified under a different enzyme class can have acyl-CoA dehydrogenase activity as well. Such non-specific “acyl-CoA dehydrogenase” are, therefore, also included in this definition. Nucleic acid sequences encoding acyl-CoA dehydrogenase are known in the art, and such acyl-CoA dehydrogenase are publicly available.


The term “enoyl-CoA hydratase/isomerase”, or a derivative thereof as used herein refers to an enzyme that acts upon substrates hydroxyacyl-CoA and NAD+. The enzyme catalyzes a chemical reaction to produce 3-oxoacyl-CoA, NADH, and a H+ ion. The enzyme can also include, but is not limited to, fatty acid oxidation complex subunit-α, enoyl-CoA hydratase, delta-(2)-trans-enoyl-CoA isomerase, 2-hydroxybutryrl-CoA epimerase, or 3-hydroxyacyl-CoA dehydrogenase. In embodiments, an enoyl-CoA hydratase/isomerase is an enzyme under the enzyme classification number EC 4.2.1.17, EC 5.1.2.3, EC 5.3.3.8, EC 1.1.1.35, EC 3.3.2.12 or EC 1.12.1.91.


The term “propionyl-CoA synthetase” as used herein refers to an enzyme that catalyzes the synthesis of propionyl-CoA from propionate and CoA, using ATP. Propionyl-CoA synthetase can also include, but is not limited to, propionate—CoA ligase. In embodiments, a propionyl-CoA synthetase is an enzyme under the enzyme classification number EC 6.2.1.17.


The term “glutamate decarboxylase” as used herein refers to an enzyme that catalyzes a chemical reaction to convert L-glutamate into gamma-aminobutyrate (GABA). The chemical reaction consumes an H+ ion and produces CO2. Glutamate decarboxylase can also include, but is not limited to, glutamate decarboxylase-α or glutamate decarboxylase-β. In embodiments, a glutamate decarboxylase comprises an enzyme under the enzyme classification number EC 4.1.1.15.


The term “succinyl-CoA transferase” as used herein refers to an enzyme that acts upon substrates succinate and 3-oxoacyl-CoA. The enzyme catalyzes a chemical reaction to produce succinyl-CoA and 3-oxo acid. Succinyl-CoA transferase can include, but is not limited to, 3-oxoacid coenzyme A-transferase, 3-ketoacid CoA-transferase, 3-ketoacid coenzyme A transferase, 3-oxo-CoA transferase, 3-oxoacid CoA dehydrogenase, acetoacetate succinyl-CoA transferase, acetoacetyl coenzyme A-succinic thiophorase, succinyl coenzyme A-acetoacetyl coenzyme A-transferase, or succinyl-CoA transferase. In embodiments, a succinyl-CoA transferase comprises an enzyme under the enzyme classification number EC 2.8.3.5.


The term “succinyl-CoA synthetase” as used herein refers to an enzyme that acts upon substrates succinate and CoA. The enzyme catalyzes a chemical reaction which consumes ATP to produce succinyl-CoA and ADP. The enzyme can also include, but is not limited to, a succinate-CoA ligase. In embodiments, succinyl-CoA synthetase comprises an enzyme under the enzyme classification number EC 6.2.1.5. In embodiments, the succinyl-CoA synthetase comprises a first subunit, optionally a SucC polypeptide, and a second subunit optionally a SucD polypeptide. In embodiments, the succinyl-CoA synthetase comprises a SucC polypeptide and a SucD polypeptide.


The term “glutamate dehydrogenase” as used herein refers to an enzyme that catalyzes the reversible conversion of ketoglutarate to glutamate, such as L-glutamate. In embodiments, the glutamate dehydrogenase comprises an enzyme under the enzyme classification number EC 1.4.1.4. In embodiments, the glutamate dehydrogenase is GdhA.


The term “attenuate”, or a derivative thereof as used here means to weaken, reduce or diminish. In one example, the sensitivity of a particular enzyme to feedback inhibition or inhibition caused by a composition that is not a product or a reactant (non-pathway specific feedback) is reduced such that the enzyme activity is not impacted by the presence of a compound. In a particular example, an enzyme that has been modified to be less active can be referred to as attenuated. A functional modification of the sequence encoding an enzyme can be used to attenuate expression of an enzyme. Sequence modifications may include, for example, a mutation, deletion, or insertion of one or more nucleotides in a gene sequence or a sequence controlling the transcription or translation of a gene sequence, which modification results in a reduction or inhibition of production of the gene product, or renders the gene product non-functional. In some examples, a functional deletion is described as a knock-out mutation. Other methods are available for attenuating expression of an enzyme. For example, attenuation can be accomplished by modifying the sequence encoding any gene described herein, e.g. by mutation, placing the gene under the control of a less active promoter, expressing interfering RNAs, ribozymes, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated transcriptional interference, or antisense sequences that target the gene of interest, and/or by changing the physical or chemical environment, such as temperature, pH, or solute concentration, such that the optimal activity of the gene or gene product is not realized. The skill person will appreciate that such attenuation effects can be achieved through any other techniques known in the art.


The term “homologous genes”, or a derivative thereof as used herein refers to a pair of genes from different but related species, which correspond to each other and which are identical or similar to each other. The term encompasses genes that are separated by the speciation process during the development of new species (e.g., orthologous genes), as well as genes that have been separated by genetic duplication (e.g., paralogous genes). Homologous polypeptides are polypeptides that are encoded by these homologous genes, and/or polypeptides having the same physiological function. The term “homolog”, or a derivative thereof as used herein refers to a homologous protein and to the gene encoding it.


The term “operably linked”, or a derivative thereof as used herein in the context of a polynucleotide sequence, refers to an arrangement of two or more components, wherein the components so described are in a relationship permitting them to function in a coordinated manner, for instance, the placement of one polynucleotide sequence into a functional relationship with another polynucleotide sequence. For example, a transcriptional regulatory sequence or a promoter is operably linked to a coding sequence if the transcriptional regulatory sequence or promoter facilitates aspects of the transcription of the coding sequence. A ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Aspects of the transcription process include, but not limited to, initiation, elongation, attenuation and termination. In general, an operably linked transcriptional regulatory sequence joined in cis with the coding sequence, but it is not necessarily directly adjacent to it, and the polynucleotide sequences being linked are contiguous and in the same reading frame.


The term “operon region” as used herein refers to a group of contiguous genes that are transcribed as a single transcription unit from a common promoter, and are thereby subject to co-regulation. In other words, an operon comprises a common promoter is operably linked to the group of contiguous genes in the operon. In embodiments, the operon comprises a regulator segment.


The term “orthologs” or “orthologous genes”, or a derivative thereof as used herein refers to genes in different species that have evolved from a common ancestral gene by speciation. Typically, orthologs retain the same function during the course of evolution. Identification of orthologs finds use in the reliable prediction of gene function in genomes of different species.


A “promoter” as used herein refers to a polynucleotide sequence that functions to direct transcription of a downstream gene. In embodiments, the promoter is appropriate to a host cell, such as a bacterial cell, in which the target gene is being expressed. The promoter, together with other transcriptional and translational regulatory polynucleotide sequences (also termed “control sequences”) is necessary to express a given gene. In general, the transcriptional and translational regulatory sequences include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences.


The term “regulatory segment”, “regulatory sequence”, or “expression control sequence”, or a derivative thereof as used herein refers to a polynucleotide sequence that is operatively linked with another polynucleotide sequence that encodes the amino acid sequence of a polypeptide chain to effect the expression of that encoded amino acid sequence. The regulatory sequence can inhibit, repress, promote, or drive the expression of the operably linked polynucleotide sequence encoding the amino acid sequence.


The terms “proportional yield” and “percentage yield” are used interchangeably herein referring to the amount of a desired product in relation to other products that are within the same mixture produced by a recombinant bacterial cell of the present disclosure. For example, the proportional yield of a desired product can be improved such that it is more predominant over the other components in the product mixture to reduce the burden of purification. In another example, the proportional yield of an undesired product (i.e. a component that will need to be removed from the desired product) can be reduced such that it is less predominant over the desired component in the product mixture to achieve the same end.


The term “substitution”, or a derivative thereof as used herein means replacing an amino acid in the sequence of a precursor polypeptide with another amino acid at a particular position, resulting in a mutant of the precursor polypeptide. The amino acid used as a substitute can be a naturally-occurring amino acid, or can be a synthetic or non naturally-occurring amino acid.


The term “surfactants” as used herein refers to substances that are capable of reducing the surface tension of a liquid in which they are dissolved. Surfactants are typically composed of a water-soluble head and a hydrocarbon chain or tail. The water-soluble head is hydrophilic and can be either ionic or nonionic, whereas the hydrocarbon chain is hydrophobic. Surfactants are used in a variety of products, including detergents and cleaners, and in chemical processes. Surfactants can be used to aid in the extraction and isolation of biopolymers such as those described herein. There are four types of surfactants: anionic surfactants, cationic surfactants, amphoteric surfactants, and non-ionic surfactants, any of which may be used for extraction and isolation of biopolymers, and/or treatment of biopolymers.


The term “wild-type” as used herein means, in the context of gene or protein, a polynucleotide or protein sequence that occurs in nature. In embodiments, the wild-type sequence refers to a sequence of interest that is a starting point for recombinant protein engineering.


The term “volatile fatty acid” or “VFA”, or a derivative thereof as used herein refers to fatty acids with less than six carbon atoms. For example, VFA includes, but not limited to formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and isovaleric acid. The VFA and salt thereof described herein are useful energy and carbon source, and as source materials to be converted to PHBV by bacteria. In embodiments, the carbon or energy source comprises at least one VFA. In embodiments, the at least one VFA comprises at least one of acetic acid, propionic acid, and butyric acid.


The term “biomass” refers to an organic or biological material that can be converted into an energy source. One exemplary source of biomass is plant matter. For example, corn, sugar cane, and switchgrass can be used as biomass. Another non-limiting example of biomass is animal matter, for example cow manure. Biomass also includes waste products from industry, agriculture, forestry, food, perennial grasses, and households. Examples of such waste products which can be used as biomass are fermentation waste, straw, lumber, sewage, garbage and food leftovers. Biomass also includes sources of carbon, such as carbohydrates (e.g., sugars). In embodiments, the biomass comprises pretreated biomass. Biomass may be pretreated by methods including, but not limited to, mechanical chipping, shredding, grinding. Methods of pretreating biomass can also include methods of biological degradation of lignin, hemicellulose, and polyphenols via fungi or chemical treatments with acids, alkali, organic solvents, and ionic liquids to increase internal surface area, and decrease degree of polymerization and crystallinity. In embodiments, physiochemical methods such as steam and other forms of heat can also be used to pretreat biomass. Methods of pretreating biomass produces pretreated biomass.


The term “carbon source” refers to a nutrient (such as sugar) that provides carbon needed for cellular respiration, cellular combustion, and/or synthesis of new organic molecules. A volatile fatty acid is useful as a carbon source for a recombinant bacterial cell described herein. In embodiments, at least one carbon source comprises at least one volatile fatty acid.


The term “granule”, or a derivative thereof as used herein relating to PHBV refers to the form of PHBV accumulated inside bacteria. PHBV is stored inside bacteria as discrete water-insoluble intracellular granules. PHBV granules can be extracted from bacteria by the methods described herein.


The term “mmol/L”, or a derivative thereof as used herein refers to a measure of the concentration of a solute in a solution in the unit of mmol of the solute per litre solution.


The term “Cmmol/L”, or a derivative thereof as used herein refers to a measure of the concentration of a solute in a solution in the unit of mmol of carbon per litre solution.


The term “VFA mmol/L”, or a derivative thereof as used herein refers to a measure of the concentration of total VFA in a solution in the unit of mmol of VFA per litre solution.


The term “mol %”, or a derivative thereof as used herein when relating to HV content in PHBV refers to a measure of molar percentage of HV in PHBV. For example, PHBV can have a HV content of 0-5 mol %, 5-10 mol %, 10-20 mol %, 20-50 mol %, 1-20 mol %, 1-30 mol %, 1-40 mol %, or 1-50 mol %, 1-60 mol %, 1-70 mol %, or 1-80 mol %.


The phrase “substantially free”, or a derivative thereof as used herein is used to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, a medium or a composition that is “substantially free of” glycerol would either completely lack glycerol, or so nearly completely lack glycerol that the effect would be the same as if it completely lacked glycerol. In other words, a composition that is “substantially free of” an element may still actually contain such item as long as there is no measurable effect thereof. For example, a medium or a composition that is substantially free of an ingredient or element comprises less than about 1% by wt or less than about 1% vol/vol of the ingredient or element in the composition.


The term (w/v), or a derivative thereof as used herein refers to a measure of the concentration of a solution or mixture obtained by dividing the mass or weight of the solute by the volume of the solution or mixture.


The term (w/w), or a derivative thereof as used herein refers to a measure of the concentration of a solution or mixture obtained by dividing the mass or weight of the solute by the weight of the solution or mixture.


In understanding the scope of the present disclosure, the term “comprising” and its derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms, “including”, “having” and their derivatives. The term “consisting” and its derivatives, as used herein, are intended to be closed terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The term “consisting essentially of”, or a derivative thereof as used herein, is intended to specify the presence of the stated features, elements, components, groups, integers, and/or steps as well as those that do not materially affect the basic and novel characteristic(s) of features, elements, components, groups, integers, and/or steps. Finally, terms of degree such as “substantially”, “about” and “approximately”, or a derivative thereof as used herein mean a reasonable amount of deviation of the modified term such that the end result is not significantly changed. These terms of degree should be construed as including a deviation of at least ±5% of the modified term if this deviation would not negate the meaning of the word it modifies.


As used in this specification and the appended claims, the singular forms “a”, “an” and “the” include plural references unless the content clearly dictates otherwise. It should also be noted that the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


The recitation of numerical ranges by endpoints herein includes all numbers and fractions subsumed within that range (e.g. 1 to 5 includes for example 1, 1.5, 2, 2.75, 3, 3.90, 4, and 5). It is also to be understood that all numbers and fractions thereof are presumed to be modified by the term “about”.


As used herein, the term “polypeptide” as used herein encompasses both peptides and proteins, unless indicated otherwise. The 3-letter code as well as the 1-letter code for amino acid residues as defined in conformity with the IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN) is used throughout this disclosure. It is also understood that a polypeptide may be coded for by more than one polynucleotide sequence due to the degeneracy of the genetic code. An enzyme is a protein that is also a biocatalyst, which accelerate chemical reactions. It is understood that the enzymes described herein, unless otherwise stated, have substrate specificities and enzymatic activity (e.g. catalytic rate) with respect to their substrates. For example, an acyl-CoA synthetase polypeptide has acyl-CoA synthetase activity.


The term “nucleic acid molecule” or its derivatives thereof as used herein, is intended to include unmodified DNA or RNA or modified DNA or RNA. For example, the nucleic acid molecules of the disclosure can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is a mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically double-stranded or a mixture of single- and double-stranded regions. In addition, the nucleic acid molecules can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. The nucleic acid molecules of the disclosure may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. “Modified” bases include, for example, tritiated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus “nucleic acid molecule” embraces chemically, enzymatically, or metabolically modified forms. The term “polynucleotide” shall have a corresponding meaning.


As used herein “sequence identity” refers to the extent to which two optimally aligned polynucleotides or polypeptide sequences are invariant throughout a window of alignment of components, e.g. nucleotides or amino acids. An “identity fraction” for aligned segments of a test sequence and a reference sequence is the number of identical components which are shared by the two aligned sequences divided by the total number of components in the reference sequence segment, i.e. the entire reference sequence or a smaller defined part of the reference sequence. “Percent identity” is the identity fraction times 100. The extent of identity (homology) between two sequences can be ascertained using a computer program and mathematical algorithm. Percentage identity can be calculated using the alignment program Clustal Omega, available at www.ebi.ac.uk/Tools/msa/clustalo using default parameters. See, Sievers et al., “Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.” (2011 Oct. 11) Molecular systems biology 7:539. For the purposes of calculating identity to a sequence, extensions such as tags are not included.


The term “plasmid”, “vector”, or “construct” as used herein refers to a circular double-stranded (ds) DNA construct used as a cloning vector, and which forms an extrachromosomal self-replicating genetic element in some microorganism such as bacteria, or integrates into the host chromosome. The plasmid can be part of an expression system. The plasmid is useful for creating a recombinant bacterial cell, for example, that produces polypeptides which catalyze the synthesis of a biopolymer, including PHBV described herein.


The terms “expression” or “express” refers to the production of mRNA from the polynucleotide sequence of a gene or portion of a gene. The production of any polypeptide which is encoded by the mRNA, gene, or portion of the gene is also included within the scope of the terms.


The term “encoding” refers to the property of polynucleotide sequences to behave as templates for the production of other macromolecules such as mRNA, polypeptides, and cDNA.


The term “host strain” or “host cell” refers to a suitable host for an expression vector or genomically-integrated expression cassette comprising polynucleotide of the present disclosure.


A “segment” of a nucleotide sequence is a sequence of contiguous nucleotides. A segment can be at least about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 75, 85, 100, 110, 120, 130, 145, 150, 160, 175, 200, 250, 300, 350, 400, 450, 500 or more contiguous nucleotides.


The definitions and embodiments described in particular sections are intended to be applicable to other embodiments herein described for which they are suitable as would be understood by a person skilled in the art.


Recombinant Bacterial Host Cells


The disclosure provides bacterial host cells, comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaB protein, (c) a nucleic acid molecule encoding a PhaA protein, and (d) a nucleic acid molecule encoding a BktB protein. In embodiments, the bacterial host cells disclosed herein comprise more than one copy (for example, two copies, three copies, 4 hours copies, or 5 or more copies) of the nucleic acid molecule encoding a PhaC protein.


In embodiments, the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway. Further details are provided in Miscevic D et al., Applied Microbiology and Biotechnology 2021, 105:1435-1446, and Srirangan K et al., Scientific Reports 2016, 6:36470, the contents of each of which are incorporated herein by reference in their entireties for all purposes. In embodiments, the bacterial host cell comprises a sleeping beauty mutase (Sbm) operon comprising a promoter. In embodiments, the bacterial host cell comprises a sleeping beauty mutase (Sbm) operon comprising a Ptrc promoter. In embodiments, the Ptrc promoter comprises a nucleic acid sequence having at least 95% (for example, about 96%, about 97%, about 98%, about 99% or about 100%) identity to SEQ ID NO: 254. In embodiments, the Ptrc promoter comprises the nucleic acid sequence of SEQ ID NO: 254. In embodiments, the Ptrc promoter consists of the nucleic acid sequence of SEQ ID NO: 254.


In embodiments, one or more of the PhaA protein, the PhaB protein, the PhaC protein and the BktB protein are catalytically active at a temperature in the range of about 30° C. to about 50° C. In embodiments, each of the PhaA protein, the PhaB protein, the PhaC protein and the BktB protein are catalytically active at a temperature in the range of about 30° C. to about 50° C. In embodiments, each of the PhaA protein, the PhaB protein, the PhaC protein and the BktB protein are catalytically active at a temperature in the range of about 37° C. to about 50° C.


In embodiments, the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, a Cupriavidus gilardii QJ1 PhaA protein, or a Cupriavidus necator PhaA protein. In embodiments, the PhaA protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 241. In embodiments, the PhaA protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 241. In embodiments, the PhaA protein comprises or consists of the amino acid sequence of SEQ ID NO: 241. Further details are provided in Sheu D-S et al., Journal of bacteriology 2012, 194:2620-2629, the contents of which are incorporated herein by reference in its entirety for all purposes.


In embodiments, the nucleic acid molecule encoding a PhaA protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 248. In embodiments, the nucleic acid molecule encoding a PhaA protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 248. In embodiments, the nucleic acid molecule encoding a PhaA protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 248.


In embodiments, the PhaB protein is a Cupriavidus sp. S-6 PhaB protein, a Cupriavidus gilardii QJ1 PhaB protein, or a Cupriavidus necator PhaB protein. In embodiments, the PhaB protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 242. In embodiments, the PhaB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 242. In embodiments, the PhaB protein comprises or consists of the amino acid sequence of SEQ ID NO: 242.


In embodiments, the nucleic acid molecule encoding a PhaB protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 249. In embodiments, the nucleic acid molecule encoding a PhaB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 249. In embodiments, the nucleic acid molecule encoding a PhaB protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 249.


In embodiments, the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, a Cupriavidus gilardii QJ1 PhaC protein, or a Cupriavidus necator PhaC protein. In embodiments, the PhaC protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 243. In embodiments, the PhaC protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 243. In embodiments, the PhaC protein comprises or consists of the amino acid sequence of SEQ ID NO: 243.


In embodiments, the nucleic acid molecule encoding a PhaC protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 250. In embodiments, the nucleic acid molecule encoding a PhaC protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 250. In embodiments, the nucleic acid molecule encoding a PhaC protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 250.


In embodiments, the BtkB protein is a Cupriavidus sp. S-6 BtkB protein, a Cupriavidus gilardii QJ1 BtkB protein, or a Cupriavidus necator BtkB protein. In embodiments, the BtkB protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 245. In embodiments, the BtkB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 245. In embodiments, the BtkB protein comprises or consists of the amino acid sequence of SEQ ID NO: 245.


In embodiments, the nucleic acid molecule encoding a BtkB protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 251. In embodiments, the nucleic acid molecule encoding a BtkB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 251. In embodiments, the nucleic acid molecule encoding a BtkB protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 251.


In embodiments, the bacterial host cell comprises: a first operon, comprising: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaB protein, and (c) a nucleic acid molecule encoding a PhaA protein. In embodiments, the bacterial host cell comprises: a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein and (ii) a nucleic acid molecule encoding a PhaB protein. In embodiments, the bacterial host cell comprises: a first operon, comprising: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaB protein, (c) a nucleic acid molecule encoding a PhaA protein; and a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein and (ii) a nucleic acid molecule encoding a PhaB protein.


In embodiments, the first and/or second operons comprise a promoter operably linked to the genes in the first and/or the second operons. In embodiments, the promoter comprises the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2) or the nucleic acid sequence of SEQ ID NO: 254 (Ptrc). In embodiments of the first operon, the nucleic acid molecule encoding the PhaC protein is operably linked to a promoter. In embodiments, the first operon comprises the following nucleic acid molecules in the order (i) through (iii): (i) a nucleic acid molecule encoding a PhaC protein, (ii) a nucleic acid molecule encoding a PhaA protein, and (iii) a nucleic acid molecule encoding a PhaB protein.


The disclosure further provides bacterial host cells, comprising: a first operon comprising: (a) a nucleic acid molecule encoding a PhaC protein, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, and (c) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein; a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the BktB protein is a Cupriavidus gilardii QJ1 BktB protein, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein; and a sleeping beauty mutase (Sbm) operon comprising a promoter. In embodiments, each of the first and the second operons comprises the promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2).


The disclosure further provides bacterial host cells, comprising: a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 250, (b) a nucleic acid molecule encoding a PhaA protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 248, (c) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249, and; a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 251, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249; and a sleeping beauty mutase (Sbm) operon comprises a promoter that is operably linked to the genes in the Sbm operon. In embodiments, each of the first and the second operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2).


In embodiments, the bacterial host cells disclosed herein are capable of converting glycerol to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV. In embodiments, the bacterial host cell is capable of converting glycerol into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV at a temperature in the range of about 30° C. to about 50° C. In embodiments, the bacterial host cells disclosed herein are capable of converting glycerol to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV with a weight average molecular weight (Mw) of about 0.5 MDa to about 2.0 MDa, for example, about 0.6 MDa, about 0.7 MDa, about 0.8 MDa, about 0.9 MDa, about 1 MDa, about 1.1 MDa, about 1.2 MDa, about 1.3 MDa, about 1.4 MDa, about 1.5 MDa, about 1.6 MDa, about 1.7 MDa, about 1.8 MDa, about 1.9 MDa or about 2 MDa, including all subranges and values that lie therebetween. In embodiments, the bacterial host cells disclosed herein are capable of converting glycerol to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHB V with a weight average molecular weight (Mw) of about 1 MDa to about 1.5 MDa.


In embodiments, the bacterial host cell exhibits reduced or eliminated succinate dehydrogenase (sdhA) function. In embodiments, the bacterial host cell comprises a nucleic acid molecule encoding a fusion protein, comprising sdhA and a protease degradation tag, wherein the expression of the fusion protein is regulated by a EsaR quorum sensing system. Further details are provided in Gupta A et al., Nature biotechnology 2017, 35:273-279 and Shong J et al., ACS chemical biology 2013, 8:789-795, the contents of each of which are incorporated herein by reference in their entireties for all purposes.


In embodiments, the bacterial host cell comprises a nucleic acid molecule encoding sulA, wherein the nucleic acid molecule is operably linked to an inducible promoter. In embodiments, the inducible promoter is a temperature-inducible promoter. Further details are provided in Zhang X-C et al., Metabolic Engineering 2018, 45:32-42, and Jechlinger W, et al., Journal of biotechnology 2005, 116:11-20, the contents of each of which are incorporated herein by reference in its entirety for all purposes.


In embodiments, the bacterial host cell comprises one or more of the following: (a) a nucleic acid molecule encoding a LvaE protein, (b) a nucleic acid molecule encoding a propionate-CoA transferase, (c) a nucleic acid molecule encoding a FadE protein, (d) a nucleic acid molecule encoding a FadB protein, and (e) a nucleic acid molecule encoding a AtoB protein. In embodiments, the bacterial host cell comprises: a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, and (b) a nucleic acid molecule encoding a FadB protein.


In embodiments, the bacterial host cell comprises: a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, (b) a nucleic acid molecule encoding a FadB protein, and (c) a nucleic acid molecule encoding a AtoB protein. In embodiments, the bacterial host cell comprises: a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase. In embodiments, the FadE protein, the FadB protein and/or the AtoB protein are expressed in Escherichia coli str. K-12 substr. MG1655.


In some embodiments, the bacterial host cell has reduced or eliminated activity of the AtoB protein. In some embodiments, the heterologous and/or the endogenous nucleic acid sequences that encode the AtoB protein in the bacterial host cell are inactivated and/or deleted.


In embodiments, the bacterial host cell comprises: a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, and (b) a nucleic acid molecule encoding a FadB protein; and a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase. In embodiments, the bacterial host cell comprises: a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, (b) a nucleic acid molecule encoding a FadB protein, and (c) a nucleic acid molecule encoding a AtoB protein; and a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase.


In embodiments, the propionate CoA-transferase is a Clostridium propionicum propionate CoA-transferase (Pct(Cp)) or a Megasphaera elsdenii propionate CoA-transferase (Pct(Me)). In embodiments, the propionate CoA-transferase is a Clostridium propionicum (Pct(Cp)). Further details are provided in Zhuang Q et al. Microb Cell Fact 18, 135 (2019), the contents of which are incorporated herein by reference in its entirety for all purposes. In embodiments, the Pct(Cp) protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 30. In embodiments, the Pct(Cp) protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 30. In embodiments, the Pct(Cp) protein comprises or consists of the amino acid sequence of SEQ ID NO: 30.


In embodiments, the nucleic acid molecule encoding a Pct(Cp) protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 89. In embodiments, the nucleic acid molecule encoding a Pct(Cp) protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 89. In embodiments, the nucleic acid molecule encoding a Pct(Cp) protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 89.


In embodiments, the LvaE protein is a Pseudomonas putida LvaE protein. Further details are provided in Rand J M et al., Nature microbiology 2017, 2:1624-1634, the contents of which are incorporated herein by reference in its entirety for all purposes. In embodiments, the LvaE protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 247. In embodiments, the LvaE protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 247. In embodiments, the LvaE protein comprises or consists of the amino acid sequence of SEQ ID NO: 247.


In embodiments, the nucleic acid molecule encoding a LvaE protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 253. In embodiments, the nucleic acid molecule encoding a LvaE protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 253. In embodiments, the nucleic acid molecule encoding a LvaE protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 253.


In embodiments, the FadE protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 13. In embodiments, the FadE protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 13. In embodiments, the FadE protein comprises or consists of the amino acid sequence of SEQ ID NO: 13. In embodiments, the nucleic acid molecule encoding a FadE protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 72. In embodiments, the nucleic acid molecule encoding a FadE protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 72. In embodiments, the nucleic acid molecule encoding a FadE protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 72.


In embodiments, the FadB protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 12. In embodiments, the FadB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 12. In embodiments, the FadB protein comprises or consists of the amino acid sequence of SEQ ID NO: 12. In embodiments, the nucleic acid molecule encoding a FadB protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 71. In embodiments, the nucleic acid molecule encoding a FadB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 71. In embodiments, the nucleic acid molecule encoding a FadB protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 71.


In embodiments, the AtoB protein comprises an amino acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 182. In embodiments, the AtoB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 182. In embodiments, the AtoB protein comprises or consists of the amino acid sequence of SEQ ID NO: 182. In embodiments, the nucleic acid molecule encoding a AtoB protein comprises a nucleic acid sequence having at least 80% (for example, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, or 100%) identity to SEQ ID NO: 191. In embodiments, the nucleic acid molecule encoding a AtoB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 191. In embodiments, the nucleic acid molecule encoding a AtoB protein comprises or consists of the nucleic acid sequence of SEQ ID NO: 191.


In embodiments, each of the first, second, third and fourth operons comprises a promoter operably linked to the genes in the first, second, third and fourth operons. In embodiments, the promoter comprises the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2) or the nucleic acid sequence of SEQ ID NO: 254 (Ptrc). In embodiments, each of the first, second, third and fourth operons comprises an inducible or a constitutive promoter. In embodiments, each of the first, second and fourth operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2), and the third operon comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).


In embodiments, the promoter comprising a Ptrc promoter. In embodiments, the promoter comprises a Pgracmax2 promoter. In embodiments, the Pgracmax2 promoter comprises a nucleic acid sequence having at least 95% (for example, about 96%, about 97%, about 98%, about 99% or about 100%) identity to SEQ ID NO: 233. In embodiments, the Pgracmax2 promoter comprises the nucleic acid sequence of SEQ ID NO: 233. In embodiments, the Pgracmax2 promoter consists of the nucleic acid sequence of SEQ ID NO: 233.


The disclosure provides bacterial host cells, comprising: a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein; a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the BktB protein is a Cupriavidus gilardii QJ1 BktB protein, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein; a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, (b) a nucleic acid molecule encoding a FadB protein, and (c) a nucleic acid molecule encoding a AtoB protein; a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, wherein the LvaE protein is a Pseudomonas putida LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase, wherein the propionate CoA-transferase is a Clostridium propionicum propionate CoA-transferase (Pct(Cp)), and a sleeping beauty mutase (Sbm) operon comprises an inducible promoter.


The disclosure further provides bacterial host cells, comprising:

    • a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 250, (b) a nucleic acid molecule encoding a PhaA protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 248, and (c) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249;
    • a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 251, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249;
    • a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 72, (b) a nucleic acid molecule encoding a FadB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 71, and (c) a nucleic acid molecule encoding a AtoB protein, and wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 191;
    • a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 253 and (b) a nucleic acid molecule encoding a propionate CoA-transferase, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 89, and a sleeping beauty mutase (Sbm) operon comprising a promoter.


In embodiments, the bacterial host cell exhibits reduced or eliminated function of an endogenous lacI repressor. In embodiments, the bacterial host cell comprises a deletion of the nucleic acid sequence encoding an endogenous lacI repressor. In embodiments, the bacterial host cell comprises a nucleic acid molecule encoding an enoyl-CoA hydratase/isomerase PhaJ. In embodiments, the nucleic acid molecule encoding an enoyl-CoA hydratase/isomerase PhaJ is derived from Aeromonas caviae, or a homolog thereof.


In embodiments, the bacterial host cell comprises one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding an CoA-acylating aldehyde dehydrogenase (Ald); (b) a nucleic acid molecule encoding an glutamate decarboxylase GadB; and (c) β-alanine transaminase KES23458. In embodiments, the CoA-acylating aldehyde dehydrogenase (Ald) is derived from Clostridium beijerinckii, or a homolog thereof. In embodiments, the nucleic acid molecule encoding an glutamate decarboxylase GadB is derived from E. coli or Lactobacillus senmaizukei. In embodiments, the nucleic acid molecule encoding the β-alanine transaminase KES23458 is derived from Pseudomonas sp. strain AAC.


In embodiments, the bacterial host cell is capable of converting one or more volatile fatty acids (VFAs) to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV. In embodiments, the bacterial host cell is capable of growing in a medium containing more than 100 mM VFAs. In embodiments, the bacterial host cell has a doubling time of at least about 0.1 hour−1 (1/hour) in a medium containing more than 100 mM VFAs, for example, about 0.1 hour−1 (1/hour), 0.2 hour−1, 0.3 hour−1, 0.4 hour−1, 0.5 hour−1, 0.6 hour−1, 0.7 hour−1, 0.8 hour−1, 0.9 hour−1, 1 hour−1, 2 hour−1, 3 hour−1, 4 hour−1, 5 hour−1, or about 6 hour−1 in a medium containing more than 100 mM VFAs. In embodiments, the bacterial host cell is capable of growing in a medium containing more than 225 mM VFAs. In embodiments, the bacterial host cell has a doubling time of at least about 0.1 hour−1 (1/hour) in a medium containing more than 225 mM VFAs. In embodiments, the bacterial host cell has a doubling time of at least about 0.1 hour−1 (1/hour) in a medium containing more than 225 mM VFAs, for example, about 0.1 hour−1 (1/hour), 0.2 hour−1, 0.3 hour−1, 0.4 hour−1, 0.5 hour−1, 0.6 hour-1, 0.7 hour−1, 0.8 hour−1, 0.9 hour−1, 1 hour−1, 2 hour−1, 3 hour−1, 4 hour−1, 5 hour−1, or about 6 hour−1 in a medium containing more than 225 mM VFAs.


In embodiments, the bacterial host cell is capable of growing in a medium containing a concentration of VFAs in the range of about 100 mM to about 1000 mM. In embodiments, the bacterial host cell has a doubling time of at least about 0.1 hour−1 (1/hour) in a medium containing a concentration of VFAs in the range of about 100 mM to about 1000 mM, for example, about 150 mM, about 200 mM, about 250 mM, about 300 mM, about 350 mM, about 400 mM, about 450 mM, about 500 mM, about 550 mM, about 600 mM, about 650 mM, about 700 mM, about 750 mM, about 800 mM, about 850 mM, about 900 mM, about 950 mM, or about 1000 mM, including all values and subranges that lie therebetween.


In embodiments, the one or more volatile fatty acids comprises a mixture of acetate, propionate, and butyrate. In embodiments, the mixture of acetate, propionate, and butyrate comprises 50 mol % acetate, 20 mol % propionate, and 30 mol % butyrate. In embodiments, the bacterial host cell is Escherichia coli. In embodiments, at least one of the one or more nucleic acid molecules is integrated into the bacterial host cell genome. In embodiments, all of the one or more nucleic acid molecules are integrated into the bacterial host cell genome. In embodiments, the bacterial host cell comprises at least one plasmid, wherein the at least one plasmid comprises at least one of the one or more nucleic acid molecules.


In embodiments, the bacterial host cells disclosed herein may be engineered to improve glycerol uptake. For instance, In embodiments, the bacterial host cells disclosed herein may express a mutant glycerol kinase GlpK that is not inhibited by fructose bisphosphate. The mutant glycerol kinase GlpK may be expressed from constitutive or inducible promoters. Further details are provided in Kim K et al., Metabolic Engineering 2022, 69:59-72, Herring C D et al., Nature genetics 2006, 38:1406-1412, and Kang M, et al., Frontiers in microbiology 2019, 10:1845, the contents of which are incorporated herein by reference in its entirety for all purposes.


In embodiments, the bacterial host cells disclosed herein are engineered to express one or more copies of a polyhydroxyalkanoate (PHA) depolymerase.


Exemplary recombinant bacteria host cells disclosed herein are listed below in Table 10:










TABLE 10





Strain name
Strain Genotype







MES1
CPC-Sbm(endA::λ-Red, ghrB::(Ptrc::pct(Cp),



gadC::(Pgracmax2::lvaE)


MES2
CPC-Sbm(endA::λ-Red, ghrB::(Ptrc::pct(Cp),



gadC::(Pgracmax2:lvaE), ΔfadR, tesB::(atoS:atoC(I129S)))


MES3
CPC-Sbm(intF::(PtetA::spc.P279T-cas9),



yjcS::(Pgracmax2::IvaE:pct(Cp)),



bcsA::(Ptrc::fadE:fadB:atoB))


MES3-
CPC-Sbm(intF::(PtetA::spc.P279T-cas9),


PHBV
yjcS::(Pgracmax2::IvaE:pct(Cp)),



bcsA::(Ptrc::fadE:fadB:atoB),



ghrB::(Pgracmax2::phaCAB(S-6)))


MES4
CPC-Sbm(intF::(Pgracmax2::lvaE:pct(Cp)),



bcsA::(Ptrc::fadE:fadB:atoB), ΔlacI)


MES4-
CPC-Sbm(intF::(Pgracmax2::lvaE:pct(Cp)),


PHBV
bcsA::(Ptrc::fadE:fadB:atoB), ΔlacI,



endA::(Pgracmax2::(RBS-T7)phaCAB(S-6)),



yjcS::(Pgracmax2::(RBS-T7)bktB(QJ1):phaB(S-6)))


MES4-
CPC-Sbm(intF::(Pgracmax2::lvaE:pct(Cp)),


PHBV2
bcsA::(Ptrc::fadE:fadB:ΔatoB), ΔlacI,



endA::(Pgracmax2::(RBS-T7)phaCAB(S-6)),



yjcS::(Pgracmax2::(RBS-T7)bktB(QJ1):phaB(S-6)),



ΔatoB)


CPC-Sbm-
CPC-Sbm(endA::λ-Red, ghrB::(Ptrc::pct(Cp)), ΔpaaZ,


BP1
ΔfadE, ΔgabT, ΔyqhD)


CPC-Sbm-
CPC-Sbm(endA::λ-Red, ghrB::(Ptrc::pct(Cp)), ΔpaaZ,


BP1-
ΔfadE, ΔgabT, ΔyqhD, pK-Ptrc::gadBe1-


GadBe(Ec)
Pgracmax2::lvaE, Ptrc-FG99RS13575:ald:gabD)


CPC-Sbm-
CPC-Sbm(endA::λ-Red, ghrB::(Ptrc::pct(Cp)), ΔpaaZ,


BP1-
ΔfadE, ΔgabT, ΔyqhD, pK-Plac::gad(Ls)-


Gad(Ls))
Pgracmax2::lvaE, Ptrc-FG99RS13575:ald:gabD)


GEN-EC-
CPC-Sbm(endA::λ-Red, yjcS::(PtetA::spc.P279T-cas9),


GLY-01
bcsA::(Pgracmax2::(RBS-T7)bktB(Cn):phaB(Cn)),



intF::(Pgracmax2::(RBS-T7)phaC(Cn):phaA(Cn)))


GEN-EC-
CPC-Sbm(yjcS::(Pgracmax2::phaCAB(S-6))),


GLY-17
bcsA::(Pgracmax2::(RBS-T7)bktB(QJ1):phaB(S-6)))










Methods of Metabolizing Glycerol Using Recombinant Bacterial Host Cells


The disclosure provides methods of metabolizing glycerol using a bacterial host cell, the method comprising: growing bacterial host cells, comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway in a medium containing glycerol, wherein the method results in the conversion of glycerol to one or more metabolic products by the bacterial host cell. In embodiments, the medium is a liquid medium.


The disclosure provides methods of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising: growing bacterial host cells, comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway in a medium containing glycerol, wherein the method results in the conversion of glycerol to PHBV by the bacterial host cell.


The disclosure provides methods of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising: (a) growing bacterial host cells, comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway in a medium containing glycerol at a first temperature for a first period to form a bacterial culture, and (b) incubating the bacterial culture at a second temperature for a second period. In embodiments, the method results in the conversion of glycerol to PHBV by the bacterial host cell.


In embodiments, the first temperature is in a range of about 30° C. to about 37° C., for example, about 30° C., about 31° C., about 32° C., about 33° C., about 34° C., about 35° C., about 36° C., or about 37° C., including all values and subranges that lie therebetween. In embodiments, the first temperature is about 37° C. In embodiments, the second temperature is in a range of about 37° C. to about 50° C., for example, about 38° C., about 39° C., about 40° C., about 41° C., about 42° C., about 43° C., about 44° C., about 45° C., about 46° C., about 47° C., about 48° C., about 49° C., or about 50° C., including all values and subranges that lie therebetween. In embodiments, the second temperature is in a range of about 37° C. to about 45° C.


In embodiments, the first period is in the range of about 1 hour to about 24 hours. In embodiments, the first period is in the range of about 1 hour to about 16 hours. In embodiments, the first period lasts for about 16 hours to about 36 hours—for example, about 16 hours, about 17 hours, about 18 hours, about 19 hours, about 20 hours, about 21 hours, about 22 hours, about 23 hours, about 24 hours, about 25 hours, about 26 hours about 27 hours, about 28 hours, about 29 hours, about 30 hours, about 31 hours, about 32 hours, about 33 hours, about 34 hours, about 35 hours, or about 36 hours. In embodiments, the first period lasts for about 16 hours to about 24 hours. In embodiments, optical density, dissolved oxygen, or base consumption are used as metrics for determining when the growth phase is complete. Maximum optical density during growth phase may depend on a number of factors, such as, for example, inoculation density, fermentation conditions, type of spectrophotometer used for measurements, and media composition.


In embodiments, the second period is in the range of about 24 hours to about 44 hours. In embodiments, the second period is in the range of about 12 hours to about 60 hours, for example, about 14 hours, about 16 hours, about 18 hours, about 20 hours, about 22 hours, about 24 hours, about 26 hours, about 28 hours, about 30 hours, about 32 hours, about 34 hours, about 36 hours, about 38 hours, about 40 hours, about 42 hours, about 44 hours, about 46 hours, about 48 hours, about 50 hours, about 52 hours, about 54 hours, about 56 hours, about 58 hours, or about 69 hours, including all values and subranges that lie therebetween.


In embodiments of the methods disclosed herein, the bacterial host cells are grown at a first temperature in a range of about 30° C. to about 37° C. until about the 16 hour-timepoint to about the 24 hour-timepoint to form a bacterial culture, and thereafter, incubating the bacterial culture at a second temperature until about the 48 hour-timepoint to about the 60 hour-timepoint.


In embodiments, the methods disclosed herein comprise producing PHBV from glycerol with a weight average molecular weight (Mw) of about 0.5 MDa to about 2.0 MDa, for example, about 0.6 MDa, about 0.7 MDa, about 0.8 MDa, about 0.9 MDa, about 1 MDa, about 1.1 MDa, about 1.2 MDa, about 1.3 MDa, about 1.4 MDa, about 1.5 MDa, about 1.6 MDa, about 1.7 MDa, about 1.8 MDa, about 1.9 MDa or about 2 MDa, including all subranges and values that lie therebetween. In embodiments, the methods disclosed herein comprise producing PHBV from glycerol with a weight average molecular weight (Mw) of about 1 MDa to about 1.5 MDa. In embodiments, the weight average molecular weight (Mw) is determined using gel permeation chromatography. In specific embodiments, the Mw is determined using conventional gel permeation chromatography with a single refractive index detector, against a polystyrene standard for Mw calibration. In embodiments, the medium contains more than about 0.7 g/g glycerol.


Methods of Metabolizing Volatile Fatty Acids (VFAs) Using Recombinant Bacterial Host Cells


The disclosure provides methods of metabolizing volatile fatty acids (VFAs) in a bacterial medium, the method comprising: growing bacterial host cells comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, (e) a nucleic acid molecule encoding a LvaE protein, (f) a nucleic acid molecule encoding a propionate-CoA transferase, (g) a nucleic acid molecule encoding a FadE protein, (h) a nucleic acid molecule encoding a FadB protein, and (i) a nucleic acid molecule encoding a AtoB protein in a medium containing one or more volatile fatty acids (VFAs). In embodiments, the methods disclosed herein result in the conversion of VFAs to one or more metabolic products by the bacterial host cell.


The disclosure provides methods of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising: growing bacterial host cells comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, (e) a nucleic acid molecule encoding a LvaE protein, (f) a nucleic acid molecule encoding a propionate-CoA transferase, (g) a nucleic acid molecule encoding a FadE protein, (h) a nucleic acid molecule encoding a FadB protein, and (i) a nucleic acid molecule encoding a AtoB protein, wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway in a medium containing one or more volatile fatty acids (VFAs). In embodiments, the methods disclosed herein result in the conversion of VFAs to PHBV by the bacterial host cell. In embodiments, the methods disclosed herein comprise producing PHBV from VFAs with a weight average molecular weight (Mw) of about 3 MDa.


Metabolic Pathways for the Conversion of VFAs to PHBV



E. coli has a natural capacity to dissimilate acetate as sole carbon source, and acetate can be converted to (R)-HB-CoA. The pathway to dissimilate acetate can be manipulated, without wishing to be bound by theory, and begins with the conversion of acetate to acetyl-CoA via an acetate kinase polypeptide and a phosphate acetyltransferase AckA-Pta polypeptide (encoded by ackA-pta), an acetyl-CoA synthetase Acs or AcsA polypeptide (encoded by acs and acsA from Bacillus subtilis, respectively), and/or a propionyl-CoA synthetase PrpE polypeptide (encoded by prpE and can be derived from Salmonella enterica, Cupriavidus necator, or E. coli) followed by the fusion of two acetyl-CoA moieties to yield acetoacetyl-CoA via a β-ketothiolase BktB polypeptide or PhaA polypeptide (encoded by bktB and phaA, respectively, from C. necator). Acetoacetyl-CoA is then reduced to (R)-HB-CoA by a NADPH-dependent acetoacetyl-CoA reductase PhaB polypeptide (encoded by phaB from C. necator) or by a NADH-dependent acetoacetyl-CoA reductase PhaB(Hb) polypeptide (encoded by phaB(Hb) from Halomonas bluephagenesis TD01). Alternatively, acetate can be converted to succinate via the glyoxylate shunt, and succinate can be converted to succinyl-CoA by blocking its conversion to fumarate by knocking out or down sdhA (encoding succinate:quinone oxidoreductase, FAD binding protein SdhA).


This disclosure provides conversion of succinate to succinyl-CoA by expression of a succinyl-CoA transferase CKL_RS14680 polypeptide (encoded by CKL_RS14680 from Clostridium kluyveri), succinyl-CoA synthetase polypeptides (encoded by sucC and sucD), or a propionyl-CoA transferase YgfH polypeptide (encoded by ygfH). Without wishing to be bound by theory, the Sbm pathway is a dormant pathway in E. coli for the production of various chemicals derived from propionyl-CoA (including PHBV) using glycerol as carbon source. This disclosure also provides coupling of the Sbm pathway with pathways for VFA dissimilation to provide control over HV content, i.e. by diverting succinate produced from acetate and butyrate toward (R)-HV-CoA production. In this pathway, succinyl-CoA is converted to L-methylmalonyl-CoA by a methylmalonyl-CoA mutase Sbm polypeptide (encoded by sbm), which is subsequently converted to propionyl-CoA via a methylmalonyl-CoA decarboxylase YgfG polypeptide (encoded by ygfG). Propionyl-CoA is fused with acetyl-CoA via a PhaA polypeptide or a BktB polypeptide to yield 3-ketovaleryl-CoA, which is subsequently converted to (R)-HV-CoA via a PhaB polypeptide or a PhaB(Hb) polypeptide. On the other hand, propionate is converted directly to propionyl-CoA by a PrpE polypeptide or a propionate-CoA transferase Pct polypeptide (derived from Clostridium propionicum or Megasphaera elsdenii, i.e. Pct(Cp) or Pct (Me)), following propionate uptake into the cell by passive diffusion, or via a proline:Na+ symporter PutP polypeptide or a short-chain fatty acid transporter AtoE polypeptide (encoded by putP and atoE, respectively).


This disclosure provides conversion of butyrate to HB-CoA or succinate through distinct engineered pathways. Without wishing to be bound by theory, the first pathway may exist in natural PHA producers and begins with the uptake of butyrate into the cell by passive diffusion or a short-chain fatty acid transporter AtoE polypeptide (encoded by atoE), followed by conversion of butyrate to butyryl-CoA via a short/medium chain acyl-CoA synthetase LvaE polypeptide (encoded by lvaE from Pseudomonas putida), propionate-CoA transferase Pct polypeptide, or an acetate CoA-transferase AtoD polypeptide and an AtoA polypeptide or an acetate CoA-transferase MELS_RS00170 polypeptide and a MELS_RS00175 polypeptide (encoded by atoD and atoA, and MELS_RS00170 and MELS_RS00175 from M elsdenii, respectively).


Butyryl-CoA is then converted to crotonyl-CoA via a short-chain acyl-CoA dehydrogenase PP_2216 polypeptide, a BC_5341 polypeptide, a MELS_RS10970 polypeptide, or a FadE polypeptide (encoded by PP_2216 from P. putida, BC_5341 from Bacillus cereus, MELS_RS10970 from M elsdenii, and fadE, respectively), which is subsequently converted to (R)-HB-CoA via an enoyl-CoA hydratase/isomerase H16 RS27940 polypeptide, an enoyl-CoA hydratase/isomerase PhaJ polypeptide, or bifunctional protein PaaZ polypeptide (encoded by H16 RS27940 from C. necator, phaJ from Aeromonas caviae (Ac) or Aromatoleum aromaticum (Aa), and paaZ, respectively). Further details are provided in Wang X et al., Journal of biotechnology 2018, 280:62-69, the contents of which are incorporated herein by reference in its entirety for all purposes.


The bifunctional protein PaaZ polypeptide has enoyl-CoA hydratase activity that converts crotonyl-CoA to (R)-HB-CoA. Crotonyl-CoA can also be sequentially converted to (S)-HB-CoA and acetoacetyl-CoA by native multifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA epimerase/Δ3-cis-Δ2-trans-enoyl-CoA isomerase/L-3-hydroxyacyl-CoA dehydrogenase polypeptides FadB and FadJ. This disclosure provides conversion of butyrate to succinate which occurs through a synthetic pathway in which butyrate is converted to butyryl-CoA, which is then converted to butyraldehyde via a CoA-dependent propanal dehydrogenase PduP polypeptide (encoded by pduP from S. enterica, Klebsiella pneumoniae, or Listeria monocytogenes) or a CoA-acylating aldehyde dehydrogenase Ald polypeptide (encoded by ald from Clostridium beijerinckii). In parallel, without wishing to be bound by theory, L-glutamate is converted to 4-aminobutyrate by an engineered glutamate decarboxylase GadAe polypeptide, an engineered glutamate decarboxylase GadBe(Ec) polypeptide (with the same modifications as GadAe), an engineered glutamate decarboxylase GadBe(Lb) polypeptide with amino acid substitutions K17I, D294G, E312S, and Q346H (further details provided in Shi et al., Enzyme and Microbial Technology 2014, 61:35-43, the contents of which are incorporated herein by reference in its entirety for all purposes), a glutamate decarboxylase GadB(Lp) polypeptide, a glutamate decarboxylase Gad(Ls) polypeptide, or a glutamate decarboxylase Gad polypeptide (encoded by gadAe, gadBe(Ec), gadBe(Lb) from Lactobacillus brevis, gadB(Lp) from Lactobacillus plantarum, gad(Ls) from Lactobacillus senmaizukei, and gad from Arabidopsis thaliana, respectively). L-glutamate production can be enhanced by expressing a glutamate dehydrogenase GdhA polypeptide (encoded by gdhA), that converts ketoglutarate to L-glutamate, for increased 4-aminobutyrate production (further details are provided in Soma Y et al., Metabolic Engineering 2017, 43:54-63, the contents of which are incorporated herein by reference in its entirety for all purposes). This disclosure provides conversion of butyraldehyde and 4-aminobutyrate to succinate semialdehyde via a β-alanine transaminase KES23458 polypeptide (encoded by FG99_15380 from Pseudomonas sp. strain AAC). Succinate semialdehyde is oxidized to succinate by a NADP+-dependent succinate semialdehyde dehydrogenase GabD polypeptide (encoded by gabD). (R)-HB-CoA and (R)-HV-CoA are polymerized by a short-chain polyhydroxyalkanoate synthase PhaC polypeptide (encoded by phaC from C. necator) to yield PHBV. PhaC mutants are also useful for polymerizing (R)-HB-CoA and (R)-HV-CoA. For example, PhaC(F420S) (SEQ ID NO: 226) can dimerize at a faster rate relative to wild-type PhaC [25], and the PhaC(G4D) mutation (SEQ ID NO: 230) increases soluble expression relative to wild-type PhaC [26]. These are beneficial attributes for increasing PHBV biosynthesis and molecular weight.


Further details are provided in Tang C-D, et al., International Journal of Biological Macromolecules 2020, 160:372-379; and Ho NAT, et al., Journal of Bioscience and Bioengineering 2013, 115:154-158, Yin J, et al., Applied microbiology and biotechnology 2015, 99:5523-5534, Phan TTP, et al., Journal of biotechnology 2012, 157:167-172, Olins P O, et al., Journal of Biological Chemistry 1989, 264:16973-16976, Arab B, et al., Fermentation 2023, 9:14, Puigbo P et al., Nucleic acids research 2007, 36:D524-D527, Agus J, et al., Polymer degradation and stability 2006, 91:1138-1146; Normi Y M, et al., Macromolecular bioscience 2005, 5:197-206, Chinese Patent Application CN105063790A, International Patent Application WO1990000067A1, the contents of each which are incorporated herein by reference in its entirety for all purposes.


In embodiments, the Pct polypeptide comprises a Pct(Cp) polypeptide or a Pct(Me) polypeptide. In embodiments, the PduP polypeptide comprises a PduP(Kp) polypeptide or a PduP(Se) polypeptide. In embodiments, the recombinant bacterial cell further comprises a proline:Na+ symporter, optionally a PutP polypeptide, or a short-chain fatty acid transporter, optionally an AtoE polypeptide.


In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of butyrate to butyryl-CoA. In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of butyryl-CoA to butyraldehyde. In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of butyraldehyde and optionally 4-aminobutyrate to succinate semialdehyde. In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of succinate semialdehyde to succinate. In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of L-glutamate to 4-aminobutyrate. In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of butyryl-CoA to crotonyl-CoA. In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of crotonyl-CoA to 3-hydroxybutyryl-CoA. In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of succinate to succinyl-CoA.


In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding at least one, at least two, at least three, at least four, or at least five of a polypeptide that catalyzes the conversion of butyrate to butyryl-CoA, a polypeptide that catalyzes the conversion of butyryl-CoA to butyraldehyde, a polypeptide that catalyzes the conversion of butyraldehyde and 4-aminobutyrate to succinate semialdehyde, a polypeptide that catalyzes the conversion of succinate semialdehyde to succinate, and a polypeptide that catalyzes the conversion of L-glutamate to 4-aminobutyrate.


In embodiments, the recombinant bacterial cell comprises at least one recombinant nucleic acid molecule encoding at least one, at least two, or at least three of a polypeptide that catalyzes the conversion of butyrate to butyryl-CoA, a polypeptide that catalyzes the conversion of butryryl-CoA to crotonyl-CoA, and a polypeptide that catalyzes the conversion of crotonyl-CoA to 3-hydroxybutyryl-CoA.


In a specific embodiment, the recombinant bacterial cell for producing PHBV comprises:

    • i) an acyl-CoA synthetase, optionally a short chain acyl-CoA synthetase polypeptide, optionally a LvaE polypeptide, acetate-CoA transferase polypeptides, optionally a MELS_RS00170 polypeptide and a MELS_RS00175 polypeptide or an AtoD polypeptide and an AtoA polypeptide, or a propionate-CoA transferase polypeptide, optionally a Pct polypeptide;
    • ii) a NADPH-dependent acetoacetyl-CoA reductase polypeptide, optionally a PhaB polypeptide, or a NADH-dependent acetoacetyl-CoA reductase polypeptide, optionally a PhaB(Hb) polypeptide; and a first β-ketothiolase polypeptide, optionally a BktB polypeptide;
    • iii) a short-chain polyhydroxyalkanoate synthase polypeptide, optionally a PhaC polypeptide, or an engineered short-chain polyhydroxyalkanoate synthase polypeptide, optionally a PhaC(F420S) polypeptide or a PhaC(G4D) polypeptide;
    • iv) a methylmalonyl-CoA mutase polypeptide, optionally a Sbm polypeptide, a methylmalonyl-CoA mutase interacting protein polypeptide, optionally a methylmalonyl-CoA mutase-interacting GTPase polypeptide, optionally a YgfD polypeptide, a methylmalonyl-CoA decarboxylase polypeptide, optionally a YgfG polypeptide, and optionally a propionyl-CoA:succinate CoA transferase polypeptide, optionally a YgfH polypeptide; and
    • v) at least one of at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes a conversion of butyryl-CoA to succinate and at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes a conversion of butyryl-CoA to 3-hydroxybutyryl-CoA,
      • wherein the at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of butyryl-CoA to succinate comprises a CoA-dependent propanal dehydrogenase polypeptide, optionally a PduP polypeptide, or a CoA-acylating aldehyde dehydrogenase polypeptide, optionally an Ald polypeptide, a β-alanine transaminase polypeptide, optionally a KES23458 polypeptide, and a NADP+-dependent succinate semialdehyde dehydrogenase polypeptide, optionally a GabD polypeptide, and
      • wherein the at least one recombinant nucleic acid molecule encoding a polypeptide that catalyzes the conversion of butyryl-CoA to 3-hydroxybutyryl-CoA comprises an acyl-CoA dehydrogenase polypeptide, optionally a short-chain acyl-CoA dehydrogenase polypeptide, optionally at least one of a PP_2216 polypeptide, a BC_5341 polypeptide, a MELS_RS10970 polypeptide, and a FadE polypeptide, an enoyl-CoA hydratase/isomerase polypeptide, optionally at least one of a H16 RS27940 polypeptide and a PhaJ polypeptide, and a PaaZ polypeptide; and
    • vi) optionally a propionyl-CoA synthetase polypeptide, optionally a PrpE polypeptide,
    • wherein the enzymes in i) and v) are encoded by at least one recombinant nucleic acid molecule in the bacterial cell.


In embodiments, the recombinant bacterial cell further comprises a glutamate decarboxylase polypeptide, optionally a GadAe polypeptide, a GadBe(Ec) polypeptide, a GadBe(Lb) polypeptide, a GadB(Lp) polypeptide, a Gad(Ls) polypeptide, or a Gad polypeptide. In embodiments, the recombinant bacterial cell further comprises a second β-ketothiolase polypeptide, optionally a PhaA polypeptide. In embodiments, the recombinant bacterial cell further comprises a succinyl-CoA transferase polypeptide, optionally a CKL_RS14680 polypeptide, or succinyl-CoA synthetase polypeptides, optionally a SucC polypeptide and a SucD polypeptide.


In embodiments, the recombinant bacterial cell comprises a Pct(Cp) polypeptide, an LvaE polypeptide, a PhaJ(Ac) polypeptide, a FadE polypeptide, a GadAe polypeptide, a FG99_15380 polypeptide, a PduP(Se) polypeptide, a GabD polypeptide, a CKL_RS14680 polypeptide, and an AtoC(Con) polypeptide comprising a serine at the position corresponding to position 129 of SEQ ID NO: 203. In some embodiment, the recombinant bacterial cell further comprises a PhaC polypeptide, a PhaB polypeptide, a BktB polypeptide, and a PhaA polypeptide.


In embodiments, the nucleic acid molecule described herein is optionally a heterologous nucleic acid molecule having a nucleic acid sequence encoding a recombinant polypeptide described herein. In embodiments, the recombinant bacterial cell comprises stably incorporated into the genome a heterologous nucleic acid molecule having a nucleic acid sequence encoding a recombinant polypeptide described herein.


The bacterial strain described herein can include heterologous nucleic acid that contains transcriptional and translational regulatory elements. For example, transcriptional regulatory elements can include promoter such as Pgracmax2 and transcriptional terminator, and translational regulatory elements can include ribosomal binding site (RBS) such as RBS from gene 10 of Phage T7 (T7.RBS) that can significantly enhance translation efficiency relative to the consensus RBS of E. coli. Translation efficiency may also be enhanced by combining other RBSs, e.g. the consensus Gram-positive RBS (i.e. AAGGAGG), with a nine bp sequence derived from T7.RBS (i.e. TTAACTTTA) to facilitate base-pairing with the 16S rRNA of E. coli (e.g. RBS1). In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having promoter Pgracmax2. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having translational regulatory element T7.RBS. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having promoter Pgracmax2 and at least one translational regulatory element. In embodiments, the at least one translational regulatory element is T7.RBS, Gram-positive RBS, or RBS1. In embodiments, the at least one translational regulatory element is combined T7.RBS and Gram-positive RBS. In embodiments, the at least one translational regulatory element is combined T7.RBS and Gram-positive RBS, and RBS1. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 232. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 233. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 234. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 235. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 236. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 233, 234, and 236. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 232 and 236. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 237. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NOs: 233, 234, 236, and 237. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NOs: 232, 236, and 237. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having a transcriptional terminator. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 238. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having Pgracmax2, combined T7.RBS and Gram-positive RBS, RBS1, and transcriptional terminator. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NOs: 233, 234, 236, and 238. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NOs: 232, 236, and 238. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 239. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NO: 240. In embodiments, the recombinant bacterial cell comprises a nucleic acid molecule having the sequence of SEQ ID NOs: 239 and 240. In embodiments, the nucleic acid molecule having the sequence of SEQ ID NO: 239 is integrated into a nonessential gene locus. In embodiments, the nucleic acid molecule having the sequence of SEQ ID NO: 239 is integrated into the bcsA locus. In embodiments, the nucleic acid molecule having the sequence of SEQ ID NO: 240 is integrated into a nonessential gene locus. In embodiments, the nucleic acid molecule having the sequence of SEQ ID NO: 240 is integrated into the intF locus. In embodiments, the nucleic acid molecule is integrated into one or more loci of bacterial strain CPC-Sbm. In embodiments, the nucleic acid molecule is integrated into one or more loci of K-12 derived bacterial strain. In embodiments, the nucleic acid molecule having the sequence of SEQ ID NO: 239 is integrated into the bcsA locus of strain CPC-Sbm and the nucleic acid molecule having the sequence of SEQ ID NO: 240 is integrated into the intF locus of strain CPC-Sbm. In embodiments, the nucleic acid molecule having the sequence of SEQ ID NO: 236 is integrated into the bcsA locus of K-12 derived strain and the nucleic acid molecule having the sequence of SEQ ID NO: 240 is integrated into the intF locus of K-12 derived strain. In embodiments, the nucleic acid molecule comprises Pgracmax2::(T7.RBS)bktB:(RBS1)phaB.


In embodiments, the nucleic acid molecule comprises Pgracmax2::(T7.RBS)phaC:(RBS1)phaA. In embodiments, the nucleic acid molecule comprises Pgracmax2::(T7.RBS)bktB:(RBS1)phaB) and (Pgracmax2::(T7.RBS)phaC:(RBS1)phaA. In embodiments, the recombinant bacterial strain is CPC-Sbm(bcsA::(Pgracmax2::(T7.RBS)bktB:(RBS1)phaB), intF::(Pgracmax2::(T7.RBS)phaC:(RBS1)phaA).


The expression of recombinant polypeptide in a particular bacteria species can be improved by codon optimization. In some examples described herein, codon optimization was completed by first optimizing a gene sequence for expression in E. coli K12 using the Codon Optimization Tool provided by Integrated DNA Technologies (USA), followed by further optimization of the optimized sequence via the OPTIMIZER web server using the “guided random” method that is based on a Monte Carlo algorithm (further details are provided in Puigbo P et al., Nucleic acids research 2007, 36:D524-D527, and Puigbo P et al., Nucleic acids research 2007, 35:W126-W131, the contents of which are incorporated herein by reference in its entirety for all purposes). Finally, manual adjustments were made to the sequence resulting from the second optimization procedure using the codon frequency table for E. coli K12 from the Codon Usage Database (as provided at Nakamura Y, et al., Nucleic acids research 2000, 28:292-292) as a reference and the manual optimization option found in the Codon Optimization Tool provided by Integrated DNA Technologies. In embodiments, the heterologous nucleic acid molecule has an optimized nucleic acid sequence for encoding a recombinant polypeptide described herein for expression in a bacterial cell described herein.


Amino acid sequences described herein are set out in Table 1.









TABLE 1







Amino Acid Sequences








SEQ ID NO
Amino Acid Sequence





SEQ ID NO: 1
MSSKLVLVLNCGSSSLKFAIIDAVNGEEYLSGLAECFHLP


amino acid
EARIKWKMDGNKQEAALGAGAAHSEALNFIVNTILAQKPE


sequence of
LSAQLTAIGHRIVHGGEKYTSSVVIDESVIQGIKDAASFA


ackA with the
PLHNPAHLIGIEEALKSFPQLKDKNVAVFDTAFHQTMPEE


accession #
SYLYALPYNLYKEHGIRRYGAHGTSHFYVTQEAAKMLNKP


NP_416799
VEELNIITCHLGNGGSVSAIRNGKCVDTSMGLTPLEGLVM



GTRSGDIDPAIIFHLHDTLGMSVDAINKLLTKESGLLGLT



EVTSDCRYVEDNYATKEDAKRAMDVYCHRLAKYIGAYTAL



MDGRLDAVVFTGGIGENAAMVRELSLGKLGVLGFEVDHER



NLAARFGKSGFINKEGTRPAVVIPTNEELVIAQDASRLTA





SEQ ID NO: 2
MSQIHKHTIPANIADRCLINPQQYEAMYQQSINVPDTFWG


amino acid
EQGKILDWIKPYQKVKNTSFAPGNVSIKWYEDGTLNLAAN


sequence of acs
CLDRHLQENGDRTAIIWEGDDASQSKHISYKELHRDVCRF


with the
ANTLLELGIKKGDVVAIYMPMVPEAAVAMLACARIGAVHS


accession #
VIFSDQHQAEEMNAEDPLFILYTSGSTGKPKGVLHTTGGY


NP_418493
LVYAALTFKYVFDYHPGDIYWCTADVGWVTGHSYLLYGPL



ACGATTLMFEGVPNWPTPARMAQVVDKHQVNILYTAPTAI



RALMAEGDKAIEGTDRSSLRILGSVGEPINPEAWEWYWKK



IGNEKCPVVDTWWQTETGGFMITPLPGATELKAGSATRPF



FGVQPALVDNEGNPLEGATEGSLVITDSWPGQARTLFGDH



ERFEQTYFSTFKNMYFSGDGARRDEDGYYWITGRVDDVLN



VSGHRLGTAEIESALVAHPKIAEAAVVGIPHNIKGQAIYA



YVTLNHGEEPSPELYAEVRNWVRKEIGPLATPDVLHWTDS



LPKTRSGKIMRRILRKIAAGDTSNLGDTSTLADPGVVEKL



LEEKQAIAMPS





SEQ ID NO: 3
MNLKALPAIEGDHNLKNYEETYRHFDWAEAEKHFSWHETG


amino acid
KLNAAYEAIDRHAESFRKNKVALYYKDAKRDEKYTFKEMK


sequence of acsA
EESNRAGNVLRRYGNVEKGDRVFIFMPRSPELYFIMLGAI


with the
KIGAIAGPLFEAFMEGAVKDRLENSEAKVVVTTPELLERI


accession #
PVDKLPHLQHVFVVGGEAESGTNIINYDEAAKQESTRLDI


NP_390846
EWMDKKDGFLLHYTSGSTGTPKGVLHVHEAMIQQYQTGKW



VLDLKEEDIYWCTADPGWVTGTVYGIFAPWLNGATNVIVG



GRFSPESWYGTIEQLGVNVWYSAPTAFRMLMGAGDEMAAK



YDLTSLRHVLSVGEPLNPEVIRWGHKVFNKRIHDTWWMTE



TGSQLICNYPCMDIKPGSMGKPIPGVEAAIVDNQGNELPP



YRMGNLAIKKGWPSMMHTIWNNPEKYESYFMPGGWYVSGD



SAYMDEEGYFWFQGRVDDVIMTSGERVGPFEVESKLVEHP



AIAEAGVIGKPDPVRGEIIKAFIALREGFEPSDKLKEEIR



LFVKQGLAAHAAPREIEFKDKLPKTRSGKIMRRVLKAWEL



NLPAGDLSTMED





SEQ ID NO: 4
MDAKQRIARRVAQELRDGDIVNLGIGLPTMVANYLPEGIH


amino acid
ITLQSENGFLGLGPVTTAHPDLVNAGGQPCGVLPGAAMFD


sequence of
SAMSFALIRGGHIDACVLGGLQVDEEANLANWVVPGKMVP


AtoA with the
GMGGAMDLVTGSRKVIIAMEHCAKDGSAKILRRCTMPLTA


accession #
QHAVHMLVTELAVFRFIDGKMWLTEIADGCDLATVRAKTE


NP_416726
ARFEVAADLNTQRGDL





SEQ ID NO: 5
MKTKLMTLQDATGFFRDGMTIMVGGFMGIGTPSRLVEALL


amino acid
ESGVRDLTLIANDTAFVDTGIGPLIVNGRVRKVIASHIGT


sequence of
NPETGRRMISGEMDVVLVPQGTLIEQIRCGGAGLGGFLTP


AtoD with the
TGVGTVVEEGKQTLTLDGKTWLLERPLRADLALIRAHRCD


accession #
TLGNLTYQLSARNFNPLIALAADITLVEPDELVETGELQP


NP_416725
DHIVTPGAVIDHIIVSQESK





SEQ ID NO: 6
MIGRISRFMTRFVSRWLPDPLIFAMLLTLLTFVIALWLTP


amino acid
QTPISMVKMWGDGFWNLLAFGMQMALIIVTGHALASSAPV


sequence of
KSLLRTAASAAKTPVQGVMLVTFFGSVACVINWGFGLVVG


AtoE with the
AMFAREVARRVPGSDYPLLIACAYIGFLTWGGGFSGSMPL


accession #
LAATPGNPVEHIAGLIPVGDTLFSGFNIFITVALIVVMPF


NP_416727
ITRMMMPKPSDVVSIDPKLLMEEADFQKQLPKDAPPSERL



EESRILTLIIGALGIAYLAMYFSEHGFNITINTVNLMFMI



AGLLLHKTPMAYMRAISAAARSTAGILVQFPFYAGIQLMM



EHSGLGGLITEFFINVANKDTFPVMTFFSSALINFAVPSG



GGHWVIQGPFVIPAAQALGADLGKSVMAIAYGEQWMNMAQ



PFWALPALAIAGLGVRDIMGYCITALLFSGVIFVIGLTLF





SEQ ID NO: 7
MHFKLSEEHEMIRKMVRDFAKNEVAPTAAERDEEERFDRE


amino acid
LFDQMAELGLTGIPWPEEYGGIGSDYLAYVIAIEELSRVC


sequence of
ASTGVTLSAHTSLAGWPIFKFGTEEQKQKFLRPMAEGKKI


BC_5341 with
GAYGLTEPGSGSDAGGMKTIAKRDGDHYILNGSKIFITNG


the accession #
GIADIYVVFALTDPESKQRGTSAFIVESDTPGFSVGKKES


NP_835003
KLGIRSSPTTEIMFEDCRIPVENLLGEEGQGFKVAMQTLD



GGRNGIAAQAVGIAQGALDASVEYARERHQFGKPIAAQQG



IGFKLADMATDVEAARLLTYQAAWLESEGLPYGKESAMSK



VFAGDTAMRVTTEAVQVFGGYGYTKDYPVERYMRDAKITQ



IYEGTQEIQRLVISRMLTK





SEQ ID NO: 8
MTREVVVVSGVRTAIGTFGGSLKDVAPAELGALVVREALA


amino acid
RAQVSGDDVGHVVFGNVIQTEPRDMYLGRVAAVNGGVTIN


sequence of
APALTVNRLCGSGLQAIVSAAQTILLGDTDVAIGGGAESM


BktB with the
SRAPYLAPAARWGARMGDAGLVDMMLGALHDPFHRIHMGV


accession #
TAENVAKEYDISRAQQDEAALESHRRASAAIKAGYFKDQI


WP_011615089
VPVVSKGRKGDVTFDTDEHVRHDATIDDMTKLRPVFVKEN



GTVTAGNASGLNDAAAAVVMMERAEAERRGLKPLARLVSY



GHAGVDPKAMGIGPVPATKIALERAGLQVSDLDVIEANEA



FAAQACAVTKALGLDPAKVNPNGSGISLGHPIGATGALIT



VKALHELNRVQGRYALVTMCIGGGQGIAAIFERI





SEQ ID NO: 9
MNVIAILNHMGVYFKEEPIRELHRALERLNFQIVYPNDRD


amino acid
DLLKLIENNARLCGVIFDWDKYNLELCEEISKMNENLPLY


sequence of
AFAYDFFGPNTMKSDISISVSELGSLLDHSGPHKEAEQYI


cadA with the
ARVFNADRSYMVTNGTSTANKIVGMYSAPAGSTILIDRNC


accession #
HKSLTHLMMMSDVTPIYFRPTRNAYGILGGIPQSEFQHAT


NP_418555
IAKRVKETPNATWPVHAVITNSTYDGLLYNTDFIKKTLDV



KSIHFDSAWVPYTNFSPIYEGKCGMSGGRVEGKVIYETQS



THKLLAAFSQASMIHVKGDVNEETFNEAYMMHTTTSPHYG



IVASTETAAAMMKGNAGKRLINGSIERAIKFRKEIKRLRT



ESDGWFFDVWQPDHIDTTECWPLRSDSTWHGFKNIDNEHM



YLDPIKVTLLTPGMEKDGTMSDFGIPASIVAKYLDEHGIV



VEKTGPYNLLFLFSIGIDKTKALSLLRALTDFKRAFDLNL



RVKNMLPSLYREDPEFYENMRIQELAQNIHKLIVHHNLPD



LMYRAFEVLPTMVMTPYAAFQKELHGMTEEVYLDEMVGRI



NANMILPYPPGVPLVMPGEMITEESRPVLEFLQMLCEIGA



HYPGFETDIHGAYRQADGRYTVKVLKEESKK





SEQ ID NO: 10
MSKGIKNSQLKKKNVKASNVAEKIEEKVEKTDKVVEKAAE


amino acid
VTEKRIRNLKLQEKVVTADVAADMIENGMIVAISGFTPSG


sequence of
YPKEVPKALTKKVNALEEEFKVTLYTGSSTGADIDGEWAK


CKL_RS14680
AGIIERRIPYQTNSDMRKKINDGSIKYADMHLSHMAQYIN


with the
YSVIPKVDIAIIEAVAITEEGDIIPSTGIGNTATFVENAD


accession #
KVIVEINEAQPLELEGMADIYTLKNPPRREPIPIVNAGNR


WP_012103359
IGTTYVTCGSEKICAIVMTNTQDKTRPLTEVSPVSQAISD



NLIGFLNKEVEEGKLPKNLLPIQSGVGSVANAVLAGLCES



NFKNLSCYTEVIQDSMLKLIKCGKADVVSGTSISPSPEML



PEFIKDINFFREKIVLRPQEISNNPEIARRIGVISINTAL



EVDIYGNVNSTHVMGSKMMNGIGGSGDFARNAYLTIFTTE



SIAKKGDISSIVPMVSHVDHTEHDVMVIVTEQGVADLRGL



SPREKAVAIIENCVHPDYKDMLMEYFEEACKSSGGNTPHN



LEKALSWHTKFIKTGSMK





SEQ ID NO: 11
MYRYLSIAAVVLSAAFSGPALAEGINSFSQAKAAAVKVHA


amino acid
DAPGTFYCGCKINWQGKKGVVDLQSCGYQVRKNENRASRV


sequence of
EWEHVVPAWQFGHQRQCWQDGGRKNCAKDPVYRKMESDMH


endA with the
NLQPSVGEVNGDRGNFMYSQWNGGEGQYGQCAMKVDFKEK


accession #
AAEPPARARGAIARTYFYMRDQYNLTLSRQQTQLFNAWNK


NP_417420
MYPVTDWECERDERIAKVQGNHNPYVQRACQARKS





SEQ ID NO: 12
MLYKGDTLYLDWLEDGIAELVFDAPGSVNKLDTATVASLG


amino acid
EAIGVLEQQSDLKGLLLRSNKAAFIVGADITEFLSLFLVP


sequence of
EEQLSQWLHFANSVFNRLEDLPVPTIAAVNGYALGGGCEC


fadB
VLATDYRLATPDLRIGLPETKLGIMPGFGGSVRMPRMLGA


with the
DSALEIIAAGKDVGADQALKIGLVDGVVKAEKLVEGAKAV


accession #
LRQAINGDLDWKAKRQPKLEPLKLSKIEATMSFTIAKGMV


NP_418288
AQTAGKHYPAPITAVKTIEAAARFGREEALNLENKSFVPL



AHTNEARALVGIFLNDQYVKGKAKKLTKDVETPKQAAVLG



AGIMGGGIAYQSAWKGVPVVMKDINDKSLTLGMTEAAKLL



NKQLERGKIDGLKLAGVISTIHPTLDYAGFDRVDIVVEAV



VENPKVKKAVLAETEQKVRQDTVLASNTSTIPISELANAL



ERPENFCGMHFFNPVHRMPLVEIIRGEKSSDETIAKVVAW



ASKMGKTPIVVNDCPGFFVNRVLFPYFAGFSQLLRDGADF



RKIDKVMEKQFGWPMGPAYLLDVVGIDTAHHAQAVMAAGF



PQRMQKDYRDAIDALFDANRFGQKNGLGFWRYKEDSKGKP



KKEEDAAVEDLLAEVSQPKRDFSEEEIIARMMIPMVNEVV



RCLEEGIIATPAEADMALVYGLGFPPFHGGAFRWLDTLGS



AKYLDMAQQYQHLGPLYEVPEGLRNKARHNEPYYPPVEPA



RPVGDLKTA





SEQ ID NO: 13
MMILSILATVVLLGALFYHRVSLFISSLILLAWTAALGVA


amino acid
GLWSAWVLVPLAIILVPFNFAPMRKSMISAPVFRGFRKVM


sequence of
PPMSRTEKEAIDAGTTWWEGDLFQGKPDWKKLHNYPQPRL


fadE
TAEEQAFLDGPVEEACRMANDFQITHELADLPPELWAYLK


with the
EHRFFAMIIKKEYGGLEFSAYAQSRVLQKLSGVSGILAIT


accession #
VGVPNSLGPGELLQHYGTDEQKDHYLPRLARGQEIPCFAL


NP_414756
TSPEAGSDAGAIPDTGIVCMGEWQGQQVLGMRLTWNKRYI



TLAPIATVLGLAFKLSDPEKLLGGAEDLGITCALIPTTTP



GVEIGRRHFPLNVPFQNGPTRGKDVFVPIDYIIGGPKMAG



QGWRMLVECLSVGRGITLPSNSTGGVKSVALATGAYAHIR



RQFKISIGKMEGIEEPLARIAGNAYVMDAAASLITYGIML



GEKPAVLSAIVKYHCTHRGQQSIIDAMDITGGKGIMLGQS



NFLARAYQGAPIAITVEGANILTRSMMIFGQGAIRCHPYV



LEEMEAAKNNDVNAFDKLLFKHIGHVGSNKVRSFWLGLTR



GLTSSTPTGDATKRYYQHLNRLSANLALLSDVSMAVLGGS



LKRRERISARLGDILSQLYLASAVLKRYDDEGRNEADLPL



VHWGVQDALYQAEQAMDDLLQNFPNRVVAGLLNVVIFPTG



RHYLAPSDKLDHKVAKILQVPNATRSRIGRGQYLTPSEHN



PVGLLEEALVDVIAADPIHQRICKELGKNLPFTRLDELAH



NALVKGLIDKDEAAILVKAEESRLRSINVDDFDPEELATK



PVKLPEKVRKVEAA





SEQ ID NO: 14
MEMTSAFTLNVRLDNIAVITIDVPGEKMNTLKAEFASQVR


amino acid
AIIKQLRENKELRGVVFVSAKPDNFIAGADINMIGNCKTA


sequence of fadJ
QEAEALARQGQQLMAEIHALPIQVIAAIHGACLGGGLELA


with the
LACHGRVCTDDPKTVLGLPEVQLGLLPGSGGTQRLPRLIG


accession #
VSTALEMILTGKQLRAKQALKLGLVDDVVPHSILLEAAVE


NP_416843
LAKKERPSSRPLPVRERILAGPLGRALLFKMVGKKTEHKT



QGNYPATERILEVVETGLAQGTSSGYDAEARAFGELAMTP



QSQALRSIFFASTDVKKDPGSDAPPAPLNSVGILGGGLMG



GGIAYVTACKAGIPVRIKDINPQGINHALKYSWDQLEGKV



RRRHLKASERDKQLALISGTTDYRGFAHRDLIIEAVFENL



ELKQQMVAEVEQNCAAHTIFASNTSSLPIGDIAAHATRPE



QVIGLHFFSPVEKMPLVEIIPHAGTSAQTIATTVKLAKKQ



GKTPIVVRDKAGFYVNRILAPYINEAIRMLTQGERVEHID



AALVKFGFPVGPIQLLDEVGIDTGTKIIPVLEAAYGERFS



APANVVSSILNDDRKGRKNGRGFYLYGQKGRKSKKQVDPA



IYPLIGTQGQGRISAPQVAERCVMLMLNEAVRCVDEQVIR



SVRDGDIGAVFGIGFPPFLGGPFRYIDSLGAGEVVAIMQR



LATQYGSRFTPCERLVEMGARGESFWKTTATDLQ





SEQ ID NO: 15
MNQQVNVAPSAAADLNLKAHWMPFSANRNFHKDPRIIVAA


amino acid
EGSWLVDDKGRRIYDSLSGLWTCGAGHSRKEIADAVAKQI


sequence of
GTLDYSPGFQYGHPLSFQLAEKIAQMTPGTLDHVFFTGSG


FG99_15380
SECADTSIKMARAYWRIKGQAQKTKLIGRARGYHGVNVAG


with the
TSLGGIGGNRKMFGPLMDVDHLPHTLQPGMAFTKGAAETG


accession #
GVELANELLKLIELHDASNIAAVIVEPMSGSAGVIVPPKG


KES23458
YLQRLREICDANDILLIFDEVITAFGRMGKATGAEYFGVT



PDIMNVAKQVTNGAVPMGAVIASSEIYDTFMNQNLPEYAV



EFGHGYTYSAHPVACAAGIAALDLLQKENLIQQSAELAPH



FEKALHGLKGTKNVIDIRNCGLAGAIQIAARDGDAIVRPF



EASMKLWKEGFYVRFGGDTLQFGPTFNAKPEDLDRLFDAV



GEALNGVA





SEQ ID NO: 16
MNQQVNVAPSAAADLNLKAHWMPFSANRNFHKDPRIIVAA


amino acid
EGSWLVDDKGRRIYDSLSGLWTCGAGHSRKEIADAVAKQI


sequence of
GTLDYSPGFQYGHPLSFQLAEKIAQMTPGTLDHVFFTGSG


FG99_15380
SECADTSIKMARAYWRIKGQAQKTKLIGRARGYHGVNVAG


optimized for
TSLGGIGGNRKMFGPLMDVDHLPHTLQPGMAFTKGAAETG


E.coli with the
GVELANELLKLIELHDASNIAAVIVEPMSGSAGVIVPPKG


accession #
YLQRLREICDANDILLIFDEVITAFGRMGKATGAEYFGVT


KES23458
PDIMNVAKQVTNGAVPMGAVIASSEIYDTFMNQNLPEYAV



EFGHGYTYSAHPVACAAGIAALDLLQKENLIQQSAELAPH



FEKALHGLKGTKNVIDIRNCGLAGAIQIAARDGDAIVRPF



EASMKLWKEGFYVRFGGDTLQFGPTFNAKPEDLDRLFDAV



GEALNGVA





SEQ ID NO: 17
MKLNDSNLFRQQALINGEWLDANNGEAIDVTNPANGDKLG


amino acid
SVPKMGADETRAAIDAANRALPAWRALTAKERATILRNWF


sequence of
NLMMEHQDDLARLMTLEQGKPLAEAKGEISYAASFIEWFA


GabD with the
EEGKRIYGDTIPGHQADKRLIVIKQPIGVTAAITPWNFPA


accession #
AMITRKAGPALAAGCTMVLKPASQTPFSALALAELAIRAG


NP_417147
VPAGVFNVVTGSAGAVGNELTSNPLVRKLSFTGSTEIGRQ



LMEQCAKDIKKVSLELGGNAPFIVFDDADLDKAVEGALAS



KFRNAGQTCVCANRLYVQDGVYDRFAEKLQQAVSKLHIGD



GLDNGVTIGPLIDEKAVAKVEEHIADALEKGARVVCGGKA



HERGGNFFQPTILVDVPANAKVSKEETFGPLAPLFRFKDE



ADVIAQANDTEFGLAAYFYARDLSRVFRVGEALEYGIVGI



NTGIISNEVAPFGGIKASGLGREGSKYGIEDYLEIKYMCI



GL





SEQ ID NO: 18
MNSNKELMQRRSQAIPRGVGQIHPIFADRAENCRVWDVEG


amino acid
REYLDFAGGIAVLNTGHLHPKVVAAVEAQLKKLSHTCFQV


sequence of
LAYEPYLELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVK


gabT with the
IARAATKRSGTIAFSGAYHGRTHYTLALTGKVNPYSAGMG


accession #
LMPGHVYRALYPCPLHGISEDDAIASIHRIFKNDAAPEDI


NP_417148
AAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADE



VQSGAGRTGTLFAMEQMGVAPDLTTFAKSIAGGFPLAGVT



GRAEVMDAVAPGGLGGTYAGNPIACVAALEVLKVFEQENL



LQKANDLGQKLKDGLLAIAEKHPEIGDVRGLGAMIAIELF



EDGDHNKPDAKLTAEIVARARDKGLILLSCGPYYNVLRIL



VPLTIEDAQIRQGLEIISQCFDEAKQ





SEQ ID NO: 19
MVLSHAVSESDVSVHSTFASRYVRTSLPRFKMPENSIPKE


amino acid
AAYQIINDELMLDGNPRLNLASFVTTWMEPECDKLIMSSI


sequence of Gad
NKNYVDMDEYPVTTELQNRCVNMIAHLFNAPLEEAETAVG


with accession #
VGTVGSSEAIMLAGLAFKRKWQNKRKAEGKPVDKPNIVTG


U10034
ANVQVCWEKFARYFEVELKEVKLSEGYYVMDPQQAVDMVD



ENTICVADILGSTLNGEFEDVKLLNDLLVEKNKETGWDTP



IHVDAASGGFIAPFLYPELEWDFRLPLVKSINVSGHKYGL



VYAGIGWVIWRNKEDLPEELIFHINYLGADQPTFTLNFSK



GSSQVIAQYYQLIRLGHEGYRNVMENCRENMIVLREGLEK



TERFNIVSKDEGVPLVAFSLKDSSCHTEFEISDMLRRYGW



IVPAYTMPPNAQHITVLRVVIREDFSRTLAERLVIDIEKV



MRELDELPSRVIHKISLGQEKSESNSDNLMVTVKKSDIDK



QRDIITGWKKFVADRKKTSGIC





SEQ ID NO: 20
MDQKLLTDFRSELLDSRFGAKAISTIAESKRFPLHEMRDD


amino acid
VAFQIINDELYLDGNARQNLATFCQTWDDENVHKLMDLSI


sequence of
NKNWIDKEQYPQSAAIDLRCVNMVADLWHAPAPKNGQAVG


GadAe
TNTIGSSEACMLGGMAMKWRWRKRMEAAGKPTDKPNLVCG



PVQICWHKFARYWDVELREIPMRPGQLFMDPKRMIEACDE



NTIGVVPTFGVTYTGNYEFPQPLHDALDKFQADTGIDIDM



HIDAASGGFLAPFVAPDIVWDFRLPRVKSISASGHKFGLA



PLGCGWVIWRDEEALPQELVFNVDYLGGQIGTFAINFSRP



AGQVIAQYYEFLRLGREGYTKVQNASYQVAAYLADEIAKL



GPYEFICTGRPDEGIPAVCFKLKDGEDPGYTLYDLSERLR



LRGWQVPAFTLGGEATDIVVMRIMCRRGFEMDFAELLLED



YKASLKYLSDH





SEQ ID NO: 21
MKPSVILYKALPDDLLQRLQEHFTVHQVANLSPQTVEQNA


amino acid
AIFAEAEGLLGSNENVNAALLEKMPKLRATSTISVGYDNF


sequence of ghrB
DVDALTARKILLMHTPTVLTETVADTLMALVLSTARRVVE


with the
VAERVKAGEWTASIGPDWYGTDVHHKTLGIVGMGRIGMAL


accession #
AQRAHFGFNMPILYNARRHHKEAEERFNARYCDLDTLLQE


NP_418009
SDFVCLILPLTDETHHLFGAEQFAKMKSSAIFINAGRGPV



VDENALIAALQKGEIHAAGLDVFEQEPLSVDSPLLSMANV



VAVPHIGSATHETRYGMAACAVDNLIDALQGKVEKNCVNP



HVAD





SEQ ID NO: 22
MYAAKDITVEERAGGALWITIDRAQKHNALARHVLAGLAQ


amino acid
VVSAAAAQPGVRCIVLTGAGQRFFAAGGDLVELSGVRDRE


sequence of
ATLAMSEQARGALDAVRDCPLPVLAYLNGDAIGGGAELAL


H16_RS27940
ACDMRLQSASARIGFIQARLAITSAWGGGPDLCRIVGAAR


with the
AMRMMSRCELVDAQQALQWGLADAVVTDGPAGKDIHAFLQ


accession #
PLLGCAPQVLRGIKAQTAASRRGESHDAARTIEQQQLLHT


WP_011617503
WLHADHWNAAEGILSRRAQ





SEQ ID NO: 23
MKKVCVIGAGTMGSGIAQAFAAKGFEVVLRDIKDEFVDRG


amino acid
LDFINKNLSKLVKKGKIEEATKVEILTRISGTVDLNMAAD


sequence of Hbd
CDLVIEAAVERMDIKKQIFADLDNICKPETILASNTSSLS


with the
ITEVASATKRPDKVIGMHFFNPAPVMKLVEVIRGIATSQE


accession #
TFDAVKETSIAIGKDPVEVAEAPGFVVNRILIPMINEAVG


NP_349314
ILAEGIASVEDIDKAMKLGANHPMGPLELGDFIGLDICLA



IMDVLYSETGDSKYRPHTLLKKYVRAGWLGRKSGKGFYDY



SK





SEQ ID NO: 24
MVAPIPAKRGRKPAVATAPATGQVQSLTRGLKLLEWIAES


amino acid
NGSVALTELAQQAGLPNSTTHRLLTTMQQQGFVRQVGELG


sequence of iclR
HWAIGAHAFMVGSSFLQSRNLLAIVHPILRNLMEESGETV


with the
NMAVLDQSDHEAIIIDQVQCTHLMRMSAPIGGKLPMHASG


accession #
AGKAFLAQLSEEQVTKLLHRKGLHAYTHATLVSPVHLKED


NP_418442
LAQTRKRGYSFDDEEHALGLRCLAACIFDEHREPFAAISI



SGPISRITDDRVTEFGAMVIKAAKEVTLAYGGMR





SEQ ID NO: 25
MKPVTLYDVAEYAGVSYQTVSRVVNQASHVSAKTREKVEA


amino acid
AMAELNYIPNRVAQQLAGKQSLLIGVATSSLALHAPSQIV


sequence of lacI
AAIKSRADQLGASVVVSMVERSGVEACKAAVHNLLAQRVS


with the
GLIINYPLDDQDAIAVEAACTNVPALFLDVSDQTPINSII


accession #
FSHEDGTRLGVEHLVALGHQQIALLAGPLSSVSARLRLAG


NP_414879
WHKYLTRNQIQPIAEREGDWSAMSGFQQTMQMLNEGIVPT



AMLVANDQMALGAMRAITESGLRVGADISVVGYDDTEDSS



CYIPPLTTIKQDFRLLGQTSVDRLLQLSQGQAVKGNQLLP



VSLVKRKTTLAPNTQTASPRALADSLMQLARQVSRLESGQ





SEQ ID NO: 26
MMVPTLEHELAPNEANHVPLSPLSFLKRAAQVYPQRDAVI


amino acid
YGARRYSYRQLHERSRALASALERVGVQPGERVAILAPNI


sequence of
PEMLEAHYGVPGAGAVLVCINIRLEGRSIAFILRHCAAKV


LvaE with the
LICDREFGAVANQALAMLDAPPLLVGIDDDQAERADLAHD


accession #
LDYEAFLAQGDPARPLSAPQNEWQSIAINYTSGTTGDPKG


NP_744939
VVLHHRGAYLNACAGALIFQLGPRSVYLWTLPMFHCNGWS



HTWAVTLSGGTHVCLRKVQPDAINAAIAEHAVTHLSAAPV



VMSMLIHAEHASAPPVPVSVITGGAAPPSAVIAAMEARGF



NITHAYGMTESYGPSTLCLWQPGVDELPLEARAQFMSRQG



VAHPLLEEATVLDTDTGRPVPADGLTLGELVVRGNTVMKG



YLHNPEATRAALANGWLHTGDLAVLHLDGYVEIKDRAKDI



IISGGENISSLEIEEVLYQHPEVVEAAVVARPDSRWGETP



HAFVTLRADALASGDDLVRWCRERLAHFKAPRHVSLVDLP



KTATGKIQKFVLREWARQQEAQIADAEH





SEQ ID NO: 28
MDFNLTDIQQDFLKLAHDFGEKKLAPTVTERDHKGIYDKE


amino acid
LIDELLSLGITGAYFEEKYGGSGDDGGDVLSYILAVEELA


sequence of
KYDAGVAITLSATVSLCANPIWQFGTEAQKEKFLVPLVEG


MELS_RS10970
TKLGAFGLTEPNAGTDASGQQTIATKNDDGTYTLNGSKIF


with the
ITNGGRIGVAAQALGIAEAALADAVEYSKQRVQFGKPLCK


accession #
FQSISFKLADMKMQIEAARNLVYKAACKKQEGKPFTVDAA


WP_014017064
IAKRVASDVAMRVTTEAVQIFGGYGYSEEYPVARHMRDAK



ITQIYEGTNEVQLMVTGGALLR





SEQ ID NO: 29
MQQLASFLSGTWQSGRGRSRLIHHAISGEALWEVTSEGLD


amino acid
MAAARQFAIEKGAPALRAMTFIERAAMLKAVAKHLLSEKE


sequence of
RFYALSAQTGATRADSWVDIEGGIGTLFTYASLGSRELPD


PaaZ with the
DTLWPEDELIPLSKEGGFAARHLLTSKSGVAVHINAFNFP


accession #
CWGMLEKLAPTWLGGMPAIIKPATATAQLTQAMVKSIVDS


NP_415905
GLVPEGAISLICGSAGDLLDHLDSQDVVTFTGSAATGQML



RVQPNIVAKSIPFTMEADSLNCCVLGEDVTPDQPEFALFI



REVVREMTTKAGQKCTAIRRIIVPQALVNAVSDALVARLQ



KVVVGDPAQEGVKMGALVNAEQRADVQEKVNILLAAGCEI



RLGGQADLSAAGAFFPPTLLYCPQPDETPAVHATEAFGPV



ATLMPAQNQRHALQLACAGGGSLAGTLVTADPQIARQFIA



DAARTHGRIQILNEESAKESTGHGSPLPQLVHGGPGRAGG



GEELGGLRAVKHYMQRTAVQGSPTMLAAISKQWVRGAKVE



EDRIHPFRKYFEELQPGDSLLTPRRTMTEADIVNFACLSG



DHFYAHMDKIAAAESIFGERVVHGYFVLSAAAGLFVDAGV



GPVIANYGLESLRFIEPVKPGDTIQVRLTCKRKTLKKQRS



AEEKPTGVVEWAVEVFNQHQTPVALYSILTLVARQHGDFV



D





SEQ ID NO: 30
MRKVPIITADEAAKLIKDGDTVTTSGFVGNAIPEALDRAV


amino acid
EKRFLETGEPKNITYVYCGSQGNRDGRGAEHFAHEGLLKR


sequence of
YIAGHWATVPALGKMAMENKMEAYNVSQGALCHLFRDIAS


Pct(Cp) with the
HKPGVFTKVGIGTFIDPRNGGGKVNDITKEDIVELVEIKG


accession #
QEYLFYPAFPIHVALIRGTYADESGNITFEKEVAPLEGTS


WP_066048121
VCQAVKNSGGIVVVQVERVVKAGTLDPRHVKVPGIYVDYV



VVADPEDHQQSLDCEYDPALSGEHRRPEVVGEPLPLSAKK



VIGRRGAIELEKDVAVNLGVGAPEYVASVADEEGIVDFMT



LTAESGAIGGVPAGGVRFGASYNADALIDQGYQFDYYDGG



GLDLCYLGLAECDEKGNINVSRFGPRIAGCGGFINITQNT



PKVFFCGTFTAGGLKVKIEDGKVIIVQEGKQKKFLKAVEQ



ITFNGDVALANKQQVTYITERCVFLLKEDGLHLSEIAPGI



DLQTQILDVMDFAPIIDRDANGQIKLMDAALFAEGLMGLK



EMKS





SEQ ID NO: 31
MRKVEIITAEQAAQLVKDNDTITSIGFVSSAHPEALTKAL


amino acid
EKRFLDTNTPQNLTYIYAGSQGKRDGRAAEHLAHTGLLKR


sequence of
AIIGHWQTVPAIGKLAVENKIEAYNFSQGTLVHWFRALAG


Pct(Me) with the
HKLGVFTDIGLETFLDPRQLGGKLNDVTKEDLVKLIEVDG


accession #
HEQLFYPTFPVNVAFLRGTYADESGNITMDEEIGPFESTS


WP_014015705
VAQAVHNCGGKVVVQVKDVVAHGSLDPRMVKIPGIYVDYV



VVAAPEDHQQTYDCEYDPSLSGEHRAPEGATDAALPMSAK



KIIGRRGALELTENAVVNLGVGAPEYVASVAGEEGIADTI



TLTVEGGAIGGVPQGGARFGSSRNADAIIDHTYQFDFYDG



GGLDIAYLGLAQCDGSGNINVSKFGTNVAGCGGFPNISQQ



TPNVYFCGTFTAGGLKIAVEDGKVKILQEGKAKKFIKAVD



QITFNGSYAARNGKHVLYITERCVFELTKEGLKLIEVAPG



IDIEKDILAHMDFKPIIDNPKLMDARLFQDGPMGLKK





SEQ ID NO: 32
MNTAELETLIRTILSEKLAPTPPAPQQEQGIFCDVGSAID


amino acid
AAHQAFLRYQQCPLKTRSAIISALRETLAPELATLAEESA


sequence of
TETGMGNKEDKYLKNKAALENTPGIEDLTTSALTGDGGMV


PduP(Kp) with
LFEYSPFGVIGAVAPSTNPTETIINNSISMLAAGNSVYFS


the accession #
PHPGAKKVSLKLIARIEEIAYRCSGIRNLVVTVAEPTFEA


AEW62977
TQQMMSHPLIAVLAITGGPGIVAMGMKSGKKVIGAGAGNP



PCIVDETADLVKAAEDIISGAAFDYNLPCIAEKSLIVVAS



VADRLIQQMQDFDALLLSRQEADTLRTVCLPDGAANKKLV



GKSPAALLAAAGLAVPPRPPRLLIAEVEANDPWVTCEQLM



PVLPIVRVADFDSALALALRVEEGLHHTAIMHSQNVSRLN



LAARTLQTSIFVKNGPSYAGIGVGGEGFTTFTIATPTGEG



TTSARTFARLRRCVLTNGFSIR





SEQ ID NO: 33
MNTSELETLIRTILSEQLTTPAQTPVQPQGKGIFQSVSEA


amino acid
IDAAHQAFLRYQQCPLKTRSAIISAMRQELTPLLAPLAEE


sequence of
SANETGMGNKEDKFLKNKAALDNTPGVEDLTTTALTGDGG


PduP(Se) with
MVLFEYSPFGVIGSVAPSTNPTETIINNSISMLAAGNSIY


the accession #
FSPHPGAKKVSLKLISLIEEIAFRCCGIRNLVVTVAEPTF


NP_460996
EATQQMMAHPRIAVLAITGGPGIVAMGMKSGKKVIGAGAG



NPPCIVDETADLVKAAEDIINGASFDYNLPCIAEKSLIVV



ESVAERLVQQMQTFGALLLSPADTDKLRAVCLPEGQANKK



LVGKSPSAMLEAAGIAVPAKAPRLLIALVNADDPWVTSEQ



LMPMLPVVKVSDFDSALALALKVEEGLHHTAIMHSQNVSR



LNLAARTLQTSIFVKNGPSYAGIGVGGEGFTTFTIATPTG



EGTTSARTFARSRRCVLTNGFSIR





SEQ ID NO: 34
MTDVVIVSAARTAVGKFGGSLAKIPAPELGAVVIKAALER


amino acid
AGVKPEQVSEVIMGQVLTAGSGQNPARQAAIKAGLPAMVP


sequence of
AMTINKVCGSGLKAVMLAANAIMAGDAEIVVAGGQENMSA


PhaA with the
APHVLPGSRDGFRMGDAKLVDTMIVDGLWDVYNQYHMGIT


accession #
AENVAKEYGITREAQDEFAVGSQNKAEAAQKAGKFDEEIV


WP_010810132
PVLIPQRKGDPVAFKTDEFVRQGATLDSMSGLKPAFDKAG



TVTAANASGLNDGAAAVVVMSAAKAKELGLTPLATIKSYA



NAGVDPKVMGMGPVPASKRALSRAEWTPQDLDLMEINEAF



AAQALAVHQQMGWDTSKVNVNGGAIAIGHPIGASGCRILV



TLLHEMKRRDAKKGLASLCIGGGMGVALAVERK





SEQ ID NO: 35
MTQRIAYVTGGMGGIGTAICQRLAKDGFRVVAGCGPNSPR


amino acid
REKWLEQQKALGFDFIASEGNVADWDSTKTAFDKVKSEVG


sequence of
EVDVLINNAGITRDVVFRKMTRADWDAVIDTNLTSLFNVT


PhaB with the
KQVIDGMADRGWGRIVNISSVNGQKGQFGQTNYSTAKAGL


accession #
HGFTMALAQEVATKGVTVNTVSPGYIATDMVKAIRQDVLD


WP_010810131
KIVATIPVKRLGLPEEIASICAWLSSEESGFSTGADFSLN



GGLHMG





SEQ ID NO: 36
MATGKGAAASTQEGKSQPFKVTPGPFDPATWLEWSRQWQG


amino acid
TEGNGHAAASGIPGLDALAGVKIAPAQLGDIQQRYMKDFS


sequence of
ALWQAMAEGKAEATGPLHDRRFAGDAWRTNLPYRFAAAFY


PhaC with the
LLNARALTELADAVEADAKTRQRIRFAISQWVDAMSPANF


accession #
LATNPEAQRLLIESGGESLRAGVRNMMEDLTRGKISQTDE


WP_011615085
SAFEVGRNVAVTEGAVVFENEYFQLLQYKPLTDKVHARPL



LMVPPCINKYYILDLQPESSLVRHVVEQGHTVFLVSWRNP



DASMAGSTWDDYIEHAAIRAIEVARDISGQDKINVLGFCV



GGTIVSTALAVLAARGEHPAASVTLLTTLLDFADTGILDV



FVDEGHVQLREATLGGGAGAPCALLRGLELANTFSFLRPN



DLVWNYVVDNYLKGNTPVPFDLLFWNGDATNLPGPWYCWY



LRHTYLQNELKVPGKLTVCGVPVDLASIDVPTYIYGSRED



HIVPWTAAYASTALLANKLRFVLGASGHIAGVINPPAKNK



RSHWTNDALPESPQQWLAGAIEHHGSWWPDWTAWLAGQAG



AKRAAPANYGNARYRAIEPAPGRYVKAKA





SEQ ID NO: 37
MSTQTLAVGQKARLTKRFGPAEVAAFAGLSEDFNPLHLDP


amino acid
DFAATTVFERPIVHGMLLASLFSGLLGQQLPGKGSIYLGQ


sequence of PhaJ
SLGFKLPVFVGDEVTAEVEVIALRSDKPIATLATRIFTQG


with the
GALAVTGEAVVKLP


accession #



WP_042016563






SEQ ID NO: 38
MLVNDEQQQIADAVRAFAQERLKPFAEQWDKDHRFPKEAI


amino acid
DEMAELGLFGMLVPEQWGGSDTGYVAYAMALEEIAAGDGA


sequence of
CSTIMSVHNSVGCVPILRFGNEQQKEQFLTPLATGAMLGA


PP 2216 with
FALTEPQAGSDASSLKTRARLEGDHYVLNGSKQFITSGQN


the accession #
AGVVIVFAVTDPEAGKRGISAFIVPTDSPGYQVARVEDKL


NP_744365
GQHASDTCQIVFDNVQVPVANRLGAEGEGYKIALANLEGG



RIGIASQAVGMARAAFEVARDYANERQSFGKPLIEHQAVA



FRLADMATKISVARQMVLHAAALRDAGRPALVEASMAKLF



ASEMAEKVCSDALQTLGGYGYLSDFPLERIYRDVRVCQIY



EGTSDIQRMVIARNL





SEQ ID NO: 40
MSLHSPGKAFRAALTKENPLQIVGTINANHALLAQRAGYQ


amino acid
AIYLSGGGVAAGSLGLPDLGISTLDDVLTDIRRITDVCSL


sequence of
PLLVDADIGFGSSAFNVARTVKSMIKAGAAGLHIEDQVGA


PrpB with the
KRCGHRPNKAIVSKEEMVDRIRAAVDAKTDPDFVIMARTD


accession #
ALAVEGLDAAIERAQAYVEAGAEMLFPEAITELAMYRQFA


NP_414865
DAVQVPILANITEFGATPLFTTDELRSAHVAMALYPLSAF



RAMNRAAEHVYNVLRQEGTQKSVIDTMQTRNELYESINYY



QYEEKLDNLFARSQVK





SEQ ID NO: 41
MSDTTILQNSTHVIKPKKSVALSGVPAGNTALCTVGKSGN


amino acid
DLHYRGYDILDLAKHCEFEEVAHLLIHGKLPTRDELAAYK


sequence of
TKLKALRGLPANVRTVLEALPAASHPMDVMRTGVSALGCT


PrpC with the
LPEKEGHTVSGARDIADKLLASLSSILLYWYHYSHNGERI


accession #
QPETDDDSIGGHFLHLLHGEKPSQSWEKAMHISLVLYAEH


NP_414867
EFNASTFTSRVIAGTGSDMYSAIIGAIGALRGPKHGGANE



VSLEIQQRYETPDEAEADIRKRVENKEVVIGFGHPVYTIA



DPRHQVIKRVAKQLSQEGGSLKMYNIADRLETVMWESKKM



FPNLDWFSAVSYNMMGVPTEMFTPLFVIARVTGWAAHIIE



QRQDNKIIRPSANYVGPEDRPFVALDKRQ





SEQ ID NO: 42
MSAQINNIRPEFDREIVDIVDYVMNYEISSKVAYDTAHYC


amino acid
LLDTLGCGLEALEYPACKKLLGPIVPGTVVPNGVRVPGTQ


sequence of
FQLDPVQAAFNIGAMIRWLDFNDTWLAAEWGHPSDNLGGI


PrpD with the
LATADWLSRNAVASGKAPLTMKQVLTAMIKAHEIQGCIAL


accession #
ENSFNRVGLDHVLLVKVASTAVVAEMLGLTREEILNAVSL


NP_414868
AWVDGQSLRTYRHAPNTGTRKSWAAGDATSRAVRLALMAK



TGTHEACIRIIDKKGPLNNPADRDHCIQYMVAIPLLFGRL



TAADYEDNVAQDKRIDALREKINCFEDPAFTADYHDPEKR



AIANAITLEFTDGTRFEEVVVEYPIGHARRRQDGIPKLVD



KFKINLARQFPTRQQQRILEVSLDRARLEQMPVNEYLDLY



VI





SEQ ID NO: 43
MTADAEETDMTASHAVHARSLADPEGFWAEQAARIDWETP


amino acid
FGQVLDNSRAPFTRWFVGGRTNLCHNAVDRHLAARASQPA


sequence of
LHWVSTETDQARTFTYAELHDEVSRMAAILQGLDVQKGDR


PrpE(Cn) with
VLIYMPMIPEAAFAMLACARIGAIHSVVFGGFASVSLAAR


the accession #
IEDARPRVVVSADAGSRAGKVVPYKPLLDEAIRLSSHQPG


WP_081225789
KVLLVDRQLAQMPRTEGRDEDYAAWRERVAGVQVPCVWLE



SSEPSYVLYTSGTTGKPKGVQRDTGGYAVALATSMEYIFC



GKPGDTMFTASDIGWVVGHSYIVYGPLLAGMATLMYEGTP



IRPDGGILWRLVEQYKVNLMFSAPTAIRVLKKQDPAWLTR



YDLSSLRLLFLAGEPLDEPTARWIQDGLGKPVVDNYWQTE



SGCYSTFDWGVRDADGYVFILGRTDDVINVAGHRLGTREI



EESLSSNAAVAEVAVVGVQDALKGQVAMAFCIARDPARTA



TAEARLALEGELMKTVEQQLGAVARPARVFFVNALPKTRS



GKLLRRAMQAVAEGRDPGDLTTIEDPGALEQLQAALKG





SEQ ID NO: 44
MSFSEFYQRSINEPEQFWAEQARRIDWQTPFTQTLDHSNP


amino acid
PFARWFCEGRTNLCHNAIDRWLEKQPEALALIAVSSETEE


sequence of
ERTFTFRQLHDEVNAVASMLRSLGVQRGDRVLVYMPMIAE


PrpE(Ec) with
AHITLLACARIGAIHSVVFGGFASHSVAARIDDAKPVLIV


the accession #
SADAGARGGKIIPYKKLLDDAISQAQHQPRHVLLVDRGLA


NP_414869
KMARVSGRDVDFASLRHQHIGARVPVAWLESNETSCILYT



SGTTGKP



KGVQRDVGGYAVALATSMDTIFGGKAGSVFFCASDIGWVV



GHSYIVYAPLLAGMATIVYEGLPTWPDCGVWWTIVEKYQV



SRMFSAPTAIRVLKKFPTAEIRKHDLSSLEVLYLAGEPLD



EPTASWVSNTLDVPVIDNYWQTESGWPIMAIARGLDDRPT



RLGSPGVPMYGYNVQLLNEVTGEPCGVNEKGMLVVEGPLP



PGCIQTIWGDDGRFVKTYWSLFSRPVYATFDWGIRDADGY



HFILGRTDDVINVAGHRLGTREIEESISSHPGVAEVAVVG



VKDALKGQVAVAFVIPKESDSLEDRDVAHSQEKAIMALVD



SQIGNFGRPAHVWFVSQLPKTRSGKMLRRTIQAICEGRDP



GDLTTIDDPASLDQIRQAMEE





SEQ ID NO: 45
MSFSEFYQRSINEPEAFWAEQARRIDWRQPFTQTLDHSRP


amino acid
PFARWFCGGTTNLCHNAVDRWRDKQPEALALIAVSSETDE


sequence of
ERTFTFSQLHDEVNIVAAMLLSLGVQRGDRVLVYMPMIAE


PrpE(Se) with
AQITLLACARIGAIHSVVFGGFASHSVAARIDDARPALIV


the accession #
SADAGARGGKILPYKKLLDDAIAQAQHQPKHVLLVDRGLA


NP_459366
KMAWVDGRDLDFATLRQQHLGASVPVAWLESNETSCILYT



SGTTGKPKGVQRDVGGYAVALATSMDTIFGGKAGGVFFCA



SDIGWVVGHSYIVYAPLLAGMATIVYEGLPTYPDCGVWWK



IVEKYQVNRMFSAPTAIRVLKKFPTAQIRNHDLSSLEALY



LAGEPLDEPTASWVTETLGVPVIDNYWQTESGWPIMALAR



ALDDRPSRLGSPGVPMYGYNVQLLNEVTGEPCGINEKGML



VIEGPLPPGCIQTIWGDDARFVKTYWSLFNRQVYATFDWG



IRDAEGYYFILGRTDDVINIAGHRLGTREIEESISSYPNV



AEVAVVGIKDALKGQVAVAFVIPKQSDTLADREAARDEEN



AIMALVDNQIGHFGRPAHVWFVSQLPKTRSGKMLRRTIQA



ICEGRDPGDLTTIDDPASLQQIRQAIEE





SEQ ID NO: 46
MSRIIMLIPTGTSVGLTSVSLGVIRAMERKGVRLSVFKPI


amino acid
AQPRTGGDAPDQTTTIVRANSSTTTAAEPLKMSYVEGLLS


sequence of Pta
SNQKDVLMEEIVANYHANTKDAEVVLVEGLVPTRKHQFAQ


with the
SLNYEIAKTLNAEIVFVMSQGTDTPEQLKERIELTRNSFG


accession #
GAKNTNITGVIVNKLNAPVDEQGRTRPDLSEIFDDSSKAK


NP_416800
VNNVDPAKLQESSPLPVLGAVPWSFDLIATRAIDMARHLN



ATIINEGDINTRRVKSVTFCARSIPHMLEHFRAGSLLVTS



ADRPDVLVAACLAAMNGVEIGALLLTGGYEMDARISKLCE



RAFATGLPVFMVNTNTWQTSLSLQSFNLEVPVDDHERIEK



VQEYVANYINADWIESLTATSERSRRLSPPAFRYQLTELA



RKAGKRIVLPEGDEPRTVKAAAICAERGIATCVLLGNPAE



INRVAASQGVELGAGIEIVDPEVVRESYVGRLVELRKNKG



MTETVAREQLEDNVVLGTLMLEQDEVDGLVSGAVHTTANT



IRPPLQLIKTAPGSSLVSSVFFMLLPEQVYVYGDCAINPD



PTAEQLAEIAIQSADSAAAFGIEPRVAMLSYSTGTSGAGS



DVEKVREATRLAQEKRPDLMIDGPLQYDAAVMADVAKSKA



PNSPVAGRATVFIFPDLNTGNTTYKAVQRSADLISIGPML



QGMRKPVNDLSRGALVDDIVYTIALTAIQSAQQQ





SEQ ID NO: 47
MSNNEFHQRRLSATPRGVGVMCNFFAQSAENATLKDVEGN


amino acid
EYIDFAAGIAVLNTGHRHPDLVAAVEQQLQQFTHTAYQIV


sequence of
PYESYVTLAEKINALAPVSGQAKTAFFTTGAEAVENAVKI


PuuE with the
ARAHTGRPGVIAFSGGFHGRTYMTMALTGKVAPYKIGFGP


accession #
FPGSVYHVPYPSDLHGISTQDSLDAIERLFKSDIEAKQVA


NP_415818
AIIFEPVQGEGGFNVAPKELVAAIRRLCDEHGIVMIADEV



QSGFARTGKLFAMDHYADKPDLMTMAKSLAGGMPLSGVVG



NANIMDAPAPGGLGGTYAGNPLAVAAAHAVLNIIDKESLC



ERANQLGORLKNTLIDAKESVPAIAAVRGLGSMIAVEFND



PQTGEPSAAIAQKIQQRALAQGLLLLTCGAYGNVIRFLYP



LTIPDAQFDAAMKILQDALSD





SEQ ID NO: 48
MSNVQEWQQLANKELSRREKTVDSLVHQTAEGIAIKPLYT


amino acid
EADLDNLEVTGTLPGLPPYVRGPRATMYTAQPWTIRQYAG


sequence of Sbm
FSTAKESNAFYRRNLAAGQKGLSVAFDLATHRGYDSDNPR


with the
VAGDVGKAGVAIDTVEDMKVLFDQIPLDKMSVSMTMNGAV


accession #
LPVLAFYIVAAEEQGVTPDKLTGTIQNDILKEYLCRNTYT


NP_417392
YPPKPSMRIIADIIAWCSGNMPRFNTISISGYHMGEAGAN



CVQQVAFTLADGIEYIKAAISAGLKIDDFAPRLSFFFGIG



MDLFMNVAMLRAARYLWSEAVSGFGAQDPKSLALRTHCQT



SGWSLT



EQDPYNNVIRTTIEALAATLGGTQSLHTNAFDEALGLPTD



FSARIARNTQIIIQEESELCRTVDPLAGSYYIESLTDQIV



KQARAIIQQIDEAGGMAKAIEAGLPKRMIEEASAREQSLI



DQGKRVIVGVNKYKLDHEDETDVLEIDNVMVRNEQIASLE



RIRATRDDAAVTAALNALTHAAQHNENLLAAAVNAARVRA



TLGEISDALEVAFDRYLVPSQCVTGVIAQSYHQSEKSASE



FDAIVAQTEQFLADNGRRPRILIAKMGQDGHDRGAKVIAS



AYSDLGFDVDLSPMFSTPEEIARLAVENDVHVVGASSLAA



GHKTLIPELVEALKKWGREDICVVAGGVIPPQDYAFLQER



GVAAIYGPGTPMLDSVRDVLNLISQHHD





SEQ ID NO: 49
MKLPVREFDAVVIGAGGAGMRAALQISQSGQTCALLSKVF


amino acid
PTRSHTVSAQGGITVALGNTHEDNWEWHMYDTVKGSDYIG


sequence of
DQDAIEYMCKTGPEAILELEHMGLPFSRLDDGRIYQRPFG


SdhA with the
GQSKNFGGEQAARTAAAADRTGHALLHTLYQQNLKNHTTI


accession #
FSEWYALDLVKNQDGAVVGCTALCIETGEVVYFKARATVL


NP_415251
ATGGAGRIYQSTTNAHINTGDGVGMAIRAGVPVQDMEMWQ



FHPTGIAGAGVLVTEGCRGEGGYLLNKHGERFMERYAPNA



KDLAGRDVVARSIMIEIREGRGCDGPWGPHAKLKLDHLGK



EVLESRLPGILELSRTFAHVDPVKEPIPVIPTCHYMMGGI



PTKVTGQALTVNEKGEDVVVPGLFAVGEIACVSVHGANRL



GGNSLLDLVVFGRAAGLHLQESIAEQGALRDASESDVEAS



LDRLNRWNNNRNGEDPVAIRKALQECMQHNFSVFREGDAM



AKGLEQLKVIRERLKNARLDDTSSEFNTQRVECLELDNLM



ETAYATAVSANFRTESRGAHSRFDFPDRDDENWLCHSLYL



PESESMTRRSVNMEPKLRPAFPPKIRTY





SEQ ID NO: 50
MNLHEYQAKQLFARYGLPAPVGYACTTPREAEEAASKIGA


amino acid
GPWVVKCQVHAGGRGKAGGVKVVNSKEDIRAFAENWLGKR


sequence of
ELAFKLGLEGKLVQQFTKIFMGLATIFLERDLALIEINPL


SucC with the
VITKQGDLICLDGKLGADGNALFRQPDLREMRDQSQEDPR


accession #
EARCDLIADGIIGAVAEVGVNVPVVVRLEGNNAELGAKKL


NP_415256
ADSGLNIIAAKGLTDAAQQVVAAVEGK





SEQ ID NO: 51
MSILIDKNTKVICQGFTGSQGTFHSEQAIAYGTKMVGGVT


amino acid
PGKGGTTHLGLPVFNTVREAVAATGATASVIYVPAPFCKD


sequence of
SILEAIDAGIKLIITITEGIPTLDMLTVKVKLDEAGVRMI


SucD with the
GPNCPGVITPGECKIGIQPGHIHKPGKVGIVSRSGTLTYE


accession #
AVKQTTDYGFGQSTCVGIGGDPIPGSNFIDILEMFEKDPQ


NP_415257
TEAIVMIGEIGGSAEEEAAAYIKEHVTKPVVGYIAGVTAP



KGKRMGHAGAIIAGGKGTADEKFAALEAAGVKTVRSLADI



GEALKTVLK





SEQ ID NO: 52
MSQALKNLLTLLNLEKIEEGLFRGQSEDLGLRQVFGGQVV


amino acid
GQALYAAKETVPEERLVHSFHSYFLRPGDSKKPIIYDVET


sequence of
LRDGNSFSARRVAAIQNGKPIFYMTASFQAPEAGFEHQKT


TesB with the
MPSAPAPDGLPSETQIAQSLAHLLPPVLKDKFICDRPLEV


accession #
RPVEFHNPLKGHVAEPHRQVWIRANGSVPDDLRVHQYLLG


NP_414986
YASDLNFLPVALQPHGIGFLEPGIQIATIDHSMWFHRPFN



LNEWLLYSVESTSASSARGFVRGEFYTQDGVLVASTVQEG



VMRNHN





SEQ ID NO: 53
MNTTLFRWPVRVYYEDTDAGGVVYHASYVAFYERARTEML


amino acid
RHHHFSQQALMAERVAFVVRKMTVEYYAPARLDDMLEIQT


sequence of
EITSMRGTSLVFTQRIVNAENTLLNEAEVLVVCVDPLKMK


YbgC with the
PRALPKSIVAEFKQ


accession #



NP_415264






SEQ ID NO: 54
MSTTHNVPQGDLVLRTLAMPADTNANGDIFGGWLMSQMDI


amino acid
GGAILAKEIAHGRVVTVRVEGMTFLRPVAVGDVVCCYARC


sequence of
VQKGTTSVSINIEVWVKKVASEPIGQRYKATEALFKYVAV


YciA with the
DPEGKPRALPVE


accession #



NP_415769






SEQ ID NO: 55
MINEATLAESIRRLRQGERATLAQAMTLVESRHPRHQALS


amino acid
TQLLDAIMPYCGNTLRLGVTGTPGAGKSTFLEAFGMLLIR


sequence of
EGLKVAVIAVDPSSPVTGGSILGDKTRMNDLARAEAAFIR


YgfD with the
PVPSSGHLGGASQRARELMLLCEAAGYDVVIVETVGVGQS


accession #
ETEVARMVDCFISLQIAGGGDDLQGIKKGLMEVADLIVIN


NP_417393
KDDGDNHTNVAIARHMYESALHILRRKYDEWQPRVLTCSA



LEKRGIDEIWHAIIDFKTALTASGRLQQVRQQQSVEWLRK



QTEEEVLNHLFANEDFDRYYRQTLLAVKNNTLSPRTGLRQ



LSEFIQTQYFD





SEQ ID NO: 56
MSYQYVNVVTINKVAVIEFNYGRKLNALSKVFIDDLMQAL


amino acid
SDLNRPEIRCIILRAPSGSKVFSAGHDIHELPSGGRDPLS


sequence of
YDDPLRQITRMIQKFPKPIISMVEGSVWGGAFEMIMSSDL


YgfG with the
IIAASTSTFSMTPVNLGVPYNLVGIHNLTRDAGFHIVKEL


accession #
IFTASPITAQRALAVGILNHVVEVEELEDFTLQMAHHISE


NP_417394
KAPLAIAVIKEELRVLGEAHTMNSDEFERIQGMRRAVYDS



EDYQEGMNAFLEKRKPNFVGH





SEQ ID NO: 57
METQWTRMTANEAAEIIQHNDMVAFSGFTPAGSPKALPTA


amino acid
IARRANEQHEAKKPYQIRLLTGASISAAADDVLSDADAVS


sequence of
WRAPYQTSSGLRKKINQGAVSFVDLHLSEVAQMVNYGFFG


YgfH with the
DIDVAVIEASALAPDGRVWLTSGIGNAPTWLLRAKKVIIE


accession #
LNHYHDPRVAELADIVIPGAPPRRNSVSIFHAMDRVGTRY


NP_417395
VQIDPKKIVAVVETNLPDAGNMLDKQNPMCQQIADNVVTF



LLQEMAHGRIPPEFLPLQSGVGNINNAVMARLGENPVIPP



FMMYSEVLQESVVHLLETGKISGASASSLTISADSLRKIY



DNMDYFASRIVLRPQEISNNPEIIRRLGVIALNVGLEFDI



YGHANSTHVAGVDLMNGIGGSGDFERNAYLSIFMAPSIAK



EGKISTVVPMCSHVDHSEHSVKVIITEQGIADLRGLSPLQ



RARTIIDNCAHPMYRDYLHRYLENAPGGHIHHDLSHVFDL



HRNLIATGSMLG





SEQ ID NO: 58
MSAVLTAEQALKLVGEMFVYHMPFNRALGMELERYEKEFA


amino acid
QLAFKNQPMMVGNWAQSILHGGVIASALDVAAGLVCVGST


sequence of YigI
LTRHETISEDELRQRLSRMGTIDLRVDYLRPGRGERFTAT


with the
SSLLRAGNKVAVARVELHNEEQLYIASATATYMVG


accession #



NP_418264






SEQ ID NO: 59
MNNSRLFRLSRIVIALTAASGMMVNTANAKEEAKAATQYT


amino acid
QQVNQNYAKSLPFSDRQDFDDAQRGFIAPLLDEGILRDAN


sequence of YjcS
GKVYYRADDYKFDINAAAPETVNPSLWRQSQINGISGLFK


with the
VTDKMYQVRGQDISNITFVEGEKGIIVIDPLVTPPAAKAA


accession #
LDLYGNGLGVTLATGDPSIIAPTKTIVRTGEKMIIDGLEF


NP_418507
DFLMTPGSEAPAEMHFYIPALKALCTAENATHTLHNFYTL



RGAKTRDTSKWTEYLNETLDMWGNDAEVLFMPHTWPVWGN



KHINDYIGKYRDTIKYIHDQTLHLANQGYTMNEIGDMIKL



PPALANNWASRGYYGSVSHNARAVYNFYLGYYDGNPANLH



PYGQVEMGKRYVQALGGSARVINLAQEANKQGDYRWSAEL



LKQVIAANPGDQVAKNLQANNFEQLGYQAESATWRGFYLT



GAKELREGVHKFSHGTTGSPDTIRGMSVEMLFDFMAVRLD



SAKAAGKNISLNFNMSNGDNLNLTLNDSVLNYRKTLQPQA



DASFYISREDLHAVLTGQAKMADLVKAKKAKIIGNGAKLE



EIIACLDNFDLWVNIVTPN





SEQ ID NO: 172
MVERKGRALIAWRCAQFFKNGDFVNLGIGLPLMCVNYLPE


amino acid
GVSLWLEAEIGTVGSGPSPDWNHVDIDVIDAGGQPASVIT


sequence of
GGSVYDHETSFAFIRGGHIDATVLGTLQVDQEGNIANWTI


MELS_RS00170
PGKFVPGMGGAMDLCAGVKKIIVATDHCEKSGHSKILKKC


with the
TLPLTGARCVTDIVTERCYFEVTPQGLVLRELAPGYTVED


accession
IRACTEADFIVPETIAVMGE


number



WP_041647040






SEQ ID NO: 173
MLSKVFSLQDILEHIHDGQTIMFGDWHGQFAADEIIDGML


amino acid
EKGVKDIKAIAVSAGYPGQGVGKLIVAHRVSSIVTTHIGL


sequence of
NPEALKQMLAGELAVEFVPQGTWAERVRCGGAGLGGVLTP


MELS_RS00175
TGVGTSVEEGKQKLVIDGKEYLLELPLHADVALVKATKAD


with the
TAGNLYFRMNSRATNSTIAYAADFVAAEVEEIVPVGQLLP


accession
EEIAIPAPVVDMVYERQGEKRFICPMWKKARARAEAKARE


number
RQERG


WP_014015004






SEQ ID NO: 176
MQTPHILIVEDELVTRNTLKSIFEAEGYDVFEATDGAEMH


amino acid
QILSEYDINLVIMDINLPGKNGLLLARELREQANVALMFL


sequence of
TGRDNEVDKILGLEIGADDYITKPFNPRELTIRARNLLSR


ArcA with the
TMNLGTVSEERRSVESYKFNGWELDINSRSLIGPDGEQYK


accession
LPRSEFRAMLHFCENPGKIQSRAELLKKMTGRELKPHDRT


number
VDVTIRRIRKHFESTPDTPEIIATIHGEGYRFCGDLED


NP_418818






SEQ ID NO: 177
MIPEKRIIRRIQSGGCAIHCQDCSISQLCIPFTLNEHELD


amino acid
QLDNIIERKKPIQKGQTLFKAGDELKSLYAIRSGTIKSYT


sequence of Fnr
ITEQGDEQITGFHLAGDLVGFDAIGSGHHPSFAQALETSM


with the
VCEIPFETLDDLSGKMPNLRQQMMRLMSGEIKGDQDMILL


accession
LSKKNAEERLAAFIYNLSRRFAQRGFSPREFRLTMTRGDI


number
GNYLGLTVETISRLLGRFQKSGMLAVKGKYITIENNDALA


NP_415850
QLAGHTRNVA





SEQ ID NO: 178
MTITPATHAISINPATGEQLSVLPWAGADDIENALQLAAA


amino acid
GFRDWRETNIDYRAEKLRDIGKALRARSEEMAQMITREMG


sequence of Sad
KPINQARAEVAKSANLCDWYAEHGPAMLKAEPTLVENQQA


with the
VIEYRPLGTILAIMPWNFPLWQVMRGAVPIILAGNGYLLK


accession
HAPNVMGCAQLIAQVFKDAGIPQGVYGWLNADNDGVSQMI


number
KDSRIAAVTVTGSVRAGAAIGAQAGAALKKCVLELGGSDP


NP_416042
FIVLNDADLELAVKAAVAGRYQNTGQVCAAAKRFIIEEGI



ASAFTERFVAAAAALKMGDPRDEENALGPMARFDLRDELH



HQVEKTLAQGARLLLGGEKMAGAGNYYPPTVLANVTPEMT



AFREEMFGPVAAITIAKDAEHALELANDSEFGLSATIFTT



DETQARQMAARLECGGVFINGYCASDARVAFGGVKKSGFG



RELSHFGLHEFCNIQTVWKDRI





SEQ ID NO: 179
TINDVCGSGLKALHLATQAIQCGEADIVIAGGQENMSRAP


amino acid
HVLTDSRTGAQLGNSQLVDSLVHDGLWDAFNDYHIGVTAE


sequence of
NLAREYGISRQLQDAYALSSQQKARAAIDAGRFKDEIVPV


VqeF with the
MTQSNGQTLVVDTDEQPRTDASAEGLARLNPSFDSLGSVT


accession
AGNASSINDGAAAVMMMSEAKARALNLPVLARIRAFASVG


number
VDPALMGIAPVYATRRCLERVGWQLAEVDLIEANEAFAAQ


NP_417321
ALSVGKMLEWDERRVNVNGGAIALGHPIGASGCRILVSLV



HEMVKRNARKGLATLCIGGGQGVALTIERDE





SEQ ID NO: 180
MEQVVIVDAIRTPMGRSKGGAFRNVRAEDLSAHLMRSLLA


amino acid
RNPALEAAALDDIYWGCVQQTLEQGFNIARNAALLAEVPH


sequence of
SVPAVTVNRLCGSSMQALHDAARMIMTGDAQACLVGGVEH


FadA with the
MGHVPMSHGVDFHPGLSRNVAKAAGMMGLTAEMLARMHGI


accession
SREMQDAFAARSHARAWAATQSAAFKNEIIPTGGHDADGV


number
LKQFNYDEVIRPETTVEALATLRPAFDPVNGMVTAGTSSA


YP_026272
LSDGAAAMLVMSESRAHELGLKPRARVRSMAVVGCDPSIM



GYGPVPASKLALKKAGLSASDIGVFEMNEAFAAQILPCIK



DLGLIEQIDEKINLNGGAIALGHPLGCSGARISTTLLNLM



ERKDVQFGLATMCIGLGQGIATVFERV





SEQ ID NO: 181
MAKMRAVDAAMYVLEKEGITTAFGVPGAAINPFYSAMRKH


amino acid
GGIRHILARHVEGASHMAEGYTRATAGNIGVCLGTSGPAG


sequence of Gcl
TDMITALYSASADSIPILCITGQAPRARLHKEDFQAVDIE


with the
AIAKPVSKMAVTVREAALVPRVLQQAFHLMRSGRPGPVLV


accession
DLPFDVQVAEIEFDPDMYEPLPVYKPAASRMQIEKAVEML


number
IQAERPVIVAGGGVINADAAALLQQFAELTSVPVIPTLMG


NP_415040
WGCIPDDHELMAGMVGLQTAHRYGNATLLASDMVFGIGNR



FANRHTGSVEKYTEGRKIVHIDIEPTQIGRVLCPDLGIVS



DAKAALTLLVEVAQEMQKAGRLPCRKEWVADCQQRKRTLL



RKTHFDNVPVKPQRVYEEMNKAFGRDVCYVTTIGLSQIAA



AQMLHVFKDRHWINCGQAGPLGWTIPAALGVCAADPKRNV



VAISGDFDFQFLIEELAVGAQFNIPYIHVLVNNAYLGLIR



QSQRAFDMDYCVQLAFENINSSEVNGYGVDHVKVAEGLGC



KAIRVFKPEDIAPAFEQAKALMAQYRVPVVVEVILERVTN



ISMGSELDNVMEFEDIADNAADAPTETCFMHYE





SEQ ID NO: 182
MKNCVIVSAVRTAIGSFNGSLASTSAIDLGATVIKAAIER


amino acid
AKIDSQHVDEVIMGNVLQAGLGQNPARQALLKSGLAETVC


sequence of
GFTVNKVCGSGLKSVALAAQAIQAGQAQSIVAGGMENMSL


AtoB with the
APYLLDAKARSGYRLGDGQVYDVILRDGLMCATHGYHMGI


accession
TAGNASGINDGAAALVIMEESAALAAGLTPLARIKSYASG


number
GVPPALMGMGPVPATQKALQLAGLQLADIDLIEANEAFAA


NP_416728
QFLAVGKNLGFDSEKVNVNGGAIALGHPIGASGARILVTL



LHAMQARDKTLGLATLCIGGGQGIAMVIERLN





SEQ ID NO: 183
MMNFNNVFRWHLPFLFLVLLTFRAAAADTLLILGDSLSAG


amino acid
YRMSASAAWPALLNDKWQSKTSVVNASISGDTSQQGLARL


sequence of
PALLKQHQPRWVLVELGGNDGLRGFQPQQTEQTLRQILQD


TesA with the
VKAANAEPLLMQIRLPANYGRRYNEAFSAIYPKLAKEFDV


accession
PLLPFFMEEVYLKPQWMQDDGIHPNRDAQPFIADWMAKQL


number
QPLVNHDS


NP_415027






SEQ ID NO: 184
MNKDTLIPTTKDLKVKTNGENINLKNYKDNSSCFGVFENV


amino acid
ENAISSAVHAQKILSLHYTKEQREKIITEIRKAALQNKEV


sequence of Ald
LATMILEETHMGRYEDKILKHELVAKYTPGTEDLTTTAWS


with the
GDNGLTVVEMSPYGVIGAITPSTNPTETVICNSIGMIAAG


accession
NAVVFNGHPCAKKCVAFAVEMINKAIISCGGPENLVTTIK


number
NPTMESLDAIIKHPSIKLLCGTGGPGMVKTLLNSGKKAIG


WP_012059995.1
AGAGNPPVIVDDTADIEKAGRSIIEGCSFDNNLPCIAEKE



VFVFENVADDLISNMLKNNAVIINEDQVSKLIDLVLQKNN



ETQEYFINKKWVGKDAKLFLDEIDVESPSNVKCIICEVNA



NHPFVMTELMMPILPIVRVKDIDEAIKYAKIAEQNRKHSA



YIYSKNIDNLNRFEREIDTTIFVKNAKSFAGVGYEAEGFT



TFTIAGSTGEGITSARNFTRQRRCVLAG





SEQ ID NO: 194
MDKKQVTDLRSELLDSRFGAKSISTIAESKRFPLHEMRDD


amino acid
VAFQIINDELYLDGNARQNLATFCQTWDDENVHKLMDLSI


sequence of
NKNWIDKEQYPQSAAIDLRCVNMVADLWHAPAPKNGQAVG


GadBe(Ec)
TNTIGSSEACMLGGMAMKWRWRKRMEAAGKPTDKPNLVCG



PVQICWHKFARYWDVELREIPMRPGQLFMDPKRMIEACDE



NTIGVVPTFGVTYTGNYEFPQPLHDALDKFQADTGIDIDM



HIDAASGGFLAPFVAPDIVWDFRLPRVKSISASGHKFGLA



PLGCGWVIWRDEEALPQELVFNVDYLGGQIGTFAINFSRP



AGQVIAQYYEFLRLGREGYTKVQNASYQVAAYLADEIAKL



GPYEFICTGRPDEGIPAVCFKLKDGEDPGYTLYDLSERLR



LRGWQVPAFTLGGEATDIVVMRIMCRRGFEMDFAELLLED



YKASLKYLSDH





SEQ ID NO: 195
MAISTPMLVTFCVYIFGMILIGFIAWRSTKNFDDYILGGR


amino acid
SLGPFVTALSAGASDMSGWLLMGLPGAVFLSGISESWIAI


sequence of PutP
GLTLGAWINWKLVAGRLRVHTEYNNNALTLPDYFTGRFED


with the
KSRILRIISALVILLFFTIYCASGIVAGARLFESTFGMSY


accession
ETALWAGAAATILYTFIGGFLAVSWTDTVQASLMIFALIL


number
TPVIVIISVGGFGDSLEVIKQKSIENVDMLKGLNFVAIIS


NP_415535.1
LMGWGLGYFGQPHILARFMAADSHHSIVHARRISMTWMIL



CLAGAVAVGFFGIAYFNDHPALAGAVNQNAERVFIELAQI



LFNPWIAGILLSAILAAVMSTLSCQLLVCSSAITEDLYKA



FLRKHASQKELVWVGRVMVLVVALVAIALAANPENRVLGL



VSYAWAGFGAAFGPVLOES





SEQ ID NO: 196
MSEAVRDFSQCYGHDFEDLKVGMSAAIGRTVTEADIAIFA


amino acid
GISGDTNPVHLDAEFAASTMFGERIAHGMLSASFISAVFG


sequence of
TKLPGPGCIYLGQSLNFKASVKVGETVVARVTVRELVAHK


PhaJ(Aa) with
RRAFFDTVCTVAGKVVLEGHAEIYLPARQ


the accession



number



CAI08632.1






SEQ ID NO: 197
MFIPSIYLHQQLHYCKTAILNWSRKMALSRQKFTFERLRR


amino acid
FTLPEGKKQTFLWDADVTTLACRATSGAKAFVFQSVYAGK


sequence of IntF
TLRMTIGNINDWKIDDARAEARRLQTLIDTGIDPRIAKAV


with the
KIAEAESLQAESRKTKVTFSVAWEDYLQELRTGISAKTKR


accession
PYSTRYIADHINLSSRGGESKKRGQGPTSAGPLASLLNLP


number
LSELTPDYIAAWLSTERQNRPTVTAHAYRLLRAFIKWSNY


NP_414815.1
QKKYQGIIPGDLAQDYNVRKMVPVSASKADDCLQKEQLKS



WFSAVRSLNNPIASAYLQVLLLTGARREEIASLRWSDVDF



KWSSMRIKDKIEGERIIPLTPYVSELLNVLAQSPNSDVNK



EGWVFRSNSKSGKIIEPRSAHNRALVLAELPHISLHGLRR



SFGTLAEWVEVP





SEQ ID NO: 198
MSILTRWLLIPPVNARLIGRYRDYRRHGASAFSATLGCFW


amino acid
MILAWIFIPLEHPRWQRIRAEHKNLYPHINASRPRPLDPV


sequence of
RYLIQTCWLLIGASRKETPKPRRRAFSGLQNIRGRYHQWM


BcsA with the
NELPERVSHKTQHLDEKKELGHLSAGARRLILGIIVTFSL


accession
ILALICVTQPFNPLAQFIFLMLLWGVALIVRRMPGRFSAL


number
MLIVLSLTVSCRYIWWRYTSTLNWDDPVSLVCGLILLFAE


NP_417990.4
TYAWIVLVLGYFQVVWPLNRQPVPLPKDMSLWPSVDIFVP



TYNEDLNVVKNTIYASLGIDWPKDKLNIWILDDGGREEFR



QFAQNVGVKYIARTTHEHAKAGNINNALKYAKGEFVSIFD



CDHVPTRSFLQMTMGWFLKEKQLAMMQTPHHFFSPDPFER



NLGRFRKTPNEGTLFYGLVQDGNDMWDATFFCGSCAVIRR



KPLDEIGGIAVETVTEDAHTSLRLHRRGYTSAYMRIPQAA



GLATESLSAHIGQRIRWARGMVQIFRLDNPLTGKGLKFAQ



RLCYVNAMFHFLSGIPRLIFLTAPLAFLLLHAYIIYAPAL



MIALFVLPHMIHASLTNSKIQGKYRHSFWSEIYETVLAWY



IAPPTLVALINPHKGKFNVTAKGGLVEEEYVDWVISRPYI



FLVLLNLVGVAVGIWRYFYGPPTEMLTVVVSMVWVFYNLI



VLGGAVAVSVESKQVRRSHRVEMTMPAAIAREDGHLFSCT



VQDFSDGGLGIKINGQAQILEGQKVNLLLKRGQQEYVFPT



QVARVMGNEVGLKLMPLTTQQHIDFVQCTFARADTWALWQ



DSYPEDKPLESLLDILKLGFRGYRHLAEFAPSSVKGIFRV



LTSLVSWVVSFIPRRPERSETAQPSDQALAQQ





SEQ ID NO: 199
MRKFTLNIFTLSLGLAVMPMVEAAPTAQQQLLEQVRLGEA


amino acid
THREDLVQQSLYRLELIDPNNPDVVAARFRSLLRQGDIDG


sequence of
AQKQLDRLSQLAPSSNAYKSSRTTMLLSTPDGRQALQQAR


BcsC with the
LQATTGHAEEAVASYNKLFNGAPPEGDIAVEYWSTVAKIP


accession
ARRGEAINQLKRINADAPGNTGLQNNLALLLFSSDRRDEG


number
FAVLEQMAKSNAGREGASKIWYGQIKDMPVSDASVSALKK


YP_026226.4
YLSIFSDGDSVAAAQSQLAEQQKQLADPAFRARAQGLAAV



DSGMAGKAIPELQQAVRANPKDSEALGALGQAYSQKGDRA



NAVANLEKALALDPHSSNNDKWNSLLKVNRYWLAIQQGDA



ALKANNPDRAERLFQQARNVDNTDSYAVLGLGDVAMARKD



YPAAERYYQQTLRMDSGNTNAVRGLANIYRQQSPEKAEAF



IASLSASQRRSIDDIERSLQNDRLAQQAEALENQGKWAQA



AALQRQRLALDPGSVWITYRLSQDLWQAGQRSQADTLMRN



LAQQKSNDPEQVYAYGLYLSGHDQDRAALAHINSLPRAQW



NSNIQELVNRLQSDQVLETANRLRESGKEAEAEAMLRQQP



PSTRIDLTLADWAQQRRDYTAARAAYQNVLTREPANADAI



LGLTEVDIAAGDKAAARSQLAKLPATDNASLNTQRRVALA



QAQLGDTAAAQRTFNKLIPQAKSQPPSMESAMVLRDGAKF



EAQAGDPTQALETYKDAMVASGVTTTRPQDNDTFTRLTRN



DEKDDWLKRGVRSDAADLYRQQDLNVTLEHDYWGSSGTGG



YSDLKAHTTMLQVDAPYSDGRMFFRSDFVNMNVGSFSTNA



DGKWDDNWGTCTLQDCSGNRSQSDSGASVAVGWRNDVWSW



DIGTTPMGFNVVDVVGGISYSDDIGPLGYTVNAHRRPISS



SLLAFGGQKDSPSNTGKKWGGVRADGVGLSLSYDKGEANG



VWASLSGDQLTGKNVEDNWRVRWMTGYYYKVINQNNRRVT



IGLNNMIWHYDKDLSGYSLGQGGYYSPQEYLSFAIPVMWR



ERTENWSWELGASGSWSHSRTKTMPRYPLMNLIPTDWQEE



AARQSNDGGSSQGFGYTARALLERRVTSNWFVGTAIDIQQ



AKDYAPSHFLLYVRYSAAGWQGDMDLPPQPLIPYADW





SEQ ID NO: 200
MATSVQTGKAKQLTLLGFFAITASMVMAVYEYPTFATSGF


amino acid
SLVFFLLLGGILWFIPVGLCAAEMATVDGWEEGGVFAWVS


sequence of
NTLGPRWGFAAISFGYLQIAIGFIPMLYFVLGALSYILKW


GadC with the
PALNEDPITKTIAALIILWALALTQFGGTKYTARIAKVGF


accession
FAGILLPAFILIALAAIYLHSGAPVAIEMDSKTFFPDFSK


number
VGTLVVFVAFILSYMGVEASATHVNEMSNPGRDYPLAMLL


NP_416009.1
LMVAAICLSSVGGLSIAMVIPGNEINLSAGVMQTFTVLMS



HVAPEIEWTVRVISALLLLGVLAEIASWIVGPSRGMYVTA



QKNLLPAAFAKMNKNGVPVTLVISQLVITSIALIILTNTG



GGNNMSFLIALALTVVIYLCAYFMLFIGYIVLVLKHPDLK



RTFNIPGGKGVKLVVAIVGLLTSIMAFIVSFLPPDNIQGD



STDMYVELLVVSFLVVLALPFILYAVHDRKGKANTGVTLE



PINSQNAPKGHFFLHPRARSPHYIVMNDKKH





SEQ ID NO: 201
MVIKAQSPAGFAEEYIIESIWNNRFPPGTILPAERELSEL


amino acid
IGVTRTTLREVLQRLARDGWLTIQHGKPTKVNNFWETSGL


sequence of
NILETLARLDHESVPQLIDNLLSVRTNISTIFIRTAFRQH


FadR with the
PDKAQEVLATANEVADHADAFAELDYNIFRGLAFASGNPI


accession
YGLILNGMKGLYTRIGRHYFANPEARSLALGFYHKLSALC


number
SEGAHDQVYETVRRYGHESGEIWHRMQKNLPGDLAIQGR


NP_415705.1






SEQ ID NO: 202
MNNFNLHTPTRILFGKGAIAGLREQIPHDARVLITYGGGS


amino acid
VKKTGVLDQVLDALKGMDVLEFGGIEPNPAYETLMNAVKL


sequence of
VREQKVTFLLAVGGGSVLDGTKFIAAAANYPENIDPWHIL


YqhD with the
QTGGKEIKSAIPMGCVLTLPATGSESNAGAVISRKTTGDK


accession
QAFHSAHVQPVFAVLDPVYTYTLPPRQVANGVVDAFVHTV


number
EQYVTKPVDAKIQDRFAEGILLTLIEDGPKALKEPENYDV


NP_417484.1
RANVMWAATQALNGLIGAGVPQDWATHMLGHELTAMHGLD



HAQTLAIVLPALWNEKRDTKRAKLLQYAERVWNITEGSDD



ERIDAAIAATRNFFEQLGVPTHLSDYGLDGSSIPALLKKL



EEHGMTQLGENHDITLDVSRRIYEAAR





SEQ ID NO: 203
MTAINRILIVDDEDNVRRMLSTAFALQGFETHCANNGRTA


amino acid
LHLFADIHPDVVLMDIRMPEMDGIKALKEMRSHETRTPVI


sequence of
LMTAYAEVETAVEALRCGAFDYVIKPFDLDELNLIVQRAL


AtoC(Con) with
QLQSMKKESRHLHQALSTSWQWGHILTNSPAMMDICKDTA


the accession
KIALSQASVLISGESGTGKELIARAIHYNSRRAKGPFIKV


number
NCAALPESLLESELFGHEKGAFTGAQTLRQGLFERANEGT


WP_077989191.1
LLLDEIGEMPLVLQAKLLRILQEREFERIGGHQTIKVDIR



IIAATNRDLQAMVKEGTFREDLFYRLNVIHLILPPLRDRR



EDISLLANHFLQKFSSENQRDIIDIDPMAMSLLTAWSWPG



NIRELSNVIERAVVMNSGPIIFSEDLPPQIRQPVCNAGEV



KTAPVGERNLKEEIKRVEKRIIMEVLEQQEGNRTRTALML



GISRRALMYKLQEYGIDPADV





SEQ ID NO: 215
MDQTYSLESFLNHVQKRDPNQTEFAQAVREVMTTLWPFLE


amino acid
QNPKYRQMSLLERLVEPERVIQFRVVWVDDRNQIQVNRAW


sequence of
RVQFSSAIGPYKGGMRFHPSVNLSILKFLGFEQTFKNALT


GdhA with the
TLPMGGGKGGSDFDPKGKSEGEVMRFCQALMTELYRHLGA


accession
DTDVPAGDIGVGGREVGFMAGMMKKLSNNTACVFTGKGLS


number
FGGSLIRPEATGYGLVYFTEAMLKRHGMGFEGMRVSVSGS


NP_416275.1
GNVAQYAIEKAMEFGARVITASDSSGTVVDESGFTKEKLA



RLIEIKASRDGRVADYAKEFGLVYLEGQQPWSLPVDIALP



CATQNELDVDAAHQLIANGVKAVAEGANMPTTIEATELFQ



QAGVLFAPGKAANAGGVATSGLEMAQNAARLGWKAEKVDA



RLHHIMLDIHHACVEHGGEGEQTNYVQGANIAGFVKVADA



MLAQGVI





SEQ ID NO: 216
MAMLYGKHTHETDETLIPIFGASAERHDLPKYKLAKHALE


amino acid
PREADRLVRDQLLDEGNSRLNLATFCQTYMEPEAVELMKD


sequence of
TLEKNAIDKSEYPRTAEIENRCVNIIANLWHAPEAESFTG


GadBe(Lb)
TSTIGSSEACMLAGLAMKFAWRKRAKANGLDLTAHQPNIV



ISAGYQVCWEKFCVYWDIDMHVVPMDDDHMSLNVDHVLDY



VDDYTIGIVGIMGITYTGQYDDLARLDAVVERYNRTTKFP



VYIHVDAASGGFYTPFIEPELKWDFRLNNVISINASGHKY



GLVYPGVGWVIWRGQQYLPKELVFKVSYLGGSLPTMAINF



SHSASQLIGQYYNFIRFGFDGYREIHEKTHDVARYLAKSL



TKLGGFSLINDGHELPLICYELTADSDREWTLYDLSDRLL



MKGWQVPTYPLPKNMTDRVIQRIVVRADFGMSMAHDFIDD



LTQAIHDLDQAHIVFHSDPQPKKYGFTH





SEQ ID NO: 217
MAMLYGKHNHEAEEYLEPVFGAPSEQHDLPKYRLPKHSLS


amino acid
PREADRLVRDELLDEGNSRLNLATFCQTYMEPEAVELMKD


sequence of
TLAKNAIDKSEYPRTAEIENRCVNIIANLWHAPDDEHFTG


GadB(Lp) with
TSTIGSSEACMLGGLAMKFAWRKRAQAAGLDLNAHRPNLV


the accession
IS


number
AGYQVCWEKFCVYWDVDMHVVPMDEQHMALDVNHVLDYVD


EFK28268.1
EYTIGIVGIMGITYTGQYDDLAALDKVVTHYNHQHPKLPV



YIHVDAASGGFYTPFIEPQLIWDFRLANVVSINASGHKYG



LVYPGVGWVVWRDRQFLPPELVFKVSYLGGELPTMAINFS



HSAAQLIGQYYNFIRFGMDGYREIQTKTHDVARYLAAALD



KVGEFKMINNGHQLPLICYQLAPREDREWTLYDLSDRLLM



NGWQVPTYPLPANLEQQVIQRIVVRADFGMNMAHDFMDDL



TKAVHDLNHAHIVYHHDAAPKKYGFTH





SEQ ID NO: 224
MSKNDQETQQMLDAAQLEKTFLGSTAAGESLPKNTMPAGP


amino acid
MAPDVAVEMVDHFRLNEAKANQNLATFCTTEMEPQADQLM


sequence of
MRTLNTNAIDKSEYPKTSAMENYCVSMIAHLWGIPDEEKF


Gad(Ls) with the
GDDFIGTSTVGSSEGCMLGGLALLHTWKHRAKAAGLDIDD


accession
LHAHKPNLVIMSGNQVVWEKFCTYWNVDFRQVPINGDQVS


number
LDLDHVMDYVDENTIGIIGIEGITYTGSVDDIQGLDKLVT


WP_082622401.
EYNKTAALPVRIHVDAAFGGLFAPFVDGFKPWDFRLDNVV


1
SINVSGHKYGMVYPGLGWIVWRKNSYDILPKEMRFSVPYL



GSSVDSIAINFSHSGAHINAQYYNFLRFGLAGYKAIMNNV



RKVSLKLTDELRKFGIFDILVDGKELPINCWKLSDNANVS



WSL





SEQ ID NO: 225
MANQAPVAWVTGGTGGIGTSICHSLADAGYLVVAGYHNPE


amino acid
KAKTWLETQQAAGYDNIALSGVDLSDHNACLEGAREIQEK


sequence of
YGPVSVLVNCAGITRDGTMKKMSYEQWHQVIDTNLNSVFN


PhaB(Hb) with
TCRSVIEMMLEQGYGRIINISSINGRKGQFGQVNYAAAKA


the accession
GMHGLTMSLAQETATKGITVNTVSPGYIATDMIMKIPEQV


number
REAIRETIPVKRYGTPEEIGRLVTFLADKESGFITGANID


WP_009724067.
INGGQFMG


1






SEQ ID NO: 226
ALWQAMAEGKAEATGPLHDRRFAGDAWRTNLPYRFAAAFY


amino acid
LLNARALTELADAVEADAKTRQRIRFAISQWVDAMSPANF


sequence of
LATNPEAQRLLIESGGESLRAGVRNMMEDLTRGKISQTDE


PhaC(F420S)
SAFEVGRNVAVTEGAVVFENEYFQLLQYKPLTDKVHARPL



LMVPPCINKYYILDLQPESSLVRHVVEQGHTVFLVSWRNP



DASMAGSTWDDYIEHAAIRAIEVARDISGQDKINVLGFCV



GGTIVSTALAVLAARGEHPAASVTLLTTLLDFADTGILDV



FVDEGHVQLREATLGGGAGAPCALLRGLELANTFSFLRPN



DLVWNYVVDNYLKGNTPVPSDLLFWNGDATNLPGPWYCWY



LRHTYLQNELKVPGKLTVCGVPVDLASIDVPTYIYGSRED



HIVPWTAAYASTALLANKLRFVLGASGHIAGVINPPAKNK



RSHWTNDALPESPQQWLAGAIEHHGSWWPDWTAWLAGQAG



AKRAAPANYGNARYRAIEPAPGRYVKAKA





SEQ ID NO: 230
MATDKGAAASTQEGKSQPFKVTPGPFDPATWLEWSRQWQG


amino acid
TEGNGHAAASGIPGLDALAGVKIAPAQLGDIQQRYMKDFS


sequence of
ALWQAMAEGKAEATGPLHDRRFAGDAWRTNLPYRFAAAFY


PhaC(G4D)
LLNARALTELADAVEADAKTRQRIRFAISQWVDAMSPANF



LATNPEAQRLLIESGGESLRAGVRNMMEDLTRGKISQTDE



SAFEVGRNVAVTEGAVVFENEYFQLLQYKPLTDKVHARPL



LMVPPCINKYYILDLQPESSLVRHVVEQGHTVFLVSWRNP



DASMAGSTWDDYIEHAAIRAIEVARDISGQDKINVLGFCV



GGTIVSTALAVLAARGEHPAASVTLLTTLLDFADTGILDV



FVDEGHVQLREATLGGGAGAPCALLRGLELANTFSFLRPN



DLVWNYVVDNYLKGNTPVPFDLLFWNGDATNLPGPWYCWY



LRHTYLQNELKVPGKLTVCGVPVDLASIDVPTYIYGSRED



HIVPWTAAYASTALLANKLRFVLGASGHIAGVINPPAKNK



RSHWTNDALPESPQQWLAGAIEHHGSWWPDWTAWLAGQAG



AKRAAPANYGNARYRAIEPAPGRYVKAKA









In embodiments, the recombinant bacterial cell for producing PHBV comprises at least one polypeptide having an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to any one of SEQ ID NO: 1-26, 28-38, 40-59, 172-173, 176-184, 194-203, 215-217, 224-226, and 230, or a polypeptide having an accession no. shown in Table 6. In embodiments, the polypeptide is a recombinant polypeptide. In embodiments, the acyl-CoA synthetase has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 26, the acetate CoA-transferase polypeptides having an amino acid sequence having at least 75% sequence identity to SEQ ID NO: 4 and 5 or 172 and 173, or a polypeptide having an accession no. WP 053001645.1, QGU62017.1, WP_155555734.1, WP_038355059.1, MLY49728.1, WP_105269001.1, WP_105284960.1, WP_149476985.1, WP_108188772.1, WP_000850520.1, WP_138957179.1, WP_123267594.1, WP_114680602.1, WP_047500919.1, or WP_004184954.1, and the propionate-CoA transferase polypeptide has an amino acid sequence having at least 75% sequence identity to SEQ ID NO: 30 or 31 or a polypeptide having an accession no. WP_066087637.1, NCC15629.1, WP_054329786.1, WP_072853413.1, CDC28613.1, WP_016408311.1, WP_088107724.1, WP_160302233.1, WP_004038625.1, WP_054336166.1, WP_036203125.1, WP_044502862.1, WP_065360594.1, KXA66894.1, WP_095629974.1, WP_087478516.1, WP_107195767.1, WP_048515067.1, WP_101912966.1, WP_156208970.1, KXB92430.1, WP_023053187.1, WP_039891686.1, or KXB92214.1. In embodiments, the PutP polypeptide has an amino acid sequence having at least 75% sequence identity to SEQ ID NO: 195. In embodiments, the AtoE polypeptide has an amino acid sequence having at least 75% sequence identity to SEQ ID NO: 6. In embodiments, the first β-ketothiolase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 8, or a polypeptide having an accession no. WP_013956457.1, WP_035820088.1, WP_092317205.1, WP_115013782.1, WP_116382528.1, WP_018311404.1, WP_063238655.1, WP_116321050.1, AGW89814.1, WP_062798985.1, WP_133094381.1, AGW95651.1, WP_140952189.1, WP_144195740.1, or WP_011516125.1. In embodiments, the NADPH-dependent acetoacetyl-CoA reductase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 35, or a polypeptide having an accession no. RWA53825.1, WP_042885115.1, WP_039016191.1, WP_116336746.1, WP_112777371.1, WP_006577377.1, WP_135705030.1, WP_133096842.1, WP_124684436.1, WP_116321053.1, WP_006155939.1, WP_045241722.1, WP_011297519.1, WP_144195744.1, or ODV43053.1. In embodiments, the NADH-dependent acetoacetyl-CoA reductase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 225, or a polypeptide having an accession no. WP_162219671.1, WP_126946472.1, WP_120385833.1, WP_030074446.1, WP_188637499.1, WP_058579713.1, WP_083023226.1, WP_039183428.1, WP_159340906.1, or WP_096653461.1. In embodiments, the short-chain polyhydroxyalkanoate synthase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 36, 226, or 230, or a polypeptide having an accession no. ACZ57807.1, WP_010810133.1, WP_013956451.1, AAW65074.1, WP_018311399.1, AGW89808.1, WP_115678329.1, WP_062798976.1, WP_115013788.1, or WP_115680054.1, WP_112777370.1. In embodiments, the CoA-dependent propanal dehydrogenase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 32 or 33, or a polypeptide having an accession no. WP_109231734.1, WP_109848747.1, WP_136028274.1, WP_100680758.1, WP_100631313.1, WP_049157539.1, WP_029884370.1, MXH33721.1, WP_144232363.1, WP_153679752.1, WP_148849915.1, EBS2830838.1, WP_112213940.1, WP_064370270.1, WP_001097684.1, WP_001528442.1, WP_080203692.1, WP_108450871.1, WP_009652778.1, WP_142983670.1, WP_105274032.1, WP_070556870.1, WP_142502560.1, WP_012131760.1, WP_012906342.1, WP_006683971.1, WP_103775053.1, WP_060570657.1, or WP_135321437.1, the β-alanine transaminase polypeptide has an amino acid sequence having at least 75% sequence identity to SEQ ID NO: 15 or 16, or a polypeptide having an accession no. WP_116425784.1, WP_069862932.1, WP_043315988.1, WP_009614288.1, WP_089392503.1, WP_109934365.1, WP_090268322.1, WP_138519936.1, WP_138213347.1, WP_015474919.1, WP_043256620.1, WP_084311461.1, WP_053816481.1, WP_070656248.1, or WP_077524299.1, or the NADP+-dependent succinate semialdehyde dehydrogenase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 17 or a polypeptide having an accession no. WP_105285925.1, WP_135494970.1, WP_094315749.1, WP_161983589.1, WP_000772895.1, WP_078167276.1, WP_016249103.1, WP_105267583.1, WP_149461599.1, WP_128880059.1, WP_149461599.1, WP_060773285.1, WP_153257801.1, or WP_108418849.1, WP_045446520.1. In embodiments, the short-chain acyl-CoA dehydrogenase polypeptide has an amino acid sequence having at least 75% sequence identity to SEQ ID NO: 38, 7, 28, or 13, or a polypeptide having accession no. WP_003250094.1, WP_104887321.1, WP_039614175.1, WP_023662689.1, WP_085706434.1, WP_070087269.1, WP_060512757.1, WP_144171976.1, WP_054884005.1, WP_051100719.1, WP_099814118.1, WP_125859423.1, WP_125464833.1, WP_090345830.1, WP_110994568.1, WP_088022147.1, WP_098448816.1, WP_149216716.1, WP_101167410.1, WP_143881711.1, WP_085450733.1, WP_144504985.1, BCA34359.1, WP_098299175.1, WP_071710801.1, CKE48212.1, WP_163095898.1, WP_071725959.1, WP_136445333.1, WP_128975345.1, WP_020723925.1, WP_048514244.1, WP_074501184.1, KXB91325.1, WP_154877386.1, WP_107195291.1, WP_087477538.1, WP_095630133.1, WP_091647756.1, WP_023053225.1, WP_101912630.1, WP_075572446.1, WP_006790232.1, WP_006942404.1, WP_094316844.1, WP_130224094.1, WP_135404353.1, WP_046076114.1, WP_011069257.1, WP_135489829.1, WP_085448671.1, WP_124782953.1, WP_153879457.1, EDR1571704.1, WP_103776898.1, WP_008783785.1, WP_087053141.1, WP_079225425.1, or WP_137366593.1, WP_000973041.1, and the enoyl-CoA hydratase/isomerase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 22, 37, or 196, or a polypeptide having accession no. WP_051591491.1, WP_114130480.1, WP_078200706.1, EON20731.1, PK064515.1, WP_092007571.1, WP_162566377.1, WP_137921632.1, WP_162591754.1, WP_103260220.1, WP_104454254.1, OJW67134.1, WP_041998622.1, WP_043760202.1, WP_043129860.1, WP_042076944.1, WP_100860962.1, WP_163157368.1, WP_042638062.1, WP_106886672.1, WP_033131291.1, WP_025327110.1, WP_040094291.1, WP_139745378.1, WP_169200570.1, WP_053422493.1, WP_169118971.1, WP_169202263.1, AUL99438.1, WP_136349851.1, WP_136385326.1, WP_187719679.1, or WP_107493682.1, WP_169262136.1. In embodiments, the propionyl-CoA synthetase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 43, 44, or 45, or a polypeptide having an accession no. WP_081623799.1, WP_115213214.1, WP_082818978.1, WP_116324638.1, WP_092309442.1, AMR79067.1, WP_151072146.1, WP_029046365.1, AGW91162.1, WP_116321975.1, WP_039006728.1, WP_092134378.1, WP_109580644.1, WP_035882297.1, WP_149135646.1, WP_024249411.1, WP_130258507.1, WP_000010307.1, WP_138159881.1, WP_105281240.1, WP_000010239.1, WP_000010244.1, WP_160524152.1, WP_105270931.1, WP_160530253.1, WP_016235155.1, WP_061090735.1, WP_103014998.1, WP_094761423.1, ATX90159.1, WP_127836169.1, WP_103776706.1, WP_044259075.1, WP_012904755.1, WP_043015332.1, WP_008783866.1, WP_153690685.1, WP_058587683.1, WP_101700584.1, WP_042324663.1, WP_123268908.1, WP_137351112.1, WP_048219548.1, or WP_160955604.1, WP_012133646.1. In embodiments, the glutamate decarboxylase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 19, 20, 194, 216, 217, or 224, or a polypeptide having an accession no. XP_002871761.1, KFK41557.1, VVB14898.1, R1D41892.1, XP_013661825.1, VDC86651.1, XP_006400267.1, XP_010420446.1, XP_010453919.1, CAA7061503.1, XP_006400266.1, ESQ41721.1, XP_013627326.1, XP_031273023.1, WP_134806912.1, WP_052942456.1, WP_128881419.1, WP_135383171.1, WP_054518524.1, WP_138158972.1, WP_103194808.1, WP_000358851.1, WP_107164449.1, WP_000358937.1, WP_135385956.1, WP_113623060.1, EAB0955940.1, WP_134806912.1, WP_052942456.1, WP_128881419.1, WP_135383171.1, WP_054518524.1, WP_138158972.1, WP_103194808.1, WP_000358851.1, WP_107164449.1, WP_000358937.1, WP_135385956.1, WP_113623060.1, EAB0955940.1, WP_125641322.1, WP_226457942.1, BAN05709.1, MBL3537851.1, WP_039105805.1, WP_052957185.1, KIR08754.1, WP_125574762.1, WP_063488771.1, or WP_017262688.1. In embodiments, the glutamate dehydrogenase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 215. In embodiments, the second β-ketothiolase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 34, or a polypeptide having an accession no. WP_013956452.1, SCU96900.1, WP_035820078.1, 409C A, WP_116382525.1, WP_092317196.1, WP_062798979.1, WP_116321054.1, AGW89809.1, WP_039016192.1, WP_063238652.1, WP_029049660.1, WP_011297518.1, WP_124684437.1, or WP_109580845.1. In embodiments, the succinyl-CoA transferase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 10 or a polypeptide having an accession no. WP_073539834.1, or WP_010236491.1, or the succinyl-CoA synthetase polypeptides having an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 50 and 51 or a polypeptide having an accession no. WP_111780024.1, WP_105268114.1, WP_149508492.1, EBH0782533.1, WP_079789068.1, EAA0703253.1, WP_001048612.1, WP_103776364.1, HAC6539881.1, WP_139538723.1, WP_040076526.1, WP_152308781.1, WP_0617083881, WP_159152251.1, WP_159754306.1, WP_148048643.1, WP_161983406.1, WP_128882005.1, SEK68167.1, WP_064567804.1, WP_090133347.1, EDS6037479.1, WP_015965312.1, WP_154777294.1, WP_108473875.1, WP_162082208.1, or WP_154158334.1. In embodiments, the CoA-acylating aldehyde dehydrogenase polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 184 or a polypeptide having an accession no. WP_077830381.1, WP_065419149.1, WP_017211959.1, WP_077844109.1, AAD31841.1, WP_087702529.1, WP_077868466.1, WP_077366605.1, WP_026888070.1, WP_077860531.1, WP_022747467.1, WP_077863550.1, WP_009171375.1, WP_128214949.1, WP_160679606.1, WP_012059995.1, WP_041898834.1, or WP_015395720.1. In embodiments, the bifunctional protein polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 29 or a polypeptide having an accession no. WP_160599600.1, WP_152066042.1, WP_094316530.1, WP_032252644.1, WP_001186464.1, WP_125401136.1, WP_001186494.1, WP_119163289.1, WP_095281943.1, WP_045888522.1, WP_058840681.1, WP_095440732.1, WP_162382197.1, WP_059385322.1, or WP_045286529.1.


In embodiments, the recombinant bacterial cell for producing PHBV comprises a recombinant nucleic acid molecule having at least 75% sequence identity to at least one, two, three, four, five, six, seven, eight, or nine of SEQ ID NO: 89, 85, 97, 96, 79, 93, 94, 95, 67, 228, 229, and 231, optionally wherein the recombinant bacterial cell comprises inactivation of iclR, optionally inactivation of SdhA, optionally wherein the recombinant bacterial cell comprises inactivation of at least one nonessential gene.


In embodiments, the recombinant bacterial cell for producing PHBV comprises a recombinant nucleic acid molecule having at least 75% sequence identity to at least one, two, three, four, five, six, seven, eight, nine, ten, eleven, or twelve of SEQ ID NO: 89, 85, 97, 96, 79, 74, 92, 76, 93, 94, 95, 67, 228, 229, and 231, optionally wherein the recombinant bacterial cell comprises inactivation of iclR, optionally inactivation of SdhA, optionally wherein the recombinant bacterial cell comprises inactivation of at least one nonessential gene. In embodiments, the at least one nonessential gene is a nucleic acid molecule encoding a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 49, 21, 18, 47, 12, 14, 13, 53, 58, 52, 54, 176, 177, 178, 179, 180, 181, 182, 183, 40, 41, 42, 197, 198, 199, 200, 201, and 202.


For example, fadR is a nonessential gene that can be inactivated without significantly affecting cell viability, said inactivation of fadR would derepress expression of fadE, and the derepression of fadE facilitates the conversion of butyryl-CoA to crotonyl-CoA. Further details are provided in Jenkins L S et al., Journal of Bacteriology 1987, 169:42-52, the contents of which are incorporated herein by reference in its entirety for all purposes. Cell viability can be measured, for example, by BacTiter-Glo™, LIVE/DEAD™ BacLight™ Bacterial Viability assay, or LIVE BacLight™ Bacterial Gram Stain, where cells with inactivated genes having +/−25% viability on a quantifiable index as compared to parental and/or wildtype are considered to be not significantly affected. In embodiments, the recombinant bacterial cell comprises inactivation of FadR. In embodiments, the FadR comprises a nucleic acid molecule encoding a polypeptide having an amino acid sequence of SEQ ID NO: 201. In embodiments, the FadR comprises a nucleic acid molecule having a nucleic acid sequence of SEQ ID NO: 211.


In embodiments, the recombinant bacterial cell for producing PHBV comprises a recombinant nucleic acid molecule having at least 75% sequence identity to at least one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, or thirteen of SEQ ID NO: 89, 85, 97, 96, 79, 74, 92, 76, 69, 93, 94, 95, 67, 228, 229, and 231, optionally wherein the recombinant bacterial cell comprises inactivation of iclR.


In addition, AtoC(Con) which is a DNA-binding transcriptional activator/ornithine decarboxylase inhibitor that activates transcription of the atoDAEB operon for enhanced VFA uptake and conversion to acyl-CoAs, can be mutated at position 129 from isoleucine to serine to confer constitutive expression of the atoDAEB operon. Accordingly, In embodiments, the recombinant bacterial cell for producing PHBV comprises a DNA-binding transcriptional activator/ornithine decarboxylase inhibitor, optionally an AtoC polypeptide. Further details are provided in Pauli G et al. European Journal of Biochemistry 1972, 29:553-562, the contents of which are incorporated herein by reference in its entirety for all purposes. In embodiments, the AtoC polypeptide has an amino acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 203, wherein the AtoC(Con) polypeptide comprises a serine at the position corresponding to position 129 of SEQ ID NO: 203.


The presence of acetate or butyrate can affect bacterial cell viability. Expression of small noncoding RNAs, such as DsrA, RprA and ArcZ, can increase the tolerance of bacterial cells to the presence of acetate and/or butyrate. In embodiments, the recombinant bacterial cell for producing PHBV comprises noncoding RNAs, optionally DsrA, RprA, or ArcZ. In embodiments, the recombinant bacterial cell for producing PHBV comprises noncoding RNA DsrA, noncoding RNA RprA, and noncoding RNA ArcZ. In embodiments, the recombinant bacterial cell for producing PHBV comprises a DNA nucleic acid molecule having nucleic acid sequence encoding for noncoding RNA DsrA, RprA, or ArcZ. In embodiments, the recombinant bacterial cell for producing PHBV comprises a DNA nucleic acid molecule having nucleic acid sequence encoding for noncoding RNA DsrA, RprA, and ArcZ. In embodiments, the recombinant bacterial cell for producing PHBV comprises a nucleic acid molecule having nucleic acid sequence of SEQ ID NO: 27, 39, or 214. In embodiments, the recombinant bacterial cell for producing PHBV comprises a nucleic acid molecule having nucleic acid sequence of SEQ ID NO: 27, 39, and 214. In embodiments, the recombinant bacterial cell for producing PHBV comprises a nucleic acid molecule having nucleic acid sequence of SEQ ID NO: 221, a nucleic acid molecule having nucleic acid sequence of SEQ ID NO: 222, and a nucleic acid molecule having nucleic acid sequence of SEQ ID NO: 223.


Exemplary nucleic acid sequences described herein are set out in Table 2, Table 3A, Table 3B, Table 3C, Table 3D, and Table 4.









TABLE 2







Nucleic Acid Sequences: Genes








SEQ ID NO
Nucleic Acid Sequence





SEQ ID NO: 60
ATGTCGAGTAAGTTAGTACTGGTTCTGAACTGCGGTAGTTCTTCACTGAAATTTG


nucleic acid
CCATCATCGATGCAGTAAATGGTGAAGAGTACCTTTCTGGTTTAGCCGAATGTTT


coding sequence
CCACCTGCCCGAAGCACGTATCAAATGGAAAATGGACGGCAATAAACAGGAAGCG


of the gene ackA
GCTTTAGGTGCAGGCGCCGCTCACAGCGAAGCGCTCAACTTTATCGTTAATACTA


at locus b2296
TTCTGGCACAAAAACCAGAACTGTCTGCGCAGCTGACTGCTATCGGTCACCGTAT



CGTACACGGCGGCGAAAAGTATACCAGCTCCGTAGTGATCGATGAGTCTGTTATT



CAGGGTATCAAAGATGCAGCTTCTTTTGCACCGCTGCACAACCCGGCTCACCTGA



TCGGTATCGAAGAAGCTCTGAAATCTTTCCCACAGCTGAAAGACAAAAACGTTGC



TGTATTTGACACCGCGTTCCACCAGACTATGCCGGAAGAGTCTTACCTCTACGCC



CTGCCTTACAACCTGTACAAAGAGCACGGCATCCGTCGTTACGGCGCGCACGGCA



CCAGCCACTTCTATGTAACCCAGGAAGCGGCAAAAATGCTGAACAAACCGGTAGA



AGAACTGAACATCATCACCTGCCACCTGGGCAACGGTGGTTCCGTTTCTGCTATC



CGCAACGGTAAATGCGTTGACACCTCTATGGGCCTGACCCCGCTGGAAGGTCTGG



TCATGGGTACCCGTTCTGGTGATATCGATCCGGCGATCATCTTCCACCTGCACGA



CACCCTGGGCATGAGCGTTGACGCAATCAACAAACTGCTGACCAAAGAGTCTGGC



CTGCTGGGTCTGACCGAAGTGACCAGCGACTGCCGCTATGTTGAAGACAACTACG



CGACGAAAGAAGACGCGAAGCGCGCAATGGACGTTTACTGCCACCGCCTGGCGAA



ATACATCGGTGCCTACACTGCGCTGATGGATGGTCGTCTGGACGCTGTTGTATTC



ACTGGTGGTATCGGTGAAAATGCCGCAATGGTTCGTGAACTGTCTCTGGGCAAAC



TGGGCGTGCTGGGCTTTGAAGTTGATCATGAACGCAACCTGGCTGCACGTTTCGG



CAAATCTGGTTTCATCAACAAAGAAGGTACCCGTCCTGCGGTGGTTATCCCAACC



AACGAAGAACTGGTTATCGCGCAAGACGCGAGCCGCCTGACTGCCTGA





SEQ ID NO: 61
ATGAGCCAAATTCACAAACACACCATTCCTGCCAACATCGCAGACCGTTGCCTGA


nucleic acid
TAAACCCTCAGCAGTACGAGGCGATGTATCAACAATCTATTAACGTACCTGATAC


coding sequence
CTTCTGGGGCGAACAGGGAAAAATTCTTGACTGGATCAAACCTTACCAGAAGGTG


of the gene
AAAAACACCTCCTTTGCCCCCGGTAATGTGTCCATTAAATGGTACGAGGACGGCA


acs at
CGCTGAATCTGGCGGCAAACTGCCTTGACCGCCATCTGCAAGAAAACGGCGATCG


locus b4069
TACCGCCATCATCTGGGAAGGCGACGACGCCAGCCAGAGCAAACATATCAGCTAT



AAAGAGCTGCACCGCGACGTCTGCCGCTTCGCCAATACCCTGCTCGAGCTGGGCA



TTAAAAAAGGTGATGTGGTGGCGATTTATATGCCGATGGTGCCGGAAGCCGCGGT



TGCGATGCTGGCCTGCGCCCGCATTGGCGCGGTGCATTCGGTGATTTTCGGCGGC



TTCTCGCCGGAAGCCGTTGCCGGGCGCATTATTGATTCCAACTCACGACTGGTGA



TCACTTCCGACGAAGGTGTGCGTGCCGGGCGCAGTATTCCGCTGAAGAAAAACGT



TGATGACGCGCTGAAAAACCCGAACGTCACCAGCGTAGAGCATGTGGTGGTACTG



AAGCGTACTGGCGGGAAAATTGACTGGCAGGAAGGGCGCGACCTGTGGTGGCACG



ACCTGGTTGAGCAAGCGAGCGATCAGCACCAGGCGGAAGAGATGAACGCCGAAGA



TCCGCTGTTTATTCTCTACACCTCCGGTTCTACCGGTAAGCCAAAAGGTGTGCTG



CATACTACCGGCGGTTATCTGGTGTACGCGGCGCTGACCTTTAAATATGTCTTTG



ATTATCATCCGGGTGATATCTACTGGTGCACCGCCGATGTGGGCTGGGTGACCGG



ACACAGTTACTTGCTGTACGGCCCGCTGGCCTGCGGTGCGACCACGCTGATGTTT



GAAGGCGTACCCAACTGGCCGACGCCTGCCCGTATGGCGCAGGTGGTGGACAAGC



ATCAGGTCAATATTCTCTATACCGCACCCACGGCGATCCGCGCGCTGATGGCGGA



AGGCGATAAAGCGATCGAAGGCACCGACCGTTCGTCGCTGCGCATTCTCGGTTCC



GTGGGCGAGCCAATTAACCCGGAAGCGTGGGAGTGGTACTGGAAAAAAATCGGCA



ACGAGAAATGTCCGGTGGTCGATACCTGGTGGCAGACCGAAACCGGCGGTTTCAT



GATCACCCCGCTGCCTGGCGCTACCGAGCTGAAAGCCGGTTCGGCAACACGTCCG



TTCTTCGGCGTGCAACCGGCGCTGGTCGATAACGAAGGTAACCCGCTGGAGGGGG



CCACCGAAGGTAGCCTGGTAATCACCGACTCCTGGCCGGGTCAGGCGCGTACGCT



GTTTGGCGATCACGAACGTTTTGAACAGACCTACTTCTCCACCTTCAAAAATATG



TATTTCAGCGGCGACGGCGCGCGTCGCGATGAAGATGGCTATTACTGGATAACCG



GGCGTGTGGACGACGTGCTGAACGTCTCCGGTCACCGTCTGGGGACGGCAGAGAT



TGAGTCGGCGCTGGTGGCGCATCCGAAGATTGCCGAAGCCGCCGTAGTAGGTATT



CCGCACAATATTAAAGGTCAGGCGATCTACGCCTACGTCACGCTTAATCACGGGG



AGGAACCGTCACCAGAACTGTACGCAGAAGTCCGCAACTGGGTGCGTAAAGAGAT



TGGCCCGCTGGCGACGCCAGACGTGCTGCACTGGACCGACTCCCTGCCTAAAACC



CGCTCCGGCAAAATTATGCGCCGTATTCTGCGCAAAATTGCGGCGGGCGATACCA



GCAACCTGGGCGATACCTCGACGCTTGCCGATCCTGGCGTAGTCGAGAAGCTGCT



TGAAGAGAAGCAGGCTATCGCGATGCCATCGTAA





SEQ ID NO: 62
ATGAACTTGAAAGCGTTACCAGCAATAGAGGGGGATCATAACTTAAAAAACTATG


nucleic acid
AAGAAACGTACCGGCATTTTGATTGGGCCGAGGCAGAGAAACATTTCTCTTGGCA


coding sequence
TGAGACAGGGAAACTGAATGCGGCGTATGAAGCGATTGACCGCCATGCCGAATCG


of the gene acsA
TTTCGAAAAAACAAAGTAGCGCTTTATTATAAAGACGCAAAAAGGGATGAAAAAT


at locus
ACACATTTAAAGAAATGAAGGAAGAATCAAACAGAGCCGGGAATGTGCTGAGACG


BSU_29680
GTATGGAAATGTGGAAAAAGGGGACCGCGTTTTTATTTTTATGCCGAGATCACCC



GAGCTTTATTTTATTATGCTTGGCGCAATCAAAATTGGCGCCATCGCCGGGCCGC



TGTTCGAAGCATTTATGGAGGGAGCGGTGAAAGACCGGCTTGAAAACAGTGAGGC



AAAGGTTGTTGTCACAACGCCTGAGCTGCTGGAGAGAATACCGGTAGACAAACTG



CCTCACTTGCAGCATGTCTTCGTAGTCGGGGGAGAGGCTGAGAGCGGCACGAATA



TCATCAATTATGATGAAGCAGCGAAACAGGAAAGCACAAGATTGGATATCGAATG



GATGGATAAAAAAGACGGCTTTCTGCTTCACTATACATCAGGTTCCACTGGTACG



CCAAAGGGCGTGTTGCATGTCCATGAAGCGATGATTCAGCAATATCAAACAGGAA



AGTGGGTCCTTGATTTAAAGGAAGAAGACATTTATTGGTGCACGGCTGATCCAGG



CTGGGTGACAGGTACGGTATACGGCATTTTTGCACCGTGGCTGAACGGAGCGACA



AATGTCATCGTCGGCGGACGTTTCAGCCCGGAAAGCTGGTATGGAACGATTGAAC



AGCTTGGCGTCAATGTCTGGTACAGCGCGCCGACAGCTTTTCGGATGCTGATGGG



AGCGGGAGATGAAATGGCTGCGAAATATGATCTAACTTCACTCCGGCATGTGCTC



AGTGTCGGTGAGCCGCTAAATCCGGAAGTCATCAGATGGGGACATAAAGTTTTTA



ACAAACGAATCCATGATACCTGGTGGATGACCGAAACGGGCAGTCAGCTCATCTG



CAACTATCCTTGCATGGATATTAAACCGGGTTCAATGGGTAAGCCGATTCCAGGA



GTGGAGGCAGCGATCGTTGACAATCAAGGCAACGAGCTACCGCCGTACCGAATGG



GCAATCTCGCCATCAAAAAGGGCTGTGGGGATTCTGCTTACATGGATGAAGAGGG



ATACTTTTGGTTCCAAGGCAGAGTTGATGACGTCATCATGACCTCCGGTGAGCGC



GTCGGCCCATTTGAAGTGGAAAGCAAGCTTGTCGAACATCCGGCTATTGCAGAAG



CAGGCGTTATCGGAAAGCCTGACCCGGTGCGTGGAGAAATCATTAAAGCCTTTAT



TGCACTCAGGGAAGGATTTGAGCCGTCTGATAAACTGAAAGAAGAGATCCGCCTA



TTTGTAAAGCAGGGTCTTGCAGCCCATGCGGCTCCGCGTGAGATCGAATTTAAAG



ATAAGCTTCCGAAAACCAGAAGCGGAAAGATCATGAGGCGCGTGCTGAAGGCATG



GGAGCTTAATCTGCCGGCTGGAGATCTGTCAACAATGGAGGATTAA





SEQ ID NO: 63
ATGGATGCGAAACAACGTATTGCGCGCCGTGTGGCGCAAGAGCTTCGTGATGGTG


nucleic acid
ACATCGTTAACTTAGGGATCGGTTTACCCACAATGGTCGCCAATTATTTACCGGA


coding sequence
GGGTATTCATATCACTCTGCAATCGGAAAACGGCTTCCTCGGTTTAGGCCCGGTC


of the gene atoA
ACGACAGCGCATCCAGATCTGGTGAACGCTGGCGGGCAACCGTGCGGTGTTTTAC


at locus b2222
CCGGTGCAGCCATGTTTGATAGCGCCATGTCATTTGCGCTAATCCGTGGCGGTCA



TATTGATGCCTGCGTGCTCGGCGGTTTGCAAGTAGACGAAGAAGCAAACCTCGCG



AACTGGGTAGTGCCTGGGAAAATGGTGCCCGGTATGGGTGGCGCGATGGATCTGG



TGACCGGGTCGCGCAAAGTGATCATCGCCATGGAACATTGCGCCAAAGATGGTTC



AGCAAAAATTTTGCGCCGCTGCACCATGCCACTCACTGCGCAACATGCGGTGCAT



ATGCTGGTTACTGAACTGGCTGTCTTTCGTTTTATTGACGGCAAAATGTGGCTCA



CCGAAATTGCCGACGGGTGTGATTTAGCCACCGTGCGTGCCAAAACAGAAGCTCG



GTTTGAAGTCGCCGCCGATCTGAATACGCAACGGGGTGATTTATGA





SEQ ID NO: 64
ATGAAAACAAAATTGATGACATTACAAGACGCCACCGGCTTCTTTCGTGACGGCA


nucleic acid
TGACCATCATGGTGGGCGGATTTATGGGGATTGGCACTCCATCCCGCCTGGTTGA


coding sequence
AGCATTACTGGAATCTGGTGTTCGCGACCTGACATTGATAGCCAATGATACCGCG


of the gene atoD
TTTGTTGATACCGGCATCGGTCCGCTCATCGTCAATGGTCGAGTCCGCAAAGTGA


at locus b2221
TTGCTTCACATATCGGCACCAACCCGGAAACAGGTCGGCGCATGATATCTGGTGA



GATGGACGTCGTTCTGGTGCCGCAAGGTACGCTAATCGAGCAAATTCGCTGTGGT



GGAGCTGGACTTGGTGGTTTTCTCACCCCAACGGGTGTCGGCACCGTCGTAGAGG



AAGGCAAACAGACACTGACACTCGACGGTAAAACCTGGCTGCTCGAACGCCCACT



GCGCGCCGACCTGGCGCTAATTCGCGCTCATCGTTGCGACACACTTGGCAACCTG



ACCTATCAACTTAGCGCCCGCAACTTTAACCCCCTGATAGCCCTTGCGGCTGATA



TCACGCTGGTAGAGCCAGATGAACTGGTCGAAACCGGCGAGCTGCAACCTGACCA



TATTGTCACCCCTGGTGCCGTTATCGACCACATCATCGTTTCACAGGAGAGCAAA



TAA





SEQ ID NO: 65
ATGATTGGTCGCATATCGCGTTTTATGACGCGTTTTGTCAGCCGGTGGCTTCCCG


nucleic acid
ATCCACTGATCTTTGCCATGTTGCTGACATTGCTAACATTCGTGATCGCGCTTTG


coding sequence
GTTAACACCACAAACGCCGATCAGCATGGTGAAAATGTGGGGTGACGGTTTCTGG


of the gene atoE
AACTTGCTGGCGTTTGGTATGCAGATGGCGCTTATCATCGTTACCGGTCATGCCC


at locus b2223
TTGCCAGCTCTGCTCCGGTGAAAAGTTTGCTGCGTACTGCCGCCTCCGCCGCAAA



GACGCCCGTACAGGGCGTCATGCTGGTCACTTTCTTCGGTTCAGTCGCTTGTGTC



ATCAACTGGGGATTTGGTTTGGTTGTCGGCGCAATGTTTGCCCGTGAAGTCGCCC



GGCGAGTCCCCGGTTCTGATTATCCGTTGCTCATTGCCTGCGCCTACATTGGTTT



TCTCACCTGGGGTGGCGGCTTCTCTGGATCAATGCCTCTGTTGGCTGCAACACCG



GGCAACCCGGTTGAGCATATCGCCGGGCTGATCCCGGTGGGCGATACTCTGTTCA



GTGGTTTTAACATTTTCATCACTGTGGCGTTGATTGTGGTGATGCCATTTATCAC



CCGCATGATGATGCCAAAACCGTCTGACGTGGTGAGTATCGATCCAAAACTACTC



ATGGAAGAGGCTGATTTTCAAAAGCAGCTACCGAAAGATGCCCCACCATCCGAGC



GACTGGAAGAAAGCCGCATTCTGACGTTGATCATCGGCGCACTCGGTATCGCTTA



CCTTGCGATGTACTTCAGCGAACATGGCTTCAACATCACCATCAATACCGTCAAC



CTGATGTTTATGATTGCGGGTCTGCTGCTACATAAAACGCCAATGGCTTATATGC



GTGCTATCAGCGCGGCAGCACGCAGTACTGCCGGTATTCTGGTGCAATTCCCCTT



CTACGCTGGGATCCAACTGATGATGGAGCATTCCGGTCTGGGCGGACTCATTACC



GAATTCTTCATCAATGTTGCGAACAAAGACACCTTCCCGGTAATGACCTTTTTTA



GTTCTGCACTGATTAACTTCGCCGTTCCGTCTGGCGGCGGTCACTGGGTTATTCA



GGGACCTTTCGTGATACCCGCAGCCCAGGCGCTGGGCGCTGATCTCGGTAAATCG



GTAATGGCGATCGCCTACGGCGAGCAATGGATGAACATGGCACAACCATTCTGGG



CGCTGCCAGCACTGGCAATCGCCGGACTCGGTGTCCGCGACATCATGGGCTACTG



CATCACTGCCCTGCTCTTCTCCGGTGTCATTTTCGTCATTGGTTTAACGCTGTTC



TGA





SEQ ID NO: 66
ATGCATTTTAAACTATCAGAAGAACATGAAATGATAAGAAAAATGGTTCGAGATT


nucleic acid
TTGCTAAAAATGAAGTGGCACCAACAGCAGCTGAGCGTGATGAGGAAGAGCGATT


coding sequence
TGATCGAGAATTATTTGATCAAATGGCAGAGCTTGGTTTAACCGGTATTCCGTGG


of the gene
CCTGAAGAGTACGGTGGAATTGGAAGCGATTACTTAGCGTACGTAATCGCTATTG


BC_5341
AAGAATTATCCCGCGTTTGTGCTTCAACAGGCGTAACACTGTCCGCGCATACTTC



ACTTGCAGGATGGCCAATTTTTAAATTTGGGACGGAAGAGCAAAAGCAAAAGTTT



TTACGACCGATGGCTGAAGGAAAGAAAATTGGTGCATACGGCTTAACGGAGCCAG



GATCTGGATCGGATGCTGGTGGAATGAAGACAATCGCAAAGAGAGATGGAGACCA



TTATATTTTAAATGGATCAAAAATTTTCATTACAAATGGCGGTATTGCTGATATT



TACGTTGTTTTTGCGCTAACTGATCCTGAATCAAAGCAGCGCGGTACGAGTGCAT



TTATTGTAGAAAGTGATACACCGGGATTTTCAGTTGGGAAGAAGGAGAGCAAGCT



AGGGATTCGCTCTTCACCAACGACTGAAATTATGITTGAAGATTGCCGTATTCCT



GTAGAGAATCTACTTGGAGAAGAGGGGCAAGGGTTTAAAGTTGCGATGCAAACAT



TAGATGGAGGTCGTAACGGTATTGCGGCGCAAGCTGTTGGTATTGCACAAGGGGC



TTTAGATGCTTCTGTAGAATATGCAAGGGAGCGCCATCAATTTGGAAAACCAATT



GCGGCGCAGCAAGGGATTGGCTTTAAACTTGCGGATATGGCAACAGATGTAGAAG



CGGCACGCCTTTTAACATATCAAGCGGCTTGGCTTGAATCAGAAGGGCTTCCGTA



TGGAAAAGAGTCAGCGATGTCAAAAGTATTTGCAGGAGATACAGCGATGAGGGTG



ACGACTGAAGCGGTGCAAGTATTTGGTGGTTACGGTTATACGAAAGATTATCCAG



TAGAGCGTTATATGCGAGATGCAAAAATTACACAAATATATGAAGGAACACAAGA



GATTCAGAGGCTTGTAATTTCTCGTATGTTAACGAAGTAG





SEQ ID NO: 67
ATGACGCGTGAAGTGGTAGTGGTAAGCGGTGTCCGTACCGCGATCGGGACCTTTG


nucleic acid
GCGGCAGCCTGAAGGATGTGGCACCGGCGGAGCTGGGCGCACTGGTGGTGCGCGA


coding sequence
GGCGCTGGCGCGCGCGCAGGTGTCGGGCGACGATGTCGGCCACGTGGTATTCGGC


of the gene bktB
AACGTGATCCAGACCGAGCCGCGCGACATGTATCTGGGCCGCGTCGCGGCCGTCA


at locus
ACGGCGGGGTGACGATCAACGCCCCCGCGCTGACCGTGAACCGCCTGTGCGGCTC


H16_RS07175
GGGCCTGCAGGCCATTGTCAGCGCCGCGCAGACCATCCTGCTGGGCGATACCGAC



GTCGCCATCGGCGGCGGCGCGGAAAGCATGAGCCGCGCACCGTACCTGGCGCCGG



CAGCGCGCTGGGGCGCACGCATGGGCGACGCCGGCCTGGTCGACATGATGCTGGG



TGCGCTGCACGATCCCTTCCATCGCATCCACATGGGCGTGACCGCCGAGAATGTC



GCCAAGGAATACGACATCTCGCGCGCGCAGCAGGACGAGGCCGCGCTGGAATCGC



ACCGCCGCGCTTCGGCAGCGATCAAGGCCGGCTACTTCAAGGACCAGATCGTCCC



GGTGGTGAGCAAGGGCCGCAAGGGCGACGTGACCTTCGACACCGACGAGCACGTG



CGCCATGACGCCACCATCGACGACATGACCAAGCTCAGGCCGGTCTTCGTCAAGG



AAAACGGCACGGTCACGGCCGGCAATGCCTCGGGCCTGAACGACGCCGCCGCCGC



GGTGGTGATGATGGAGCGCGCCGAAGCCGAGCGCCGCGGCCTGAAGCCGCTGGCC



CGCCTGGTGTCGTACGGCCATG



CCGGCGTGGACCCGAAGGCCATGGGCATCGGCCCGGTGCCGGCGACGAAGATCGC



GCTGGAGCGCGCCGGCCTGCAGGTGTCGGACCTGGACGTGATCGAAGCCAACGAA



GCCTTTGCCGCACAGGCGTGCGCCGTGACCAAGGCGCTCGGTCTGGACCCGGCCA



AGGTTAACCCGAACGGCTCGGGCATCTCGCTGGGCCACCCGATCGGCGCCACCGG



TGCCCTGATCACGGTGAAGGCGCTGCATGAGCTGAACCGCGTGCAGGGCCGCTAC



GCGCTGGTGACGATGTGCATCGGCGGCGGGCAGGGCATTGCCGCCATCTTCGAGC



GTATCTGA





SEQ ID NO: 68
ATGAACGTTATTGCAATATTGAATCACATGGGGGTTTATTTTAAAGA


nucleic acid
AGAACCCATCCGTGAACTTCATCGCGCGCTTGAACGTCTGAACTTCCAGATTGTT


coding sequence
TACCCGAACGACCGTGACGACTTATTAAAACTGATCGAAAACAATGCGCGTCTGT


of the gene cadA
GCGGCGTTATTTTTGACTGGGATAAATATAATCTCGAGCTGTGCGAAGAAATTAG


at locus b4131
CAAAATGAACGAGAACCTGCCGTTGTACGCGTTCGCTAATACGTATTCCACTCTC



GATGTAAGCCTGAATGACCTGCGTTTACAGATTAGCTTCTTTGAATATGCGCTGG



GTGCTGCTGAAGATATTGCTAATAAGATCAAGCAGACCACTGACGAATATATCAA



CACTATTCTGCCTCCGCTGACTAAAGCACTGTTTAAATATGTTCGTGAAGGTAAA



TATACTTTCTGTACTCCTGGTCACATGGGCGGTACTGCATTCCAGAAAAGCCCGG



TAGGTAGCCTGTTCTATGATTTCTTTGGTCCGAATACCATGAAATCTGATATTTC



CATTTCAGTATCTGAACTGGGTTCTCTGCTGGATCACAGTGGTCCACACAAAGAA



GCAGAACAGTATATCGCTCGCGTCTTTAACGCAGACCGCAGCTACATGGTGACCA



ACGGTACTTCCACTGCGAACAAAATTGTTGGTATGTACTCTGCTCCAGCAGGCAG



CACCATTCTGATTGACCGTAACTGCCACAAATCGCTGACCCACCTGATGATGATG



AGCGATGTTACGCCAATCTATTTCCGCCCGACCCGTAACGCTTACGGTATTCTTG



GTGGTATCCCACAGAGTGAATTCCAGCACGCTACCATTGCTAAGCGCGTGAAAGA



AACACCAAACGCAACCTGGCCGGTACATGCTGTAATTACCAACTCTACCTATGAT



GGTCTGCTGTACAACACCGACTTCATCAAGAAAACACTGGATGTGAAATCCATCC



ACTTTGACTCCGCGTGGGTGCCTTACACCAACTTCTCACCGATTTACGAAGGTAA



ATGCGGTATGAGCGGTGGCCGTGTAGAAGGGAAAGTGATTTACGAAACCCAGTCC



ACTCACAAACTGCTGGCGGCGTTCTCTCAGGCTTCCATGATCCACGTTAAAGGTG



ACGTAAACGAAGAAACCTTTAACGAAGCCTACATGATGCACACCACCACTTCTCC



GCACTACGGTATCGTGGCGTCCACTGAAACCGCTGCGGCGATGATGAAAGGCAAT



GCAGGTAAGCGTCTGATCAACGGTTCTATTGAACGTGCGATCAAATTCCGTAAAG



AGATCAAACGTCTGAGAACGGAATCTGATGGCTGGTTCTTTGATGTATGGCAGCC



GGATCATATCGATACGACTGAATGCTGGCCGCTGCGTTCTGACAGCACCTGGCAC



GGCTTCAAAAACATCGATAACGAGCACATGTATCTTGACCCGATCAAAGTCACCC



TGCTGACTCCGGGGATGGAAAAAGACGGCACCATGAGCGACTTTGGTATTCCGGC



CAGCATCGTGGCGAAATACCTCGACGAACATGGCATCGTTGTTGAGAAAACCGGT



CCGTATAACCTGCTGTTCCTGTTCAGCATCGGTATCGATAAGACCAAAGCACTGA



GCCTGCTGCGTGCTCTGACTGACTTTAAACGTGCGTTCGACCTGAACCTGCGTGT



GAAAAACATGCTGCCGTCTCTGTATCGTGAAGATCCTGAATTCTATGAAAACATG



CGTATTCAGGAACTGGCTCAGAATATCCACAAACTGATTGTTCACCACAATCTGC



CGGATCTGATGTATCGCGCATTTGAAGTGCTGCCGACGATGGTAATGACTCCGTA



TGCTGCATTCCAGAAAGAGCTGCACGGTATGACCGAAGAAGTTTACCTCGACGAA



ATGGTAGGTCGTATTAACGCCAATATGATCCTTCCGTACCCGCCGGGAGTTCCTC



TGGTAATGCCGGGTGAAATGATCACCGAAGAAAGCCGTCCGGTTCTGGAGTTCCT



GCAGATGCTGTGTGAAATCGGCGCTCACTATCCGGGCTTTGAAACCGATATTCAC



GGTGCATACCGTCAGGCTGATGGCCGCTATACCGTTAAGGTATTGAAAGAAGAAA



GCAAAAAATAA





SEQ ID NO: 69
ATGAGTAAAGGGATAAAGAATTCACAATTGAAAAAAAAGAATGTAAAGGCTAGTA


nucleic acid
ATGTGGCAGAAAAGATTGAAGAGAAAGTTGAAAAAACAGATAAGGTTGTTGAAAA


coding sequence
GGCAGCTGAGGTTACAGAAAAACGAATTAGAAACTTGAAGCTTCAGGAAAAAGTT


of the gene
GTAACAGCAGATGTGGCAGCTGATATGATAGAAAACGGTATGATTGTTGCAATTA


CKL_RS14680
GCGGATTTACTCCTTCCGGGTATCCTAAAGAAGTACCTAAAGCATTGACTAAAAA



AGTTAATGCCTTAGAGGAAGAATTCAAGGTAACACTTTATACAGGTTCATCTACA



GGAGCCGATATAGACGGAGAATGGGCAAAAGCAGGAATAATAGAAAGAAGAATTC



CATATCAGACAAATTCTGATATGAGGAAAAAAATAAATGATGGTTCTATTAAGTA



TGCTGATATGCATTTAAGCCATATGGCTCAATATATTAATTATTCTGTAATTCCT



AAAGTAGATATAGCTATAATAGAGGCAGTAGCTATTACAGAAGAAGGGGATATTA



TTCCTTCAACAGGAATTGGAAATACAGCTACTTTTGTGGAAAATGCAGATAAGGT



AATAGTGGAAATTAATGAGGCTCAACCGCTTGAATTGGAAGGTATGGCAGATATA



TATACATTAAAAAACCCTCCAAGAAGAGAGCCCATACCTATAGTTAATGCAGGCA



ATAGGATAGGGACCACATATGTGACCTGTGGTTCTGAAAAAATATGCGCTATAGT



GATGACAAATACCCAGGATAAAACAAGACCTCTTACAGAAGTGTCTCCTGTATCT



CAGGCTATATCCGATAATCTTATAGGATTTTTAAATAAAGAGGTTGAAGAGGGAA



AATTACCTAAGAACCTGCTTCCTATACAGTCAGGAGTTGGAAGTGTAGCAAATGC



AGTTTTGGCCGGACTTTGTGAATCAAATTTTAAAAATTTGAGTTGTTATACAGAA



GTTATACAGGATTCTATGCTGAAGCTTATAAAATGTGGTAAAGCAGATGTGGTGT



CAGGCACTTCCATAAGTCCTTCACCGGAGATGTTGCCTGAGTTCATAAAGGACAT



AAATTTCTTTAGAGAAAAGATAGTATTAAGACCACAGGAAATAAGTAATAATCCA



GAGATAGCAAGAAGAATAGGAGTTATATCCATAAACACTGCTTTGGAAGTAGATA



TATATGGTAATGTAAACTCCACTCATGTTATGGGAAGCAAAATGATGAATGGTAT



AGGCGGTTCTGGAGACTTTGCCAGAAATGCATATTTGACTATATTCACTACAGAG



TCTATCGCCAAAAAAGGAGATATATCATCTATAGTTCCTATGGTATCCCATGTGG



ATCATACAGAACATGATGTAATGGTAATTGTTACAGAACAGGGAGTAGCAGATTT



AAGAGGTCTTTCTCCTAGGGAAAAGGCCGTGGCTATAATAGAAAATTGTGTTCAT



CCTGATTACAAGGATATGCTTATGGAATATTTTGAAGAGGCTTGTAAGTCATCAG



GTGGAAATACACCACATAATCTTGAAAAAGCTCTTTCCTGGCATACAAAATTTAT



AAAAACTGGTAGTATGAAATAA





SEQ ID NO: 70
ATGTACCGTTATTTGTCTATTGCTGCGGTGGTACTGAGCGCAGCATTTTCCGGCC


nucleic acid
CGGCGTTGGCCGAAGGTATCAATAGTTTTTCTCAGGCGAAAGCCGCGGCGGTAAA


coding sequence
AGTCCACGCTGACGCGCCCGGTACGTTTTATTGCGGATGTAAAATTAACTGGCAG


of the gene endA
GGCAAAAAAGGCGTTGTTGATCTGCAATCGTGCGGCTATCAGGTGCGCAAAAATG


at locus b2945
AAAACCGCGCCAGCCGCGTAGAGTGGGAACATGTCGTTCCCGCCTGGCAGTTCGG



TCACCAGCGCCAGTGCTGGCAGGACGGTGGACGTAAAAACTGCGCTAAAGATCCG



GTCTATCGCAAGATGGAAAGCGATATGCATAACCTGCAGCCGTCAGTCGGTGAGG



TGAATGGCGATCGCGGCAACTTTATGTACAGCCAGTGGAATGGCGGTGAAGGCCA



GTACGGTCAATGCGCCATGAAGGTCGATTTCAAAGAAAAAGCTGCCGAACCACCA



GCGCGTGCACGCGGTGCCATTGCGCGCACCTACTTCTATATGCGCGACCAATACA



ACCTGACACTCTCTCGCCAGCAAACGCAGCTGTTCAACGCATGGAACAAGATGTA



TCCGGTTACCGACTGGGAGTGCGAGCGCGATGAACGCATCGCGAAGGTGCAGGGC



AATCATAACCCGTATGTGCAACGCGCTTGCCAGGCGCGAAAGAGCTAA





SEQ ID NO: 71
ATGCTTTACAAAGGCGACACCCTGTACCTTGACTGGCTGGAAGATGGCATTGCCG


nucleic acid
AACTGGTATTTGATGCCCCAGGTTCAGTTAATAAACTCGACACTGCGACCGTCGC


coding sequence
CAGCCTCGGCGAGGCCATCGGCGTGCTGGAACAGCAATCAGATCTAAAAGGGCTG


of the gene fadB
CTGCTGCGTTCGAACAAAGCAGCCTTTATCGTCGGTGCTGATATCACCGAATTTT


at locus b3846
TGTCCCTGTTCCTCGTTCCTGAAGAACAGTTAAGTCAGTGGCTGCACTTTGCCAA



TAGCGTGTTTAATCGCCTGGAAGATCTGCCGGTGCCGACCATTGCTGCCGTCAAT



GGCTATGCGCTGGGCGGTGGCTGCGAATGCGTGCTGGCGACCGATTATCGTCTGG



CGACGCCGGATCTGCGCATCGGTCTGCCGGAAACCAAACTGGGCATCATGCCTGG



CTTTGGCGGTTCTGTACGTATGCCACGTATGCTGGGCGCTGACAGTGCGCTGGAA



ATCATTGCCGCCGGTAAAGATGTCGGCGCGGATCAGGCGCTGAAAATCGGTCTGG



TGGATGGCGTAGTCAAAGCAGAAAAACTGGTTGAAGGCGCAAAGGCGGTTTTACG



CCAGGCCATTAACGGCGACCTCGACTGGAAAGCAAAACGTCAGCCGAAGCTGGAA



CCACTAAAACTGAGCAAGATTGAAGCCACCATGAGCTTCACCATCGCTAAAGGGA



TGGTCGCACAAACAGCGGGGAAACATTATCCGGCCCCCATCACCGCAGTAAAAAC



CATTGAAGCTGCGGCCCGTTTTGGTCGTGAAGAAGCCTTAAACCTGGAAAACAAA



AGTTTTGTCCCGCTGGCGCATACCAACGAAGCCCGCGCACTGGTCGGCATTTTCC



TTAACGATCAATATGTAAAAGGCAAAGCGAAGAAACTCACCAAAGACGTTGAAAC



CCCGAAACAGGCCGCGGTGCTGGGTGCAGGCATTATGGGCGGCGGCATCGCTTAC



CAGTCTGCGTGGAAAGGCGTGCCGGTTGTCATGAAAGATATCAACGACAAGTCGT



TAACCCTCGGCATGACCGAAGCCGCGAAACTGCTGAACAAGCAGCTTGAGCGCGG



CAAGATCGATGGTCTGAAACTGGCTGGCGTGATCTCCACAATCCACCCAACGCTC



GACTACGCCGGATTTGACCGCGTGGATATTGTGGTAGAAGCGGTTGTTGAAAACC



CGAAAGTGAAAAAAGCCGTACTGGCAGAAACCGAACAAAAAGTACGCCAGGATAC



CGTGCTGGCGTCTAACACTTCAACCATTCCTATCAGCGAACTGGCCAACGCGCTG



GAACGCCCGGAAAACTTCTGCGGGATGCACTTCTTTAACCCGGTCCACCGAATGC



CGTTGGTAGAAATTATTCGCGGCGAGAAAAGCTCCGACGAAACCATCGCGAAAGT



TGTCGCCTGGGCGAGCAAGATGGGCAAGACGCCGATTGTGGTTAACGACTGCCCC



GGCTTCTTTGTTAACCGCGTGCTGTTCCCGTATTTCGCCGGTTTCAGCCAGCTGC



TGCGCGACGGCGCGGATTTCCGCAAGATCGACAAAGTGATGGAAAAACAGTTTGG



CTGGCCGATGGGCCCGGCATATCTGCTGGACGTTGTGGGCATTGATACCGCGCAT



CACGCTCAGGCTGTCATGGCAGCAGGCTTCCCGCAGCGGATGCAGAAAGATTACC



GCGATGCCATCGACGCGCTGTTTGATGCCAACCGCTTTGGTCAGAAGAACGGCCT



CGGTTTCTGGCGTTATAAAGAAGACAGCAAAGGTAAGCCGAAGAAAGAAGAAGAC



GCCGCCGTTGAAGACCTGCTGGCAGAAGTGAGCCAGCCGAAGCGCGATTTCAGCG



AAGAAGAGATTATCGCCCGCATGATGATCCCGATGGTCAACGAAGTGGTGCGCTG



TCTGGAGGAAGGCATTATCGCCACTCCGGCGGAAGCGGATATGGCGCTGGTCTAC



GGCCTGGGCTTCCCTCCGTTCCACGGCGGCGCGTTCCGCTGGCTGGACACCCTCG



GTAGCGCAAAATACCTCGATATGGCACAGCAATATCAGCACCTCGGCCCGCTGTA



TGAAGTGCCGGAAGGTCTGCGTAATAAAGCGCGTCATAACGAACCGTACTATCCT



CCGGTTGAGCCAGCCCGTCCGGTTGGCGACCTGAAAACGGCTTAA





SEQ ID NO: 72
ATGATGATTTTGAGTATTCTCGCTACGGTTGTCCTGCTCGGCGCGTTGTTCTATC


nucleic acid
ACCGCGTGAGCTTATTTATCAGCAGTCTGATTTTGCTCGCCTGGACAGCCGCCCT


coding sequence
CGGCGTTGCTGGTCTGTGGTCGGCGTGGGTACTGGTGCCTCTGGCCATTATCCTC


of the gene fadE
GTGCCATTTAACTTTGCGCCTATGCGTAAGTCGATGATTTCCGCGCCGGTATTTC


at locus b0221
GCGGTTTCCGTAAGGTGATGCCGCCGATGTCGCGCACTGAGAAAGAAGCGATTGA



TGCGGGCACCACCTGGTGGGAGGGCGACTTGTTCCAGGGCAAGCCGGACTGGAAA



AAGCTGCATAACTATCCGCAGCCGCGCCTGACCGCCGAAGAGCAAGCGTTTCTCG



ACGGCCCGGTAGAAGAAGCCTGCCGGATGGCGAATGATTTCCAGATCACCCATGA



GCTGGCGGATCTGCCGCCGGAGTTGTGGGCGTACCTTAAAGAGCATCGTTTCTTC



GCGATGATCATCAAAAAAGAGTACGGCGGGCTGGAGTTCTCGGCTTATGCCCAGT



CTCGCGTGCTGCAAAAACTCTCCGGCGTGAGCGGGATCCTGGCGATTACCGTCGG



CGTGCCAAACTCATTAGGCCCGGGCGAACTGTTGCAACATTACGGCACTGACGAG



CAGAAAGATCACTATCTGCCGCGTCTGGCGCGTGGTCAGGAGATCCCCTGCTTTG



CACTGACCAGCCCGGAAGCGGGTTCCGATGCGGGCGCGATTCCGGACACCGGGAT



TGTCTGCATGGGCGAATGGCAGGGCCAGCAGGTGCTGGGGATGCGTCTGACCTGG



AACAAACGCTACATTACGCTGGCACCGATTGCGACCGTGCTTGGGCTGGCGTTTA



AACTCTCCGACCCGGAAAAATTACTCGGCGGTGCAGAAGATTTAGGCATTACCTG



TGCGCTGATCCCAACCACCACGCCGGGCGTGGAAATTGGTCGTCGCCACTTCCCG



CTGAACGTACCGTTCCAGAACGGACCGACGCGCGGTAAAGATGTCTTCGTGCCGA



TCGATTACATCATCGGCGGGCCGAAAATGGCCGGGCAAGGCTGGCGGATGCTGGT



GGAGTGCCTCTCGGTAGGCCGCGGCATCACCCTGCCTTCCAACTCAACCGGCGGC



GTGAAATCGGTAGCGCTGGCAACCGGCGCGTATGCTCACATTCGCCGTCAGTTCA



AAATCTCTATTGGTAAGATGGAAGGGATTGAAGAGCCGCTGGCGCGTATTGCCGG



TAATGCCTACGTGATGGATGCTGCGGCATCGCTGATTACCTACGGCATTATGCTC



GGCGAAAAACCTGCCGTGCTGTCGGCTATCGTTAAGTATCACTGTACCCACCGCG



GGCAGCAGTCGATTATTGATGCGATGGATATTACCGGCGGTAAAGGCATTATGCT



CGGGCAAAGCAACTTCCTGGCGCGTGCTTACCAGGGCGCACCGATTGCCATCACC



GTTGAAGGGGCTAACATTCTGACCCGCAGCATGATGATCTTCGGACAAGGAGCGA



TTCGTTGCCATCCGTACGTGCTGGAAGAGATGGAAGCGGCGAAGAACAATGACGT



CAACGCGTTCGATAAACTGTTGTTCAAACATATCGGTCACGTCGGTAGCAACAAA



GTTCGCAGCTTCTGGCTGGGCCTGACGCGCGGTTTAACCAGCAGCACGCCAACCG



GCGATGCCACTAAACGCTACTATCAGCACCTGAACCGCCTGAGCGCCAACCTCGC



CCTGCTTTCTGATGTCTCGATGGCAGTGCTGGGCGGCAGCCTGAAACGTCGCGAG



CGCATCTCGGCCCGTCTGGGGGATATTTTAAGCCAGCTCTACCTCGCCTCTGCCG



TGCTGAAGCGTTATGACGACGAAGGCCGTAATGAAGCCGACCTGCCGCTGGTGCA



CTGGGGCGTACAAGATGCGCTGTATCAGGCTGAACAGGCGATGGATGATTTACTG



CAAAACTTCCCGAACCGCGTGGTTGCCGGGCTGCTGAATGTGGTGATCTTCCCGA



CCGGACGTCATTATCTGGCACCTTCTGACAAGCTGGATCATAAAGTGGCGAAGAT



TTTACAAGTGCCGAACGCCACCCGTTCCCGCATTGGTCGCGGTCAGTACCTGACG



CCGAGCGAGCATAATCCGGTTGGCTTGCTGGAAGAGGCGCTGGTGGATGTGATTG



CCGCCGACCCAATTCATCAGCGGATCTGTAAAGAGCTGGGTAAAAACCTGCCGTT



TACCCGTCTGGATGAACTGGCGCACAACGCGCTGGTGAAGGGGCTGATTGATAAA



GATGAAGCCGCTATTCTGGTGAAAGCTGAAGAAAGCCGTCTGCGCAGTATTAACG



TTGATGACTTTGATCCGGAAGAGCTGGCGACGAAGCCGGTAAAGTTGCCGGAGAA



AGTGCGGAAAGTTGAAGCCGCGTAA





SEQ ID NO: 73
ATGGAAATGACATCAGCGTTTACCCTTAATGTTCGTCTGGACAACATTGCCGTTA


nucleic acid
TCACCATCGACGTACCGGGTGAGAAAATGAATACCCTGAAGGCGGAGTTTGCCTC


coding sequence
GCAGGTGCGCGCCATTATTAAGCAACTCCGTGAAAACAAAGAGTTGCGAGGCGTG


of the gene fadJ
GTGTTTGTCTCCGCTAAACCGGACAACTTCATTGCTGGCGCAGACATCAACATGA


at locus b2341
TCGGCAACTGCAAAACGGCGCAAGAAGCGGAAGCTCTGGCGCGGCAGGGCCAACA



GTTGATGGCGGAGATTCATGCTTTGCCCATTCAGGTTATCGCGGCTATTCATGGC



GCTTGCCTGGGTGGTGGGCTGGAGTTGGCGCTGGCGTGCCACGGTCGCGTTTGTA



CTGACGATCCTAAAACGGTGCTCGGTTTGCCTGAAGTACAACTTGGATTGTTACC



CGGTTCAGGCGGCACCCAGCGTTTACCGCGTCTGATAGGCGTCAGCACAGCATTA



GAGATGATCCTCACCGGAAAACAACTTCGGGCGAAACAGGCATTAAAGCTGGGGC



TGGTGGATGACGTTGTTCCGCACTCCATTCTGCTGGAAGCCGCTGTTGAGCTGGC



AAAGAAGGAGCGCCCATCTTCCCGCCCTCTACCTGTACGCGAGCGTATTCTGGCG



GGGCCGTTAGGTCGTGCGCTGCTGTTCAAAATGGTCGGCAAGAAAACAGAACACA



AAACTCAAGGCAATTATCCGGCGACAGAACGCATCCTGGAGGTTGTTGAAACGGG



ATTAGCGCAGGGCACCAGCAGCGGTTATGACGCCGAAGCTCGGGCGTTTGGCGAA



CTGGCGATGACGCCACAATCGCAGGCGCTGCGTAGTATCTTTTTTGCCAGTACGG



ACGTGAAGAAAGATCCCGGCAGTGATGCGCCGCCTGCGCCATTAAACAGCGTGGG



GATTTTAGGTGGTGGCTTGATGGGCGGCGGTATTGCTTATGTCACTGCTTGTAAA



GCGGGGATTCCGGTCAGAATTAAAGATATCAACCCGCAGGGCATAAATCATGCGC



TGAAGTACAGTTGGGATCAGCTGGAGGGCAAAGTTCGCCGTCGTCATCTCAAAGC



CAGCGAACGTGACAAACAGCTGGCATTAATCTCCGGAACGACGGACTATCGCGGC



TTTGCCCATCGCGATCTGATTATTGAAGCGGTGTTTGAAAATCTCGAATTGAAAC



AACAGATGGTGGCGGAAGTTGAGCAAAATTGCGCCGCTCATACCATCTTTGCTTC



GAATACGTCATCTTTACCGATTGGTGATATCGCCGCTCACGCCACGCGACCTGAG



CAAGTTATCGGCCTGCATTTCTTCAGTCCGGTGGAAAAAATGCCGCTGGTGGAGA



TTATTCCTCATGCGGGGACATCGGCGCAAACCATCGCTACCACAGTAAAACTGGC



GAAAAAACAGGGTAAAACGCCAATTGTCGTGCGTGACAAAGCCGGTTTTTACGTC



AATCGCATCTTAGCGCCTTACATTAATGAAGCTATCCGCATGTTGACCCAAGGTG



AACGGGTAGAGCACATTGATGCCGCGCTAGTGAAATTTGGTTTTCCGGTAGGCCC



AATCCAACTTTTGGATGAGGTAGGAATCGACACCGGGACTAAAATTATTCCTGTA



CTGGAAGCCGCTTATGGAGAACGTTTTAGCGCGCCTGCAAATGTTGTTTCTTCAA



TTTTGAACGACGATCGCAAAGGCAGAAAAAATGGCCGGGGTTTCTATCTTTATGG



TCAGAAAGGGCGTAAAAGCAAAAAACAGGTCGATCCCGCCATTTACCCGCTGATT



GGCACACAAGGGCAGGGGCGAATCTCCGCACCGCAGGTTGCTGAACGGTGTGTGA



TGTTGATGCTGAATGAAGCAGTACGTTGTGTTGATGAGCAGGTTATCCGTAGCGT



GCGTGACGGGGATATTGGCGCGGTATTTGGCATTGGTTTTCCGCCATTTCTCGGT



GGACCGTTCCGCTATATCGATTCTCTCGGCGCGGGCGAAGTGGTTGCAATAATGC



AACGACTTGCCACGCAGTATGGTTCCCGTTTTACCCCTTGCGAGCGTTTGGTCGA



GATGGGCGCGCGTGGGGAAAGTTTTTGGAAAACAACTGCAACTGACCTGCAATAA





SEQ ID NO: 74
ATGAACCAGCAAGTGAACGTAGCGCCGTCGGCCGCCGCCGACCTGAACCTGAAGG


nucleic acid
CCCACTGGATGCCCTTCAGCGCCAACCGCAACTTCCACAAGGACCCGCGCATCAT


coding sequence
CGTGGCCGCCGAGGGCAGCTGGCTGGTGGACGACAAGGGCCGGCGCATCTACGAC


of the
AGCCTGTCCGGCCTGTGGACCTGCGGCGCCGGTCACTCGCGCAAGGAAATCGCCG


gene
ACGCGGTGGCCAAGCAGATTGGCACCCTCGACTACTCCCCGGGCTTCCAGTACGG


FG99_15380
CCACCCGCTGTCCTTCCAGCTGGCCGAGAAGATCGCCCAGATGACCCCCGGCACC



CTCGACCACGTGTTCTTCACCGGCTCCGGTTCCGAGTGCGCCGACACCTCGATCA



AGATGGCCCGCGCCTACTGGCGCATCAAAGGCCAGGCGCAGAAGACCAAGCTGAT



CGGCCGCGCCCGTGGCTACCACGGCGTGAACGTCGCCGGCACCTCCCTGGGCGGC



ATCGGCGGCAACCGCAAGATGTTCGGCCCGCTGATGGACGTCGACCACCTGCCGC



ACACCCTGCAGCCGGGCATGGCCTTTACCAAGGGTGCGGCCGAGACCGGCGGCGT



CGAGCTGGCCAACGAACTGCTGAAGCTGATCGAGCTGCACGACGCCTCCAACATC



GCCGCGGTGATCGTCGAGCCGATGTCCGGCTCCGCCGGCGTGATCGTGCCGCCGA



AGGGCTACCTGCAGCGCCTGCGGGAAATCTGCGACGCCAACGACATCCTGCTGAT



CTTCGACGAAGTCATCACCGCCTTCGGCCGCATGGGCAAGGCCACCGGCGCCGAA



TACTTCGGCGTGACCCCGGACATCATGAACGTCGCCAAGCAGGTCACCAACGGCG



CCGTGCCCATGGGCGCGGTGATCGCCAGCAGCGAAATCTACGACACCTTCATGAA



CCAGAACCTGCCGGAATACGCGGTGGAGTTCGGCCATGGCTACACCTACTCCGCG



CACCCGGTCGCCTGCGCCGCCGGCATCGCCGCGCTGGACCTGCTGCAGAAGGAAA



ACCTGATCCAGCAGTCCGCCGAACTGGCGCCGCACTTCGAGAAGGCCCTGCACGG



CCTCAAGGGCACGAAGAACGTCATCGACATCCGCAACTGCGGCCTGGCCGGCGCC



ATCCAGATCGCCGCCCGCGACGGCGACGCCATCGTCCGCCCGTTCGAAGCCAGCA



TGAAGCTGTGGAAGGAAGGCTTCTACGTGCGCTTCGGCGGCGACACCCTGCAGTT



CGGGCCGACCTTCAACGCCAAGCCCGAAGACCTCGACCGCCTGTTCGACGCGGTC



GGCGAAGCCCTCAACGGGGTGGCGTAA





SEQ ID NO: 75
ATGAATCAACAGGTAAATGTGGCCCCCAGCGCGGCAGCAGACTTAAATCTGAAAG


nucleic acid
CGCATTGGATGCCTTTTAGCGCCAACCGCAACTTCCACAAGGACCCCCGCATCAT


coding sequence
CGTAGCTGCCGAAGGATCGTGGCTGGTAGACGATAAGGGACGCCGTATCTACGAC


of the
TCATTGAGTGGCTTGTGGACCTGCGGCGCGGGTCACTCTCGTAAGGAAATTGCCG


gene
ACGCAGTGGCGAAACAGATTGGGACCCTGGACTACTCGCCAGGGTTTCAATATGG


FG99_15380
CCACCCTCTGTCGTTTCAGCTTGCAGAGAAGATTGCGCAAATGACGCCTGGCACG


optimized for
CTGGATCATGTCTTCTTTACAGGAAGTGGGAGTGAATGCGCGGACACATCTATCA



E.coli

AAATGGCTCGCGCCTACTGGCGCATCAAGGGCCAAGCGCAGAAGACCAAGTTGAT



CGGCCGTGCTCGCGGATATCACGGCGTCAACGTGGCCGGAACATCGCTTGGAGGT



ATTGGGGGAAACCGTAAAATGTTCGGACCCCTGATGGATGTCGATCATTTGCCTC



ACACATTACAACCTGGAATGGCATTCACTAAGGGCGCAGCAGAAACAGGTGGGGT



GGAGCTTGCCAATGAATTGCTGAAGTTAATTGAGTTACATGATGCTTCGAATATC



GCCGCAGTGATTGTGGAGCCTATGTCTGGCAGTGCCGGTGTGATTGTGCCACCAA



AAGGTTATCTTCAGCGTTTACGTGAGATTTGCGACGCTAACGATATCCTGTTAAT



CTTCGACGAGGTGATTACAGCTTTTGGCCGTATGGGCAAAGCAACGGGTGCCGAG



TATTTTGGAGTAACTCCCGATATCATGAACGTGGCTAAGCAAGTAACCAACGGGG



CCGTTCCGATGGGAGCCGTTATCGCCTCCTCTGAAATTTATGACACCTTCATGAA



CCAAAACTTGCCCGAATACGCCGTGGAATTTGGACATGGTTATACTTACAGCGCT



CATCCAGTGGCATGTGCCGCCGGCATCGCGGCGCTGGATCTGCTTCAAAAAGAGA



ATTTAATCCAGCAGTCGGCCGAGCTTGCACCTCACTTCGAAAAGGCCTTACATGG



CTTAAAGGGCACTAAAAACGTTATCGATATCCGCAACTGTGGCCTTGCTGGAGCG



ATTCAAATCGCGGCGCGCGACGGAGACGCGATCGTGCGCCCCTTTGAGGCGAGCA



TGAAGTTGTGGAAGGAAGGCTTCTACGTGCGTTTCGGCGGTGATACCCTGCAATT



TGGCCCTACTTTCAACGCCAAACCGGAAGACTTAGATCGCCTTTTCGATGCAGTT



GGAGAGGCACTGAACGGGGTCGCTTAA





SEQ ID NO: 76
ATGAAACTTAACGACAGTAACTTATTCCGCCAGCAGGCGTTGATTAACGGGGAAT


nucleic acid
GGCTGGACGCCAACAATGGTGAAGCCATCGACGTCACCAATCCGGCGAACGGCGA


coding sequence
CAAGCTGGGTAGCGTGCCGAAAATGGGCGCGGATGAAACCCGCGCCGCTATCGAC


of the gene gabD
GCCGCCAACCGCGCCCTGCCCGCCTGGCGCGCGCTCACCGCCAAAGAACGCGCCA


at locus b2661
CCATTCTGCGCAACTGGTTCAATTTGATGATGGAGCATCAGGACGATTTAGCGCG



CCTGATGACCCTCGAACAGGGTAAACCACTGGCCGAAGCGAAAGGCGAAATCAGC



TACGCCGCCTCCTTTATTGAGTGGTTTGCCGAAGAAGGCAAACGCATTTATGGCG



ACACCATTCCTGGTCATCAGGCCGATAAACGCCTGATTGTTATCAAGCAGCCGAT



TGGCGTCACCGCGGCTATCACGCCGTGGAACTTCCCGGCGGCGATGATTACCCGC



AAAGCCGGTCCGGCGCTGGCAGCAGGCTGCACCATGGTGCTGAAGCCCGCCAGTC



AGACGCCGTTCTCTGCGCTGGCGCTGGCGGAGCTGGCGATCCGCGCGGGCGTTCC



GGCTGGGGTATTTAACGTGGTCACCGGTTCGGCGGGCGCGGTCGGTAACGAACTG



ACCAGTAACCCGCTGGTGCGCAAACTGTCGTTTACCGGTTCGACCGAAATTGGCC



GCCAGTTAATGGAACAGTGCGCGAAAGACATCAAGAAAGTGTCGCTGGAGCTGGG



CGGTAACGCGCCGTTTATCGTCTTTGACGATGCCGACCTCGACAAAGCCGTGGAA



GGCGCGCTGGCCTCGAAATTCCGCAACGCCGGGCAAACCTGCGTCTGCGCCAACC



GCCTGTATGTGCAGGACGGCGTGTATGACCGTTTTGCCGAAAAATTGCAGCAGGC



AGTGAGCAAACTGCACATCGGCGACGGGCTGGATAACGGCGTCACCATCGGGCCG



CTGATCGATGAAAAAGCGGTAGCAAAAGTGGAAGAGCATATTGCCGATGCGCTGG



AGAAAGGCGCGCGCGTGGTTTGCGGCGGTAAAGCGCACGAACGCGGCGGCAACTT



CTTCCAGCCGACCATTCTGGTGGACGTTCCGGCCAACGCCAAAGTGTCGAAAGAA



GAGACGTTCGGCCCCCTCGCCCCGCTGTTCCGCTTTAAAGATGAAGCTGATGTGA



TTGCGCAAGCCAATGACACCGAGTTTGGCCTTGCCGCCTATTTCTACGCCCGTGA



TTTAAGCCGCGTCTTCCGCGTGGGCGAAGCGCTGGAGTACGGCATCGTCGGCATC



AATACCGGCATTATTTCCAATGAAGTGGCCCCGTTCGGCGGCATCAAAGCCTCGG



GTCTGGGTCGTGAAGGTTCGAAGTATGGCATCGAAGATTACTTAGAAATCAAATA



TATGTGCATCGGTCTTTAA





SEQ ID NO: 77
ATGAACAGCAATAAAGAGTTAATGCAGCGCCGCAGTCAGGCGATTCCCCGTGGCG


nucleic acid
TTGGGCAAATTCACCCGATTTTCGCTGACCGCGCGGAAAACTGCCGGGTGTGGGA


coding sequence
CGTTGAAGGCCGTGAGTATCTTGATTTCGCGGGCGGGATTGCGGTGCTCAATACC


of the gene gabT
GGGCACCTGCATCCGAAGGTGGTGGCCGCGGTGGAAGCGCAGTTGAAAAAACTGT


at locus b2662
CGCACACCTGCTTCCAGGTGCTGGCTTACGAGCCGTATCTGGAGCTGTGCGAGAT



TATGAATCAGAAGGTGCCGGGCGATTTCGCCAAGAAAACGCTGCTGGTTACGACC



GGTTCCGAAGCGGTGGAAAACGCGGTAAAAATCGCCCGCGCCGCCACCAAACGTA



GCGGCACCATCGCTTTTAGCGGCGCGTATCACGGGCGCACGCATTACACGCTGGC



GCTGACCGGCAAGGTGAATCCGTACTCTGCGGGCATGGGGCTGATGCCGGGTCAT



GTTTATCGCGCGCTTTATCCTTGCCCGCTGCACGGCATAAGCGAGGATGACGCTA



TCGCCAGCATCCACCGGATCTTCAAAAATGATGCCGCGCCGGAAGATATCGCCGC



CATCGTGATTGAGCCGGTTCAGGGCGAAGGCGGTTTCTACGCCTCGTCGCCAGCC



TTTATGCAGCGTTTACGCGCTCTGTGTGACGAGCACGGGATCATGCTGATTGCCG



ATGAAGTGCAGAGCGGCGCGGGGCGTACCGGCACGCTGTTTGCGATGGAGCAGAT



GGGCGTTGCGCCGGATCTTACCACCTTTGCGAAATCGATCGCGGGCGGCTTCCCG



CTGGCGGGCGTCACCGGGCGCGCGGAAGTAATGGATGCCGTCGCTCCAGGCGGTC



TGGGCGGCACCTATGCGGGTAACCCGATTGCCTGCGTGGCTGCGCTGGAAGTGTT



GAAGGTGTTTGAGCAGGAAAATCTGCTGCAAAAAGCCAACGATCTGGGGCAGAAG



TTGAAAGACGGATTGCTGGCGATAGCCGAAAAACACCCGGAGATCGGCGACGTAC



GCGGGCTGGGGGCGATGATCGCCATTGAGCTGTTTGAAGACGGCGATCACAACAA



GCCGGACGCCAAACTCACCGCCGAGATCGTGGCTCGCGCCCGCGATAAAGGCCTG



ATTCTTCTCTCCTGCGGCCCGTATTACAACGTGCTGCGCATCCTTGTACCGCTCA



CCATTGAAGACGCTCAGATCCGTCAGGGTCTGGAGATCATCAGCCAGTGTTTTGA



TGAGGCGAAGCAGTAG





SEQ ID NO: 78
ATGGTGCTCTCCCACGCCGTATCGGAGTCGGACGTCTCCGTCCACTCCACATTCG


nucleic acid
CATCACGTTACGTCCGTACTTCACTTCCTAGGTTCAAGATGCCGGAAAACTCGAT


coding sequence
TCCTAAGGAAGCGGCGTATCAGATCATCAACGACGAGCTGATGCTTGACGGGAAT


of the gene
CCACGGTTGAACTTAGCCTCCTTTGTGACGACATGGATGGAGCCTGAGTGTGATA


gad at
AACTCATCATGTCCTCCATCAACAAGAACTATGTTGACATGGACGAGTACCCCGT


locus U10034
CACCACCGAACTTCAGAACCGATGTGTGAACATGATTGCACATCTATTCAATGCA



CCGTTAGAAGAGGCGGAGACCGCCGTCGGAGTAGGAACCGTTGGATCATCGGAGG



CCATAATGTTGGCCGGTTTGGCCTTCAAGCGTAAATGGCAGAACAAGCGCAAAGC



TGAAGGCAAACCCGTCGATAAACCCAACATTGTCACCGGAGCCAATGTTCAAGTG



TGTTGGGAGAAATTCGCTAGGTACTTTGAGGTTGAACTTAAGGAAGTGAAATTGA



GTGAAGGATACTATGTGATGGACCCTCAACAAGCTGTTGATATGGTTGATGAGAA



CACCATTIGTGTTGCGGACATTCTTGGTTCCACTCTTAATGGAGAATTCGAAGAT



GTTAAACTCTTGAACGATCTCTTGGTCGAAAAGAACAAAGAAACCGGATGGGATA



CACCAATCCACGTGGATGCGGCAAGTGGAGGATTCATTGCACCGTTTTTGTATCC



GGAATTGGAATGGGACTTTAGACTTCCCTTGGTGAAGAGTATCAATGTGAGTGGT



CACAAGTATGGACTTGTGTACGCAGGGATTGGTTGGGTGATCTGGAGAAACAAAG



AGGATTTGCCTGAGGAACTCATCTTCCATATCAATTATCTTGGTGCTGACCAACC



CACCTTTACTCTCAATTTCTCCAAAGGTTCAAGTCAAGTCATTGCTCAATACTAC



CAACTTATCCGATTGGGCCACGAGGGTTACAGAAATGTGATGGAGAATTGCAGAG



AGAATATGATCGTCCTAAGGGAAGGACTTGAGAAGACAGAAAGGTTCAACATCGT



CTCAAAGGACGAGGGAGTGCCACTTGTCGCTTTCTCCTTGAAAGATAGCAGCTGT



CACACTGAGTTCGAAATCTCCGACATGCTTCGCAGGTATGGATGGATAGTGCCGG



CCTACACAATGCCTCCAAATGCACAACACATCACTGTTCTTCGTGTGGTTATCAG



AGAAGATTTCTCGAGAACACTCGCTGAGAGACTTGTGATCGATATAGAGAAAGTG



ATGCGTGAGCTCGATGAGCTTCCTTCGAGAGTGATTCACAAAATATCACTTGGAC



AAGAGAAGAGTGAATCTAACAGCGATAACTTGATGGTCACGGTGAAGAAGAGCGA



TATCGACAAGCAGAGAGATATCATCACTGGCTGGAAGAAGTTTGTCGCCGACAGG



AAGAAGACGAGTGGTATCTGCTAA





SEQ ID NO: 79
ATGGACCAGAAGCTGTTAACGGATTTCCGCTCAGAACTACTCGATTCACGTTTTG


nucleic acid
GCGCAAAGGCCATTTCTACTATCGCGGAGTCAAAACGATTTCCGCTGCACGAAAT


coding sequence
GCGCGATGATGTCGCATTTCAGATTATCAATGATGAATTATATCTTGATGGCAAC


of the gene gadAe
GCTCGTCAGAACCTGGCCACTTTCTGCCAGACCTGGGACGACGAAAACGTCCATA



AATTGATGGATTTGTCGATCAATAAAAACTGGATCGACAAAGAACAGTATCCGCA



ATCCGCAGCCATCGACCTGCGTTGCGTAAATATGGTTGCCGATCTGTGGCATGCG



CCTGCGCCGAAAAATGGTCAGGCCGTTGGCACCAACACCATTGGTTCTTCCGAGG



CCTGTATGCTCGGCGGGATGGCGATGAAATGGCGTTGGCGCAAGCGTATGGAAGC



TGCAGGCAAACCAACGGATAAACCAAACCTGGTGTGCGGTCCGGTACAAATCTGC



TGGCATAAATTCGCCCGCTACTGGGATGTGGAGCTGCGTGAGATCCCTATGCGCC



CCGGTCAGTTGTTTATGGACCCGAAACGCATGATTGAAGCCTGTGACGAAAACAC



CATCGGCGTGGTGCCGACTTTCGGCGTGACCTACACCGGTAACTATGAGTTCCCA



CAACCGCTGCACGATGCGCTGGATAAATTCCAGGCCGACACCGGTATCGACATCG



ACATGCACATCGACGCTGCCAGCGGTGGCTTCCTGGCACCGTTCGTCGCCCCGGA



TATCGTCTGGGACTTCCGCCTGCCGCGTGTGAAATCGATCAGTGCTTCAGGCCAT



AAATTCGGTCTGGCTCCGCTGGGCTGCGGCTGGGTTATCTGGCGTGACGAAGAAG



CGCTGCCGCAGGAACTGGTGTTCAACGTTGACTACCTGGGTGGTCAAATTGGTAC



TTTTGCCATCAACTTCTCCCGCCCGGCGGGTCAGGTAATTGCACAGTACTATGAA



TTCCTGCGCCTCGGTCGTGAAGGCTATACCAAAGTACAGAACGCCTCTTACCAGG



TTGCCGCTTATCTGGCGGATGAAATCGCCAAACTGGGGCCGTATGAGTTCATCTG



TACGGGTCGCCCGGACGAAGGCATCCCGGCGGTTTGCTTCAAACTGAAAGATGGT



GAAGATCCGGGATACACCCTGTACGACCTCTCTGAACGTCTGCGTCTGCGCGGCT



GGCAGGTTCCGGCCTTCACTCTCGGCGGTGAAGCCACCGACATCGTGGTGATGCG



CATTATGTGTCGTCGCGGCTTCGAAATGGACTTTGCTGAACTGTTGCTGGAAGAC



TACAAAGCCTCCCTGAAATATCTCAGCGATCACTAA





SEQ ID NO: 80
ATGAAGCCGTCCGTTATCCTCTACAAAGCCTTACCTGATGATTTACTGCAACGCC


nucleic acid
TGCAAGAGCATTTCACCGTTCACCAGGTGGCAAACCTCAGCCCACAAACCGTCGA


coding sequence
ACAAAATGCAGCAATTTTTGCCGAAGCTGAAGGTTTACTGGGTTCAAACGAGAAT


of the 
GTAAATGCCGCATTGCTGGAAAAAATGCCGAAACTGCGTGCCACATCAACGATCT


gene ghrB
CCGTCGGCTATGACAATTTTGATGTCGATGCGCTTACCGCCCGAAAAATTCTGCT


at locus b3553
GATGCACACGCCAACCGTATTAACAGAAACCGTCGCCGATACGCTGATGGCGCTG



GTGTTGTCTACCGCTCGTCGGGTTGTGGAGGTAGCAGAACGGGTAAAAGCAGGCG



AATGGACCGCGAGCATAGGCCCGGACTGGTACGGCACTGACGTTCACCATAAAAC



ACTGGGCATTGTCGGGATGGGACGGATCGGCATGGCGCTGGCACAACGTGCGCAC



TTTGGCTTCAACATGCCCATCCTCTATAACGCGCGCCGCCACCATAAAGAAGCAG



AAGAACGCTTCAACGCCCGCTACTGCGATTTGGATACTCTGTTACAAGAGTCAGA



TTTCGTTTGCCTGATCCTGCCGTTAACTGATGAGACGCATCATCTGTTTGGCGCA



GAACAATTCGCCAAAATGAAATCCTCCGCCATTTTCATTAATGCCGGACGTGGCC



CGGTGGTTGACGAAAATGCACTGATCGCAGCATTGCAGAAAGGCGAAATTCACGC



TGCCGGGCTGGATGTCTTCGAACAAGAGCCACTGTCCGTAGATTCGCCGTTGCTC



TCAATGGCCAACGTCGTCGCAGTACCGCATATTGGATCTGCCACCCATGAGACGC



GTTATGGCATGGCCGCCTGTGCCGTGGATAATTTGATTGATGCGTTACAAGGAAA



GGTTGAGAAGAACTGTGTGAATCCGCACGTCGCGGACTAA





SEQ ID NO: 81
GTGTACGCAGCTAAGGACATCACCGTGGAGGAGCGCGCCGGCGGCGCGCTATGGA


nucleic acid
TCACGATCGACCGGGCGCAGAAACACAATGCGCTGGCCCGCCACGTGCTGGCGGG


coding sequence
ATTGGCGCAGGTGGTGAGCGCCGCGGCGGCGCAGCCCGGGGTGCGCTGCATCGTG


of the gene
CTGACCGGCGCCGGCCAGCGCTTCTTTGCGGCAGGCGGCGATCTGGTCGAGCTGT


H16_RS27940
CCGGCGTGCGCGACCGGGAGGCTACGCTGGCCATGAGCGAGCAGGCGCGCGGTGC



CCTGGATGCGGTGCGCGACTGCCCGCTGCCGGTGCTGGCCTACCTGAACGGCGAT



GCCATCGGCGGCGGCGCCGAGCTGGCATTGGCCTGCGACATGCGGCTGCAGTCGG



CGAGCGCGCGCATCGGCTTTATCCAGGCGCGGCTGGCCATCACCTCGGCCTGGGG



CGGCGGCCCCGACCTGTGCCGGATCGTCGGCGCGGCGCGGGCCATGCGCATGATG



AGCCGTTGCGAGCTTGTCGATGCGCAGCAGGCGCTGCAGTGGGGCTTGGCCGATG



CGGTGGTCACGGACGGACCCGCCGGCAAGGACATCCACGCCTTCCTGCAACCGCT



GCTGGGCTGCGCCCCGCAGGTGCTGCGCGGCATCAAGGCGCAGACCGCGGCCAGC



CGGCGCGGCGAGTCGCATGACGCTGCCCGCACCATCGAGCAGCAGCAACTGTTGC



ATACCTGGCTCCATGCGGACCATTGGAACGCTGCCGAGGGCATCCTCTCCAGGAG



GGCCCAATGA





SEQ ID NO: 82
ATGAAAAAGGTATGTGTTATAGGTGCAGGTACTATGGGTTCAGGAATTGCTCAGG


nucleic acid
CATTTGCAGCTAAAGGATTTGAAGTAGTATTAAGAGATATTAAAGATGAATTTGT


coding sequence
TGATAGAGGATTAGATTTTATCAATAAAAATCTTTCTAAATTAGTTAAAAAAGGA


of the gene
AAGATAGAAGAAGCTACTAAAGTTGAAATCTTAACTAGAATTTCCGGAACAGTTG


hbd at
ACCTTAATATGGCAGCTGATTGCGATTTAGTTATAGAAGCAGCTGTTGAAAGAAT


locus CA_C2708
GGATATTAAAAAGCAGATTTTTGCTGACTTAGACAATATATGCAAGCCAGAAACA



ATTCTTGCATCAAATACATCATCACTTTCAATAACAGAAGTGGCATCAGCAACTA



AAACTAATGATAAGGTTATAGGTATGCATTTCTTTAATCCAGCTCCTGTTATGAA



GCTTGTAGAGGTAATAAGAGGAATAGCTACATCACAAGAAACTTTTGATGCAGTT



AAAGAGACATCTATAGCAATAGGAAAAGATCCTGTAGAAGTAGCAGAAGCACCAG



GATTTGTTGTAAATAGAATATTAATACCAATGATTAATGAAGCAGTTGGTATATT



AGCAGAAGGAATAGCTTCAGTAGAAGACATAGATAAAGCTATGAAACTTGGAGCT



AATCACCCAATGGGACCATTAGAATTAGGTGATTTTATAGGTCTTGATATATGTC



TTGCTATAATGGATGTTTTATACTCAGAAACTGGAGATTCTAAGTATAGACCACA



TACATTACTTAAGAAGTATGTAAGAGCAGGATGGCTTGGAAGAAAATCAGGAAAA



GGTTTCTACGATTATTCAAAATAA





SEQ ID NO: 83
ATGGTCGCACCCATTCCCGCGAAACGCGGCAGAAAACCCGCCGTTGCCACCGCAC


nucleic acid
CAGCGACTGGACAGGTTCAGTCTTTAACGCGTGGCCTGAAATTACTGGAGTGGAT


coding sequence
TGCCGAATCCAATGGCAGTGTGGCACTCACGGAACTGGCGCAACAAGCCGGGTTA


of the gene
CCCAATTCCACGACCCACCGCCTGCTAACCACGATGCAACAGCAGGGTTTCGTGC


iclR at
GTCAGGTTGGCGAACTGGGACATTGGGCAATCGGCGCACATGCCTTTATGGTCGG


locus b4018
CAGCAGCTTTCTCCAGAGCCGTAATTTGTTAGCGATTGTTCACCCTATCCTGCGC



AATCTAATGGAAGAGTCTGGCGAAACGGTCAATATGGCGGTGCTTGATCAAAGCG



ATCACGAAGCGATTATTATCGACCAGGTACAGTGTACGCATCTGATGCGAATGTC



CGCGCCTATCGGCGGTAAATTGCCGATGCACGCTTCCGGTGCGGGTAAAGCCTTT



TTAGCCCAACTGAGCGAAGAACAGGTGACGAAGCTGCTGCACCGCAAAGGGTTAC



ATGCCTATACCCACGCAACGCTGGTGTCTCCTGTGCATTTAAAAGAAGATCTCGC



CCAAACGCGCAAACGGGGTTATTCATTTGACGATGAGGAACATGCACTGGGGCTA



CGTTGCCTTGCAGCGTGTATTTTCGATGAGCACCGTGAACCGTTTGCCGCAATTT



CTATTTCCGGACCGATTTCACGTATTACCGATGACCGCGTGACCGAGTTTGGCGC



GATGGTGATTAAAGCGGCGAAGGAAGTGACGCTGGCGTACGGTGGAATGCGCTGA





SEQ ID NO: 84
GTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGA


nucleic acid
CCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAA


coding sequence
AGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAA


of the gene
CTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGC


lacI at
ACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGC


locus b0345
CAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCG



GTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGG



ATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATT



TCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGAC



GGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGC



TGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCA



TAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGG



AGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTC



CCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCAT



TACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGAT



ACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTC



GCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGC



GGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTG



GCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGC



TGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGA





SEQ ID NO: 85
ATGATGGTTCCAACCCTCGAACACGAGCTTGCTCCCAACGAAGCCAACCATGTCC


nucleic acid
CGCTGTCGCCGCTGTCGTTCCTCAAGCGTGCCGCGCAGGTGTACCCGCAGCGCGA


coding sequence
TGCGGTGATCTATGGCGCAAGGCGCTACAGCTACCGTCAGTTGCACGAGCGCAGC


of the gene
CGCGCCCTGGCCAGTGCCTTGGAGCGGGTCGGTGTTCAGCCGGGCGAGCGGGTGG


IvaE
CGATATTGGCGCCGAACATCCCGGAAATGCTCGAGGCCCACTATGGCGTGCCCGG


at locus
TGCCGGGGCGGTGCTGGTGTGCATCAACATCCGCCTGGAGGGGCGCAGCATTGCC


PP_2795
TTCATCCTGCGTCACTGCGCGGCCAAGGTATTGATCTGCGATCGTGAGTTCGGTG



CCGTGGCCAATCAGGCGCTGGCCATGCTCGATGCGCCGCCCTTGCTGGTGGGCAT



CGACGATGATCAGGCCGAGCGCGCCGATTTGGCCCACGACCTGGACTACGAAGCG



TTCTTGGCCCAGGGCGACCCCGCGCGGCCGTTGAGTGCGCCACAGAACGAATGGC



AGTCGATCGCCATCAACTACACCTCCGGCACCACGGGGGACCCCAAGGGCGTGGT



GCTGCATCACCGCGGCGCCTACCTCAACGCCTGCGCCGGGGCGCTGATCTTCCAG



TTGGGGCCGCGCAGCGTCTACTTGTGGACCTTGCCGATGTTCCACTGCAACGGCT



GGAGCCATACCTGGGCGGTGACGTTGTCCGGTGGCACCCACGTGTGTCTGCGCAA



GGTCCAGCCTGATGCGATCAACGCCGCCATCGCCGAGCATGCCGTGACTCACCTG



AGCGCCGCCCCAGTGGTGATGTCGATGCTGATCCACGCCGAGCATGCCAGCGCCC



CTCCGGTGCCGGTTTCGGTGATCACTGGCGGTGCCGCCCCGCCCAGTGCGGTCAT



CGCGGCGATGGAGGCGCGTGGCTTCAACATCACCCATGCCTATGGCATGACCGAA



AGCTACGGTCCCAGCACATTGTGCCTGTGGCAGCCGGGTGTCGACGAGTTGCCGC



TGGAGGCCCGGGCCCAGTTCATGAGCCGCCAGGGCGTCGCCCACCCGCTGCTCGA



GGAGGCCACGGTGCTGGATACCGACACCGGCCGCCCGGTCCCGGCCGACGGCCTT



ACCCTCGGCGAGCTGGTGGTGCGGGGCAACACTGTGATGAAAGGCTACCTGCACA



ACCCAGAGGCTACCCGTGCCGCGTTGGCCAACGGCTGGCTGCACACGGGCGACCT



GGCCGTGCTGCACCTGGACGGCTATGTGGAAATCAAGGACCGAGCCAAGGACATC



ATCATTTCTGGCGGCGAGAACATCAGTTCGCTGGAGATAGAAGAAGTGCTCTACC



AGCACCCCGAGGTGGTCGAGGCTGCGGTGGTGGCGCGTCCGGATTCGCGCTGGGG



CGAGACACCTCACGCTTTCGTCACGCTGCGCGCTGATGCACTGGCCAGCGGGGAC



GACCTGGTCCGCTGGTGCCGTGAGCGTCTGGCGCACTTCAAGGCGCCGCGCCATG



TGTCGCTCGTGGACCTGCCCAAGACCGCCACTGGAAAAATACAGAAGTTCGTCCT



GCGTGAGTGGGCCCGGCAACAGGAGGCGCAGATCGCCGACGCCGAGCATTGA





SEQ ID NO: 86
ATGATGGTTCCGACCCTGGAGCATGAACTGGCGCCGAATGAAGCGAACCATGTGC


nucleic acid
CGTTAAGCCCGCTGAGCTTTCTGAAACGTGCCGCCCAGGTCTATCCTCAGCGTGA


coding sequence
TGCCGTGATTTACGGCGCCCGTCGTTATAGCTATCGTCAGCTGCACGAACGCAGC


of the gene
CGCGCCCTGGCTTCCGCCTTAGAGCGTGTGGGTGTGCAGCCTGGTGAGCGCGTTG


IvaE
CAATTCTTGCCCCGAACATTCCGGAAATGCTGGAGGCGCACTACGGCGTGCCTGG


optimized for
CGCCGGTGCGGTGCTGGTTTGCATTAACATCCGCCTGGAGGGCCGCAGCATTGCC



E. coli

TTCATTTTACGCCATTGTGCGGCGAAGGTGCTGATTTGTGATCGTGAATTCGGTG



CCGTTGCTAATCAAGCGCTGGCGATGCTGGATGCGCCGCCGCTGCTGGTGGGTAT



CGATGATGACCAGGCGGAGCGCGCGGATCTGGCACATGATCTGGACTATGAGGCC



TTTTTAGCGCAGGGCGATCCGGCCCGTCCGTTGTCAGCGCCGCAGAATGAATGGC



AGAGCATTGCGATTAACTATACCTCGGGCACCACCGGTGATCCAAAAGGTGTAGT



GCTGCATCACCGTGGTGCGTATCTGAATGCATGCGCAGGCGCCTTAATCTTTCAG



TTAGGCCCTCGCTCGGTCTATCTTTGGACGCTGCCGATGTTTCACTGTAACGGTT



GGAGCCACACGTGGGCGGTTACCCTGTCAGGTGGTACGCACGTTTGCTTACGCAA



AGTTCAGCCGGACGCGATTAACGCAGCAATCGCCGAGCATGCCGTGACTCATCTG



TCTGCAGCCCCGGTGGTGATGTCTATGCTGATTCACGCCGAGCATGCTAGCGCGC



CGCCGGTGCCTGTGTCTGTGATCACCGGCGGTGCAGCCCCGCCTAGCGCCGTGAT



TGCGGCAATGGAAGCTCGTGGCTTCAATATCACGCACGCGTATGGTATGACCGAA



TCCTACGGTCCAAGCACCCTGTGCCTGTGGCAACCAGGTGTGGATGAACTGCCGT



TAGAAGCACGTGCGCAGTTTATGAGCCGTCAGGGTGTCGCGCATCCGTTACTGGA



AGAAGCGACCGTTTTAGATACCGATACTGGCCGTCCGGTACCGGCGGACGGTCTG



ACCCTGGGCGAACTGGTTGTGCGTGGTAATACCGTTATGAAAGGGTACTTACACA



ATCCGGAAGCGACGCGCGCAGCACTGGCGAACGGTTGGTTACATACCGGCGATCT



GGCCGTATTGCATCTGGATGGCTACGTTGAAATTAAAGATCGTGCAAAAGATATT



ATCATTTCGGGCGGCGAAAACATTTCTAGCCTGGAAATCGAAGAAGTCCTGTATC



AGCACCCGGAGGTTGTGGAGGCAGCCGTCGTGGCACGCCCGGACAGCCGTTGGGG



CGAGACCCCGCACGCCTTTGTTACTCTGCGTGCCGACGCCCTTGCGTCTGGTGAC



GATCTGGTGCGTTGGTGCCGTGAGCGTCTTGCCCACTTCAAAGCGCCGCGCCATG



TTAGCCTTGTGGATCTGCCGAAAACCGCCACGGGCAAAATTCAGAAATTTGTATT



ACGTGAATGGGCACGCCAGCAGGAGGCCCAGATTGCCGACGCAGAACACTAA





SEQ ID NO: 87
ATGGATTTTAACTTAACAGATATTCAACAGGACTTCTTAAAACTCGCTCATGATT


nucleic acid
TCGGCGAAAAGAAATTAGCACCGACCGTTACGGAACGCGACCACAAAGGTATTTA


coding sequence
TGACAAAGAACTCATCGACGAATTGCTCAGCCTCGGTATTACCGGCGCTTACTTC


of the gene
GAAGAAAAATACGGCGGTTCCGGCGATGACGGCGGCGACGTTTTGAGCTACATCC


MELS_RS10970
TCGCTGTTGAAGAATTGGCTAAATACGACGCTGGTGTTGCTATCACCTTGTCGGC



AACGGTTTCCCTTTGCGCTAACCCGATTTGGCAGTTCGGTACAGAAGCTCAGAAA



GAAAAATTCCTCGTTCCTTTGGTTGAAGGCACTAAACTCGGCGCTTTCGGCTTGA



CCGAACCGAACGCAGGTACTGATGCTTCCGGCCAGCAGACCATTGCTACGAAGAA



CGATGACGGCACTTACACGTTGAACGGCTCCAAGATCTTCATCACCAACGGCGGC



GCTGCTGACATCTACATTGTCTTCGCTATGACCGATAAGAGCAAAGGCAACCACG



GCATTACAGCCTTCATCCTCGAAGACGGTACTCCGGGCTTTACTTACGGCAAGAA



AGAAGACAAGATGGGCATCCATACTTCGCAGACCATGGAACTCGTATTCCAGGAC



GTCAAAGTTCCGGCTGAAAACATGCTCGGCGAAGAAGGCAAAGGCTTCAAGATTG



CTATGATGACCTTGGACGGCGGCCGTATCGGCGTTGCTGCTCAGGCTCTCGGCAT



TGCAGAAGCTGCTTTGGCAGATGCTGTTGAATACTCCAAACAGCGTGTACAGTTC



GGCAAACCGCTCTGCAAATTCCAGTCCATTTCCTTCAAACTGGCTGACATGAAGA



TGCAGATCGAAGCTGCTCGTAACCTCGTTTACAAAGCTGCTTGCAAGAAACAGGA



AGGCAAACCCTTCACCGTTGACGCTGCTATCGCAAAACGCGTTGCTTCCGACGTC



GCTATGCGCGTAACGACCGAAGCTGTCCAGATCTTCGGCGGCTATGGCTACAGCG



AAGAATATCCGGTTGCTCGTCACATGCGCGATGCTAAGATTACTCAGATCTACGA



AGGCACGAACGAAGTTCAGCTCATGGTTACAGGCGGTGCTCTGTTAAGATAA





SEQ ID NO: 88
ATGCAGCAGTTAGCCAGTTTCTTA


nucleic acid
TCCGGTACCTGGCAGTCTGGCCGGGGCCGTAGCCGTTTGATTCACCACGCTATTA


coding sequence
GCGGCGAGGCGTTATGGGAAGTGACCAGTGAAGGTCTTGATATGGCGGCTGCCCG


of the gene
CCAGTTTGCCATTGAAAAAGGTGCCCCCGCCCTTCGCGCTATGACCTTTATCGAA


paaZ
CGTGCGGCGATGCTTAAAGCGGTCGCTAAACATCTGCTGAGTGAAAAAGAGCGTT


at locus B1387
TCTATGCTCTTTCTGCGCAAACAGGCGCAACGCGGGCAGACAGTTGGGTTGATAT



TGAAGGTGGCATTGGGACGTTATTTACTTACGCCAGCCTCGGTAGCCGGGAGCTG



CCTGACGATACGCTGTGGCCGGAAGATGAATTGATCCCCTTATCGAAAGAAGGTG



GATTTGCCGCGCGCCATTTACTGACCTCAAAGTCAGGCGTGGCAGTGCATATTAA



CGCCTTTAACTTCCCCTGCTGGGGAATGCTGGAAAAGCTGGCACCAACGTGGCTG



GGCGGAATGCCAGCCATCATCAAACCAGCTACCGCGACGGCCCAACTGACTCAGG



CGATGGTGAAATCAATTGTCGATAGTGGTCTTGTTCCCGAAGGCGCAATTAGTCT



GATCTGCGGTAGTGCTGGCGACTTGTTGGATCATCTGGACAGCCAGGATGTGGTG



ACTTTCACGGGGTCAGCGGCGACCGGACAGATGCTGCGAGTTCAGCCAAATATCG



TCGCCAAATCTATCCCCTTCACTATGGAAGCTGATTCCCTGAACTGCTGCGTACT



GGGCGAAGATGTCACCCCGGATCAACCGGAGTTTGCGCTGTTTATTCGTGAAGTT



GTGCGTGAGATGACCACAAAAGCCGGGCAAAAATGTACGGCAATCCGGCGGATTA



TTGTGCCGCAGGCATTGGTTAATGCTGTCAGTGATGCTCTGGTTGCGCGATTACA



GAAAGTCGTGGTCGGTGATCCTGCTCAGGAAGGCGTGAAAATGGGCGCACTGGTA



AATGCTGAGCAGCGTGCCGATGTGCAGGAAAAAGTGAACATATTGCTGGCTGCAG



GATGCGAGATTCGCCTCGGTGGTCAGGCGGATTTATCTGCTGCGGGTGCCTTCTT



CCCGCCAACCTTATTGTACTGTCCGCAGCCGGATGAAACACCGGCGGTACATGCA



ACAGAAGCCTTTGGCCCTGTCGCAACGCTGATGCCAGCACAAAACCAGCGACATG



CTCTGCAACTGGCTTGTGCAGGCGGCGGTAGCCTTGCGGGAACGCTGGTGACGGC



TGATCCGCAAATTGCGCGTCAGTTTATTGCCGACGCGGCACGTACGCATGGGCGA



ATTCAGATCCTCAATGAAGAGTCGGCAAAAGAATCCACCGGGCATGGCTCCCCAC



TGCCACAACTGGTACATGGTGGGCCTGGTCGCGCAGGAGGCGGTGAAGAATTAGG



CGGTTTACGAGCGGTGAAACATTACATGCAGCGAACCGCTGTTCAGGGTAGTCCG



ACGATGCTTGCCGCTATCAGTAAACAGTGGGTGCGCGGTGCGAAAGTCGAAGAAG



ATCGTATTCATCCGTTCCGCAAATATTTTGAGGAGCTACAACCAGGCGACAGCCT



GTTGACTCCCCGCCGCACAATGACAGAGGCCGATATTGTTAACTTTGCTTGCCTC



AGCGGCGATCATTTCTATGCACATATGGATAAGATTGCTGCTGCCGAATCTATTT



TCGGTGAGCGGGTGGTGCATGGGTATTTTGTGCTTTCTGCGGCTGCGGGTCTGTT



TGTCGATGCCGGTGTCGGTCCGGTCATTGCTAACTACGGGCTGGAAAGCTTGCGT



TTTATCGAACCCGTAAAGCCAGGCGATACCATCCAGGTGCGTCTCACCTGTAAGC



GCAAGACGCTGAAAAAACAGCGTAGCGCAGAAGAAAAACCAACAGGTGTGGTGGA



ATGGGCTGTAGAGGTATTCAATCAGCATCAAACCCCGGTGGCGCTGTATTCAATT



CTGACGCTGGTGGCCAGGCAGCACGGTGATTTTGTCGATTAA





SEQ ID NO: 89
ATGAGAAAGGTTCCCATTATTACCGCAGATGAGGCTGCAAAGCTTATTAAAGACG


nucleic acid
GTGATACAGTTACAACAAGTGGTTTCGTTGGAAATGCAATCCCTGAGGCTCTTGA


coding sequence
TAGAGCTGTAGAAAAAAGATTCTTAGAAACAGGCGAACCCAAAAACATTACATAT


of the gene
GTTTATTGTGGTTCTCAAGGTAACAGAGACGGAAGAGGTGCTGAGCACTTTGCTC


pct(Cp) at locus
ATGAAGGCCTTTTAAAACGTTACATCGCTGGTCACTGGGCTACAGTTCCTGCTTT


CPRO_RS04110
GGGTAAAATGGCTATGGAAAATAAAATGGAAGCATATAATGTATCTCAGGGTGCA



TTGTGTCATTTGTTCCGTGATATAGCTTCTCATAAGCCAGGCGTATTTACAAAGG



TAGGTATCGGTACTTTCATTGACCCCAGAAATGGCGGCGGTAAAGTAAATGATAT



TACCAAAGAAGATATTGTTGAATTGGTAGAGATTAAGGGTCAGGAATATTTATTC



TACCCTGCTTTTCCTATTCATGTAGCTCTTATTCGTGGTACTTACGCTGATGAAA



GCGGAAATATCACATTTGAGAAAGAAGTTGCTCCTCTGGAAGGAACTTCAGTATG



CCAGGCTGTTAAAAACAGTGGCGGTATCGTTGTAGTTCAGGTTGAAAGAGTAGTA



AAAGCTGGTACTCTTGACCCTCGTCATGTAAAAGTTCCAGGAATTTATGTTGACT



ATGTTGTTGTTGCTGACCCAGAAGATCATCAGCAATCTTTAGATTGTGAATATGA



TCCTGCATTATCAGGCGAGCATAGAAGACCTGAAGTTGTTGGAGAACCACTTCCT



TTGAGTGCAAAGAAAGTTATTGGTCGTCGTGGTGCCATTGAATTAGAAAAAGATG



TTGCTGTAAATTTAGGTGTTGGTGCGCCTGAATATGTAGCAAGTGTTGCTGATGA



AGAAGGTATCGTTGATTTTATGACTTTAACTGCTGAAAGTGGTGCTATTGGTGGT



GTTCCTGCTGGTGGCGTTCGCTTTGGTGCTTCTTATAATGCGGATGCATTGATCG



ATCAAGGTTATCAATTCGATTACTATGATGGCGGCGGCTTAGACCTTTGCTATTT



AGGCTTAGCTGAATGCGATGAAAAAGGCAATATCAACGTTTCAAGATTTGGCCCT



CGTATCGCTGGTTGTGGTGGTTTCATCAACATTACACAGAATACACCTAAGGTAT



TCTTCTGTGGTACTTTCACAGCAGGTGGCTTAAAGGTTAAAATTGAAGATGGCAA



GGTTATTATTGTTCAAGAAGGCAAGCAGAAAAAATTCTTGAAAGCTGTTGAGCAG



ATTACATTCAATGGTGACGTTGCACTTGCTAATAAGCAACAAGTAACTTATATTA



CAGAAAGATGCGTATTCCTTTTGAAGGAAGATGGTTTGCACTTATCTGAAATTGC



ACCTGGTATTGATTTGCAGACACAGATTCTTGACGTTATGGATTTTGCACCTATT



ATTGACAGAGATGCAAACGGCCAAATCAAATTGATGGACGCTGCTTTGTTTGCAG



AAGGCTTAATGGGTCTGAAGGAAATGAAGTCCTGA





SEQ ID NO: 90
ATGAGAAAAGTAGAAATCATTACAGCTGAACAAGCAGCTCAGCTCGTAAAAGACA


nucleic acid
ACGACACGATTACGTCTATCGGCTTTGTCAGCAGCGCCCATCCGGAAGCACTGAC


coding sequence
CAAAGCTTTGGAAAAACGGTTCCTGGACACGAACACCCCGCAGAACTTGACCTAC


of f the gene
ATCTATGCAGGCTCTCAGGGCAAACGCGATGGCCGTGCCGCTGAACATCTGGCAC


pct(Me) at locus
ACACAGGCCTTTTGAAACGCGCCATCATCGGTCACTGGCAGACTGTACCGGCTAT


MELS_RS03915
CGGTAAACTGGCTGTCGAAAACAAGATTGAAGCTTACAACTTCTCGCAGGGCACG



TTGGTCCACTGGTTCCGCGCCTTGGCAGGTCATAAGCTCGGCGTCTTCACCGACA



TCGGTCTGGAAACTTTCCTCGATCCCCGTCAGCTCGGCGGCAAGCTCAATGACGT



AACCAAAGAAGACCTCGTCAAACTGATCGAAGTCGATGGTCATGAACAGCTTTTC



TACCCGACCTTCCCGGTCAACGTAGCTTTCCTCCGCGGTACGTATGCTGATGAAT



CCGGCAATATCACCATGGACGAAGAAATCGGGCCTTTCGAAAGCACTTCCGTAGC



CCAGGCCGTTCACAACTGTGGCGGTAAAGTCGTCGTCCAGGTCAAAGACGTCGTC



GCTCACGGCAGCCTCGACCCGCGCATGGTCAAGATCCCTGGCATCTATGTCGACT



ACGTCGTCGTAGCAGCTCCGGAAGACCATCAGCAGACGTATGACTGCGAATACGA



TCCGTCCCTCAGCGGTGAACATCGTGCTCCTGAAGGCGCTACCGATGCAGCTCTC



CCCATGAGCGCTAAGAAAATCATCGGCCGCCGCGGCGCTTTGGAATTGACTGAAA



ACGCTGTCGTCAACCTCGGCGTCGGTGCTCCGGAATACGTTGCTTCTGTTGCCGG



TGAAGAAGGTATCGCCGATACCATTACCCTGACCGTCGAAGGTGGCGCCATCGGT



GGCGTACCGCAGGGCGGTGCCCGCTTCGGTTCGTCCCGCAATGCCGATGCCATCA



TCGACCACACCTATCAGTTCGACTTCTACGATGGCGGCGGTCTGGACATCGCTTA



CCTCGGCCTGGCCCAGTGCGATGGCTCGGGCAACATCAACGTCAGCAAGTTCGGT



ACTAACGTTGCCGGCTGCGGCGGTTTCCCCAACATTTCCCAGCAGACACCGAATG



TTTACTTCTGCGGCACCTTCACGGCTGGCGGCTTGAAAATCGCTGTCGAAGACGG



CAAAGTCAAGATCCTCCAGGAAGGCAAAGCCAAGAAGTTCATCAAAGCTGTCGAC



CAGATCACTTTCAACGGTTCCTATGCAGCCCGCAACGGCAAACACGTTCTCTACA



TCACAGAACGCTGCGTATTTGAACTGACCAAAGAAGGCTTGAAACTCATCGAAGT



CGCACCGGGCATCGATATTGAAAAAGATATCCTCGCTCACATGGACTTCAAGCCG



ATCATTGATAATCCGAAACTCATGGATGCCCGCCTCTTCCAGGACGGTCCCATGG



GACTGAAAAAATAA





SEQ ID NO: 91
ATGAATACAGCAGAACTGGAAACCCTTATCCGCACCATCCTCAGTGAAAAGCTCG


nucleic acid
CGCCGACGCCCCCTGCCCCTCAGCAAGAGCAGGGCATTTTCTGCGATGTCGGCAG


coding sequence
CGCCATCGACGCCGCTCATCAGGCTTTTCTCCGCTATCAGCAGTGTCCGCTAAAA


of the gene
ACCCGCAGCGCCATTATCAGCGCCCTGCGGGAGACGCTGGCCCCCGAGCTGGCGA


pduP(Kp) at
CGCTGGCGGAAGAGAGCGCCACGGAAACCGGCATGGGCAACAAAGAAGATAAATA


locus
TCTGAAAAATAAAGCCGCTCTTGAAAACACGCCGGGCATAGAGGATCTCACTACC


KPHS 42790
AGCGCCCTCACCGGCGATGGCGGGATGGTGCTGTTTGAGTACTCGCCGTTCGGGG



TTATTGGCGCCGTGGCGCCCAGCACCAACCCAACGGAAACCATTATCAACAACAG



TATCAGCATGCTGGCGGCGGGTAACAGCGTCTATTTCAGCCCCCATCCCGGCGCG



AAAAAGGTCTCGTTGAAGCTTATCGCCAGGATCGAAGAGATCGCCTACCGCTGCA



GCGGGATCCGTAACCTGGTGGTGACCGTTGCCGAGCCGACCTTTGAAGCCACCCA



GCAAATGATGTCCCACCCGCTGATTGCCGTTCTGGCTATCACCGGCGGCCCTGGC



ATTGTGGCGATGGGCATGAAAAGCGGTAAAAAAGTGATCGGCGCTGGCGCCGGCA



ATCCGCCGTGCATCGTTGATGAAACCGCCGATCTCGTCAAAGCCGCCGAAGATAT



TATCAGCGGCGCCGCCTTCGATTACAACCTGCCCTGTATCGCCGAAAAAAGCCTG



ATCGTCGTCGCCTCCGTCGCTGACCGCCTGATCCAGCAGATGCAGGATTTTGACG



CGCTGCTGTTGAGCCGACAGGAGGCCGATACCCTGCGTACCGTCTGCCTGCCCGA



CGGCGCGGCGAATAAAAAACTGGTCGGTAAAAGCCCGGCTGCGCTGCTGGCGGCG



GCGGGTCTCGCCGTTCCGCCTCGCCCCCCTCGCCTGCTGATAGCCGAGGTGGAGG



CGAACGACCCCTGGGTGACCTGCGAGCAGCTGATGCCGGTGCTGCCGATCGTCAG



GGTCGCCGACTTTGACAGCGCCCTGGCGCTGGCCCTGCGCGTAGAGGAGGGTCTG



CACCACACCGCCATTATGCACTCGCAGAATGTCTCGCGGCTCAATCTGGCGGCAC



GCACCCTGCAGACCTCCATTTTTGTCAAAAATGGCCCGTCTTACGCGGGAATCGG



CGTCGGCGGCGAAGGGTTTACCACCTTCACCATCGCCACGCCAACCGGAGAAGGC



ACCACCTCCGCGCGGACGTTCGCCCGCCTGCGGCGCTGCGTGTTGACCAACGGTT



TTTCCATTCGCTAA





SEQ ID NO: 92
ATGAATACTTCTGAACTCGAAACCCTGATTCGCACCATTCTTAGCGAGCAATTAA


nucleic acid
CCACGCCGGCGCAAACGCCGGTCCAGCCTCAGGGCAAAGGGATTTTCCAGTCCGT


coding sequence
GAGCGAGGCCATCGACGCCGCGCACCAGGCGTTCTTACGTTATCAGCAGTGCCCG


of the gene
CTAAAAACCCGCAGCGCCATTATCAGCGCGATGCGTCAGGAGCTGACGCCGCTGC


pduP(Se) at locus
TGGCGCCCCTGGCGGAAGAGAGCGCCAATGAAACGGGGATGGGCAACAAAGAAGA


STM2051
TAAATTTCTCAAAAACAAGGCTGCGCTGGACAACACGCCGGGCGTAGAAGATCTC



ACCACCACCGCGCTGACCGGCGACGGCGGCATGGTGCTGTTTGAATACTCACCGT



TTGGCGTTATCGGTTCGGTCGCCCCAAGCACCAACCCGACGGAAACCATCATCAA



CAACAGTATCAGCATGCTGGCGGCGGGCAACAGTATCTACTTTAGCCCGCATCCG



GGAGCGAAAAAGGTCTCTCTGAAGCTGATTAGCCTGATTGAAGAGATTGCCTTCC



GCTGCTGCGGCATCCGCAATCTGGTGGTGACCGTGGCGGAACCCACCTTCGAAGC



GACCCAGCAGATGATGGCCCACCCGCGAATCGCAGTACTGGCCATTACCGGCGGC



CCGGGCATTGTGGCAATGGGCATGAAGAGCGGTAAGAAGGTGATTGGCGCTGGCG



CGGGTAACCCGCCCTGCATCGTTGATGAAACGGCGGACCTGGTGAAAGCGGCGGA



AGATATCATCAACGGCGCGTCATTCGATTACAACCTGCCCTGCATTGCCGAGAAG



AGCCTGATCGTAGTGGAGAGTGTCGCCGAACGTCTGGTGCAGCAAATGCAAACCT



TCGGCGCGCTGCTGTTAAGCCCTGCCGATACCGACAAACTCCGCGCCGTCTGCCT



GCCTGAAGGCCAGGCGAATAAAAAACTGGTCGGCAAGAGCCCATCGGCCATGCTG



GAAGCCGCCGGGATCGCTGTCCCTGCAAAAGCGCCGCGTCTGCTGATTGCGCTGG



TTAACGCTGACGATCCGTGGGTCACCAGCGAACAGTTGATGCCGATGCTGCCAGT



GGTAAAAGTCAGCGATTTCGATAGCGCGCTGGCGCTGGCCCTGAAGGTTGAAGAG



GGGCTGCATCATACCGCCATTATGCACTCGCAGAACGTGTCACGCCTGAACCTCG



CGGCCCGCACGCTGCAAACCTCGATATTCGTCAAAAACGGCCCCTCTTATGCCGG



GATCGGCGTCGGCGGCGAAGGCTTTACCACCTTCACTATCGCCACACCAACCGGT



GAAGGGACCACGTCAGCGCGTACTTTTGCCCGTTCCCGGCGCTGCGTACTGACCA



ACGGCTTTTCTATTCGCTAA





SEQ ID NO: 93
ATGACTGACGTTGTCATCGTATCCGCCGCCCGCACCGCGGTCGGCAAGTTTGGCG


nucleic acid
GCTCGCTGGCCAAGATCCCGGCACCGGAACTGGGTGCCGTGGTCATCAAGGCCGC


coding sequence
GCTGGAGCGCGCCGGCGTCAAGCCGGAGCAGGTGAGCGAAGTCATCATGGGCCAG


of the gene
GTGCTGACCGCCGGTTCGGGCCAGAACCCCGCACGCCAGGCCGCGATCAAGGCCG


phaA
GCCTGCCGGCGATGGTGCCGGCCATGACCATCAACAAGGTGTGCGGCTCGGGCCT


at locus
GAAGGCCGTGATGCTGGCCGCCAACGCGATCATGGCGGGCGACGCCGAGATCGTG


H16_RS07140
GTGGCCGGCGGCCAGGAAAACATGAGCGCCGCCCCGCACGTGCTGCCGGGCTCGC



GCGATGGTTTCCGCATGGGCGATGCCAAGCTGGTCGACACCATGATCGTCGACGG



CCTGTGGGACGTGTACAACCAGTACCACATGGGCATCACCGCCGAGAACGTGGCC



AAGGAATACGGCATCACACGCGAGGCGCAGGATGAGTTCGCCGTCGGCTCGCAGA



ACAAGGCCGAAGCCGCGCAGAAGGCCGGCAAGTTTGACGAAGAGATCGTCCCGGT



GCTGATCCCGCAGCGCAAGGGCGACCCGGTGGCCTTCAAGACCGACGAGTTCGTG



CGCCAGGGCGCCACGCTGGACAGCATGTCCGGCCTCAAGCCCGCCTTCGACAAGG



CCGGCACGGTGACCGCGGCCAACGCCTCGGGCCTGAACGACGGCGCCGCCGCGGT



GGTGGTGATGTCGGCGGCCAAGGCCAAGGAACTGGGCCTGACCCCGCTGGCCACG



ATCAAGAGCTATGCCAACGCCGGTGTCGATCCCAAGGTGATGGGCATGGGCCCGG



TGCCGGCCTCCAAGCGCGCCCTGTCGCGCGCCGAGTGGACCCCGCAAGACCTGGA



CCTGATGGAGATCAACGAGGCCTTTGCCGCGCAGGCGCTGGCGGTGCACCAGCAG



ATGGGCTGGGACACCTCCAAGGTCAATGTGAACGGCGGCGCCATCGCCATCGGCC



ACCCGATCGGCGCGTCGGGCTGCCGTATCCTGGTGACGCTGCTGCACGAGATGAA



GCGCCGTGACGCGAAGAAGGGCCTGGCCTCGCTGTGCATCGGCGGCGGCATGGGC



GTGGCGCTGGCAGTCGAGCGCAAATAA





SEQ ID NO: 94
ATGACTCAGCGCATTGCGTATGTGACCGGCGGCATGGGTGGTATCGGAACCGCCA


nucleic acid
TTTGCCAGCGGCTGGCCAAGGATGGCTTTCGTGTGGTGGCCGGTTGCGGCCCCAA


coding sequence
CTCGCCGCGCCGCGAAAAGTGGCTGGAGCAGCAGAAGGCCCTGGGCTTCGATTTC


of the gene
ATTGCCTCGGAAGGCAATGTGGCTGACTGGGACTCGACCAAGACCGCATTCGACA


phaB
AGGTCAAGTCCGAGGTCGGCGAGGTTGATGTGCTGATCAACAACGCCGGTATCAC


at locus
CCGCGACGTGGTGTTCCGCAAGATGACCCGCGCCGACTGGGATGCGGTGATCGAC


H16_RS07145
ACCAACCTGACCTCGCTGTTCAACGTCACCAAGCAGGTGATCGACGGCATGGCCG



ACCGTGGCTGGGGCCGCATCGTCAACATCTCGTCGGTGAACGGGCAGAAGGGCCA



GTTCGGCCAGACCAACTACTCCACCGCCAAGGCCGGCCTGCATGGCTTCACCATG



GCACTGGCGCAGGAAGTGGCGACCAAGGGCGTGACCGTCAACACGGTCTCTCCGG



GCTATATCGCCACCGACATGGTCAAGGCGATCCGCCAGGACGTGCTCGACAAGAT



CGTCGCGACGATCCCGGTCAAGCGCCTGGGCCTGCCGGAAGAGATCGCCTCGATC



TGCGCCTGGTTGTCGTCGGAGGAGTCCGGTTTCTCGACCGGCGCCGACTTCTCGC



TCAACGGCGGCCTGCATATGGGCTGA





SEQ ID NO: 95
ATGGCGACCGGCAAAGGCGCGGCAGCTTCCACGCAGGAAGGCAAGTCCCAACCAT


nucleic acid
TCAAGGTCACGCCGGGGCCATTCGATCCAGCCACATGGCTGGAATGGTCCCGCCA


coding sequence
GTGGCAGGGCACTGAAGGCAACGGCCACGCGGCCGCGTCCGGCATTCCGGGCCTG


of the gene
GATGCGCTGGCAGGCGTCAAGATCGCGCCGGCGCAGCTGGGTGATATCCAGCAGC


phaC
GCTACATGAAGGACTTCTCAGCGCTGTGGCAGGCCATGGCCGAGGGCAAGGCCGA


at locus
GGCCACCGGTCCGCTGCACGACCGGCGCTTCGCCGGCGACGCATGGCGCACCAAC


H16_RS07135
CTCCCATATCGCTTCGCTGCCGCGTTCTACCTGCTCAATGCGCGCGCCTTGACCG



AGCTGGCCGATGCCGTCGAGGCCGATGCCAAGACCCGCCAGCGCATCCGCTTCGC



GATCTCGCAATGGGTCGATGCGATGTCGCCCGCCAACTTCCTTGCCACCAATCCC



GAGGCGCAGCGCCTGCTGATCGAGTCGGGCGGCGAATCGCTGCGTGCCGGCGTGC



GCAACATGATGGAAGACCTGACACGCGGCAAGATCTCGCAGACCGACGAGAGCGC



GTTTGAGGTCGGCCGCAATGTCGCGGTGACCGAAGGCGCCGTGGTCTTCGAGAAC



GAGTACTTCCAGCTGTTGCAGTACAAGCCGCTGACCGACAAGGTGCACGCGCGCC



CGCTGCTGATGGTGCCGCCGTGCATCAACAAGTACTACATCCTGGACCTGCAGCC



GGAGAGCTCGCTGGTGCGCCATGTGGTGGAGCAGGGACATACGGTGTTTCTGGTG



TCGTGGCGCAATCCGGACGCCAGCATGGCCGGCAGCACCTGGGACGACTACATCG



AGCACGCGGCCATCCGCGCCATCGAAGTCGCGCGCGACATCAGCGGCCAGGACAA



GATCAACGTGCTCGGCTTCTGCGTGGGCGGCACCATTGTCTCGACCGCGCTGGCG



GTGCTGGCCGCGCGCGGCGAGCACCCGGCCGCCAGCGTCACGCTGCTGACCACGC



TGCTGGACTTTGCCGACACGGGCATCCTCGACGTCTTTGTCGACGAGGGCCATGT



GCAGTTGCGCGAGGCCACGCTGGGCGGCGGCGCCGGCGCGCCGTGCGCGCTGCTG



CGCGGCCTTGAGCTGGCCAATACCTTCTCGTTCTTGCGCCCGAACGACCTGGTGT



GGAACTACGTGGTCGACAACTACCTGAAGGGCAACACGCCGGTGCCGTTCGACCT



GCTGTTCTGGAACGGCGACGCCACCAACCTGCCGGGGCCGTGGTACTGCTGGTAC



CTGCGCCACACCTACCTGCAGAACGAGCTCAAGGTACCGGGCAAGCTGACCGTGT



GCGGCGTGCCGGTGGACCTGGCCAGCATCGACGTGCCGACCTATATCTACGGCTC



GCGCGAAGACCATATCGTGCCGTGGACCGCGGCCTATGCCTCGACCGCGCTGCTG



GCGAACAAGCTGCGCTTCGTGCTGGGTGCGTCGGGCCATATCGCCGGTGTGATCA



ACCCGCCGGCCAAGAACAAGCGCAGCCACTGGACTAACGATGCGCTGCCGGAGTC



GCCGCAGCAATGGCTGGCCGGCGCCATCGAGCATCACGGCAGCTGGTGGCCGGAC



TGGACCGCATGGCTGGCCGGGCAGGCCGGCGCGAAACGCGCCGCGCCCGCCAACT



ATGGCAATGCGCGCTATCGCGCAATCGAACCCGCGCCTGGGCGATACGTCAAAGC



CAAGGCATGA





SEQ ID NO: 96
ATGAGTACACAAACCCTTGCCGTGGGCCAGAAGGCTCGCCTGACCAAGCGCTTCG


nucleic acid
GCCCGGCCGAGGTGGCGGCCTTCGCCGGCCTCTCGGAGGATTTCAATCCCCTGCA


coding sequence
CCTGGACCCGGACTTCGCCGCCACGACGGTGTTCGAGCGCCCCATCGTCCACGGC


of the gene
ATGCTGCTGGCGAGCCTCTTCTCCGGGCTCCTCGGGCAGCAACTGCCCGGGAAAG


phaJ(Ac) at locus
GGAGCATCTATCTGGGCCAGAGCCTCGGCTTCAAACTGCCGGTGTTCGTGGGGGA


DQN91_RS09635
CGAGGTGACGGCGGAGGTGGAGGTGATTGCCCTTCGAAGCGACAAGCCCATCGCC



ACCCTGGCCACCCGCATCTTCACCCAGGGCGGCGCCCTCGCCGTGACGGGGGAAG



CGGTGGTAAAACTCCCTTGA





SEQ ID NO: 97
ATGCTGGTAAATGACGAGCAACAACAGATCGCCGACGCGGTACGTGCGTTCGCCC


nucleic acid
AGGAACGCCTGAAGCCGTTTGCCGAGCAATGGGACAAGGACCATCGCTTCCCGAA


coding sequence
AGAGGCCATCGACGAGATGGCCGAACTGGGCCTGTTCGGCATGCTGGTGCCGGAG


of the gene
CAGTGGGGCGGTAGCGACACCGGTTATGTGGCCTATGCCATGGCCTTGGAGGAAA


PP_2216
TCGCTGCGGGCGATGGCGCCTGCTCGACCATCATGAGCGTGCACAACTCGGTGGG



TTGCGTGCCGATCCTGCGCTTCGGCAACGAGCAGCAGAAAGAGCAGTTCCTCACC



CCGCTGGCGACAGGTGCGATGCTCGGTGCTTTCGCCCTGACCGAGCCGCAGGCTG



GCTCCGATGCCAGCAGCCTGAAGACCCGCGCACGCCTGGAAGGCGACCATTACGT



GCTCAATGGCAGCAAGCAGTTCATTACCTCGGGGCAGAACGCCGGCGTAGTGATC



GTGTTTGCGGTCACCGACCCGGAGGCCGGCAAGCGTGGCATCAGCGCCTTCATCG



TGCCGACCGATTCGCCGGGCTACCAGGTAGCGCGGGTGGAGGACAAACTCGGCCA



GCACGCCTCCGACACCTGCCAGATCGTTTTCGACAATGTGCAAGTGCCAGTGGCC



AACCGGCTGGGGGCGGAGGGTGAAGGCTACAAGATCGCCCTGGCCAACCTTGAAG



GCGGCCGTATCGGCATCGCCTCGCAAGCGGTGGGTATGGCCCGCGCGGCGTTCGA



AGTGGCGCGGGACTATGCCAACGAGCGCCAGAGCTTTGGCAAACCGCTGATCGAG



CACCAGGCCGTGGCGTTTCGCCTGGCCGACATGGCAACGAAAATTTCCGTTGCCC



GGCAGATGGTATTGCACGCCGCTGCCCTTCGTGATGCGGGGCGCCCGGCGCTGGT



GGAAGCGTCGATGGCCAAGCTGTTCGCCTCGGAAATGGCCGAAAAGGTCTGTTCG



GACGCCTTGCAGACCCTGGGCGGTTATGGCTATCTGAGTGACTTCCCGCTGGAGC



GGATCTACCGCGACGTTCGGGTTTGCCAGATCTACGAAGGCACCAGCGACATTCA



GCGCATGGTCATTGCGCGCAATCTTTGA





SEQ ID NO: 98
ATGCTGGTGAACGACGAACAGCAGCAAATTGCCGATGCTGTGCGCGCCTTTGCTC


nucleic acid
AAGAGCGTTTAAAACCGTTCGCGGAGCAGTGGGACAAAGACCACCGTTTCCCGAA


coding sequence
AGAAGCGATTGATGAGATGGCAGAACTGGGCCTGTTTGGCATGTTAGTCCCGGAG


of the gene
CAATGGGGCGGCTCGGACACCGGTTATGTGGCATATGCGATGGCGCTGGAAGAGA


PP 2216
TTGCGGCCGGTGATGGCGCTTGTAGCACCATTATGAGCGTCCACAATTCGGTGGG


optimized for
TTGCGTGCCGATTCTGCGCTTTGGTAACGAACAGCAGAAAGAACAGTTCCTGACC



E. coli

CCTTTAGCAACGGGTGCGATGCTGGGCGCGTTTGCCTTAACCGAACCTCAGGCGG



GCTCGGACGCAAGCTCGTTGAAAACCCGTGCGCGCCTGGAAGGTGATCACTACGT



GTTGAATGGCAGTAAGCAATTCATTACCAGCGGCCAAAATGCCGGTGTGGTGATC



GTGTTTGCGGTGACTGACCCGGAAGCGGGCAAACGCGGCATTAGTGCGTTCATCG



TGCCGACCGATAGCCCGGGCTATCAGGTCGCCCGTGTTGAAGATAAGCTTGGTCA



GCATGCGAGCGATACCTGTCAAATCGTGTTTGACAACGTACAAGTTCCGGTAGCC



AATCGCCTGGGTGCTGAAGGTGAAGGTTATAAAATCGCACTGGCAAACCTTGAAG



GTGGCCGCATTGGCATCGCGAGTCAGGCCGTTGGCATGGCACGCGCCGCGTTTGA



AGTTGCGCGCGATTACGCAAACGAACGTCAGAGCTTCGGCAAACCGCTCATTGAA



CATCAGGCGGTTGCCTTTCGTCTGGCCGATATGGCCACGAAAATCAGCGTGGCGC



GCCAGATGGTTCTGCATGCGGCTGCCCTGCGTGATGCGGGCCGTCCGGCGCTGGT



TGAAGCATCAATGGCGAAGCTGTTCGCCTCAGAAATGGCTGAAAAAGTCTGCTCA



GATGCGCTGCAGACGCTGGGCGGTTACGGTTACCTGAGCGATTTTCCACTGGAAC



GTATTTATCGTGATGTTCGCGTATGCCAGATCTATGAGGGTACTAGCGACATTCA



GCGCATGGTAATCGCCCGTAACCTGTAA





SEQ ID NO: 99
ATGTCTCTACACTCTCCAGGTAAAGCGTTTCGCGCTGCACTGACTAAAGAAAATC


nucleic acid
CATTGCAGATTGTTGGCACCATCAACGCTAATCATGCGCTGTTGGCGCAGCGTGC


coding sequence
CGGATATCAGGCAATTTATCTTTCTGGCGGTGGCGTGGCGGCAGGTTCGCTGGGG


of the gene
CTGCCCGATCTCGGTATTTCTACCCTTGATGATGTGCTGACCGACATTCGCCGTA


prpB
TCACCGACGTTTGTTCGCTGCCGCTGCTGGTGGATGCGGATATCGGTTTTGGTTC


at locus b0331
TTCGGCCTTTAACGTGGCGCGCACCGTGAAATCGATGATTAAAGCCGGTGCGGCA



GGATTGCATATTGAAGATCAGGTTGGTGCGAAACGCTGCGGTCATCGTCCGAATA



AAGCGATCGTCTCGAAAGAAGAGATGGTGGATCGGATCCGCGCGGCGGTGGATGC



GAAAACCGATCCTGATTTTGTGATCATGGCGCGCACCGATGCTCTGGCGGTAGAG



GGGCTGGATGCGGCGATCGAGCGTGCGCAGGCCTATGTTGAAGCGGGTGCCGAGA



TGTTGTTCCCGGAGGCGATTACCGAACTCGCCATGTACCGCCAGTTTGCCGATGC



GGTGCAGGTGCCGATCCTCGCCAACATCACCGAATTTGGTGCCACGCCGCTGTTT



ACCACCGACGAATTACGCAGCGCCCATGTCGCAATGGCGCTGTACCCACTTTCAG



CGTTCCGCGCCATGAACCGCGCCGCTGAACATGTCTACAACGTCCTGCGCCAGGA



AGGCACGCAGAAAAGCGTCATCGACACCATGCAGACCCGCAACGAGCTGTACGAA



AGCATCAACTACTACCAGTACGAAGAGAAGCTCGACAACCTGTTTGCCCGTAGCC



AGGTGAAATAA





SEQ ID NO: 100
ATGAGCGACACAACGATCCTGCAAAACAGTACCCATGTCATTAAACCGAAAAAAT


nucleic acid
CTGTGGCACTTTCTGGCGTTCCGGCGGGCAATACGGCGCTCTGCACCGTGGGTAA


coding sequence
AAGTGGCAATGACCTGCATTACCGCGGCTACGATATTCTTGATCTGGCGAAACAT


of the gene
TGCGAATTTGAAGAAGTGGCGCATCTGCTGATCCACGGCAAACTGCCGACCCGTG


prpC
ACGAACTCGCCGCTTACAAAACGAAACTGAAAGCCCTGCGCGGTTTACCGGCTAA


at locus b0333
CGTGCGTACCGTGCTGGAAGCCTTACCGGCGGCGTCGCACCCGATGGATGTTATG



CGCACCGGTGTTTCCGCGCTCGGCTGCACGCTGCCAGAAAAAGAGGGGCATACCG



TCTCTGGCGCGCGGGATATTGCCGACAAACTGCTGGCGTCGCTTAGCTCGATTCT



CCTTTATTGGTATCACTACAGCCACAACGGCGAACGCATCCAACCGGAAACCGAT



GACGACTCCATCGGCGGTCACTTCCTGCATCTGCTGCACGGCGAAAAGCCATCGC



AAAGCTGGGAAAAGGCGATGCATATCTCGCTGGTGCTGTACGCCGAACACGAGTT



TAACGCCTCCACCTTTACCAGTCGGGTGATTGCGGGCACCGGCTCTGATATGTAT



TCCGCGATTATTGGCGCGATTGGCGCACTGCGCGGGCCAAAACACGGCGGGGCGA



ATGAAGTGTCGCTGGAGATCCAGCAACGCTACGAAACGCCGGACGAAGCCGAAGC



AGATATCCGCAAGCGCGTGGAAAACAAAGAAGTGGTCATTGGTTTTGGTCATCCG



GTTTACACCATCGCTGACCCGCGCCACCAGGTGATTAAACGTGTGGCGAAGCAGC



TCTCGCAGGAAGGCGGCTCGCTGAAGATGTACAACATCGCCGATCGCCTGGAAAC



GGTGATGTGGGAGAGCAAAAAGATGTTCCCCAATCTCGACTGGTTCTCTGCTGTT



TCCTACAACATGATGGGCGTTCCCACCGAGATGTTCACACCACTGTTTGTTATCG



CCCGCGTCACCGGCTGGGCGGCGCACATTATCGAACAACGTCAGGACAACAAAAT



TATCCGTCCTTCCGCCAATTATGTTGGACCGGAAGACCGCCCGTTTGTCGCGCTG



GATAAGCGCCAGTAA





SEQ ID NO: 101
ATGTCAGCTCAAATCAACAACATCCGCCCGGAATTTGATCGTGAAATCGTTGATA


nucleic acid
TCGTCGATTACGTCATGAACTACGAAATCAGCTCTAAAGTGGCCTACGACACCGC


coding sequence
ACATTACTGCCTGCTCGACACGCTCGGCTGCGGTCTGGAAGCTCTCGAATACCCG


of the gene
GCCTGTAAAAAACTGCTGGGGCCAATTGTTCCCGGCACCGTCGTACCCAACGGCG


prpD
TGCGCGTCCCCGGAACTCAGTTCCAGCTCGACCCCGTCCAGGCGGCATTTAACAT


at locus b0334
CGGCGCGATGATCCGCTGGCTCGATTTCAACGATACCTGGCTGGCGGCGGAGTGG



GGCCATCCTTCCGACAACCTCGGCGGCATTCTGGCAACGGCGGACTGGCTTTCGC



GCAACGCGGTCGCCAGCGGCAAAGCGCCGTTGACCATGAAACAGGTGCTGACCGC



AATGATCAAAGCCCATGAAATTCAGGGCTGCATCGCGCTGGAAAACTCCTTTAAC



CGCGTCGGCCTCGACCACGTTCTGTTAGTGAAAGTGGCTTCCACCGCCGTGGTCG



CCGAAATGCTCGGCCTGACCCGCGAGGAAATTCTCAACGCCGTTTCGCTGGCGTG



GGTGGACGGTCAGTCGCTGCGCACCTATCGCCATGCGCCGAACACCGGCACGCGT



AAATCCTGGGCGGCGGGCGATGCCACTTCCCGCGCGGTACGTCTGGCACTGATGG



CGAAAACGGGCGAAATGGGTTACCCGTCAGCCCTGACTGCGCCGGTGTGGGGCTT



CTACGACGTCTCCTTTAAAGGTGAATCGTTCCGCTTCCAGCGCCCGTACGGTTCC



TACGTTATGGAAAATGTGCTGTTCAAAATCTCCTTCCCGGCGGAGTTCCACTCCC



AGACGGCAGTTGAAGCAGCGATGACGCTCTATGAACAGATGCAGGCAGCAGGCAA



AACGGCGGCGGATATCGAAAAAGTGACCATTCGCACCCACGAAGCCTGTATTCGC



ATCATCGACAAAAAAGGGCCGCTCAATAACCCGGCAGACCGCGATCACTGCATTC



AGTACATGGTGGCGATCCCGCTGCTATTCGGGCGCTTAACGGCGGCAGATTACGA



GGACAACGTTGCGCAAGATAAACGCATTGACGCCCTGCGCGAGAAGATCAATTGC



TTTGAAGATCCGGCATTTACCGCTGACTACCACGACCCGGAAAAACGCGCCATCG



CCAATGCCATTACCCTTGAGTTCACCGACGGCACACGATTTGAAGAAGTGGTGGT



GGAGTACCCCATTGGTCATGCTCGCCGCCGTCAGGATGGTATTCCGAAACTGGTC



GATAAATTCAAAATCAATCTCGCGCGCCAGTTCCCGACTCGCCAACAGCAGCGCA



TTCTGGAGGTTTCTCTCGACAGAGCTCGCCTGGAACAGATGCCGGTCAATGAGTA



TCTCGACCTGTACGTCATTTAA





SEQ ID NO: 102
ATGACCGCAGACGCGGAGGAGACAGACATGACGGCAAGCCATGCCGTGCATGCCC


nucleic acid
GTTCGCTGGCCGACCCCGAGGGGTTCTGGGCCGAACAGGCGGCGCGCATCGACTG


coding sequence
GGAAACCCCGTTCGGCCAGGTGCTCGACAACAGCCGCGCGCCCTTTACGCGCTGG


of the gene
TTCGTCGGCGGGCGCACCAACCTGTGCCACAACGCGGTCGACCGCCACCTGGCGG


prpE(Cn) at locus
CCCGCGCCAGCCAGCCGGCGCTGCACTGGGTCTCGACCGAGACCGACCAGGCCCG


H16_RS12300
CACCTTTACCTACGCCGAGCTGCACGACGAAGTCAGCCGCATGGCCGCGATCCTG



CAGGGCCTGGACGTGCAGAAGGGCGACCGCGTGCTGATCTACATGCCGATGATCC



CGGAAGCCGCCTTTGCCATGCTGGCCTGCGCGCGCATCGGCGCGATCCATTCGGT



GGTGTTCGGCGGCTTTGCCTCGGTCAGCCTGGCCGCGCGCATCGAGGATGCCCGG



CCGCGCGTGGTGGTCAGCGCCGACGCCGGCTCGCGTGCCGGCAAGGTGGTGCCCT



ACAAGCCGCTGCTGGACGAGGCCATCCGGCTCTCGTCGCACCAGCCCGGGAAGGT



GCTGCTGGTGGACCGGCAACTGGCGCAAATGCCCCGTACCGAGGGCCGCGATGAG



GACTACGCCGCCTGGCGCGAACGCGTGGCCGGCGTGCAGGTGCCGTGCGTGTGGC



TGGAATCGAGCGAGCCGTCGTACGTGCTATACACCTCCGGCACCACCGGCAAGCC



CAAGGGCGTGCAGCGCGATACCGGCGGCTACGCGGTGGCGCTGGCCACCTCGATG



GAATACATCTTCTGCGGCAAGCCCGGCGACACCATGTTCACCGCGTCGGACATCG



GCTGGGTGGTGGGGCACAGCTATATCGTCTACGGCCCGCTGCTGGCCGGCATGGC



CACGCTGATGTATGAAGGCACGCCGATCCGCCCCGACGGTGGCATCCTGTGGCGG



CTGGTGGAGCAATACAAGGTCAACCTGATGTTCAGCGCGCCGACCGCGATCCGCG



TGCTGAAGAAGCAGGACCCGGCCTGGCTGACCCGCTACGACCTGTCCAGCCTGCG



CCTGCTGTTCCTGGCCGGCGAGCCGCTGGACGAGCCCACCGCGCGCTGGATCCAG



GACGGCCTGGGCAAGCCCGTGGTCGACAACTACTGGCAGACCGAATCCGGCTGGC



CGATCCTCGCGATCCAGCGCGGCATCGAGGCGCTGCCGCCCAAGCTGGGCTCGCC



CGGCGTGCCCGCCTACGGCTATGACCTGAAGATCGTCGACGAGAACACCGGCGCT



GAATGCCCGCCGGGGCAGAAGGGTGTGGTCGCCATCGACGGCCCGCTGCCGCCGG



GATGCATGAGCACGGTCTGGGGCGACGACGACCGCTTCGTGCGCACCTACTGGCA



GGCGGTGCCGAACCGGCTGTGCTATTCGACCTTCGACTGGGGCGTGCGCGACGCC



GACGGCTATGTTTTTATCCTGGGCCGCACCGACGACGTGATCAACGTTGCCGGCC



ACCGGCTGGGCACCCGCGAGATCGAGGAAAGCCTGTCGTCCAACGCTGCCGTGGC



CGAGGTGGCGGTGGTGGGCGTGCAGGACGCGCTCAAGGGGCAGGTGGCGATGGCC



TTCTGCATCGCCCGCGATCCGGCGCGCACGGCCACGGCCGAAGCGCGGCTGGCAT



TGGAGGGCGAGTTGATGAAGACGGTGGAGCAGCAACTGGGTGCCGTGGCGCGGCC



GGCGCGCGTATTCTTTGTCAATGCACTGCCCAAGACCCGCTCCGGCAAGTTGCTG



CGGCGCGCCATGCAGGCGGTGGCCGAAGGGCGCGATCCGGGCGACCTGACCACGA



TCGAGGACCCGGGTGCGCTGGAACAGTTGCAGGCAGCGCTGAAAGGCTAG





SEQ ID NO: 103
ATGTCTTTTAGCGAATTTTATCAGCGTTCGATTAACGAACCGGAGCAGTTCTGGG


nucleic acid
CCGAGCAGGCCCGGCGTATTGACTGGCAGACGCCCTTTACGCAAACGCTCGATCA


coding sequence
CAGCAATCCGCCGTTTGCCCGTTGGTTTTGTGAAGGCCGAACCAACTTGTGCCAC


of the
AACGCCATCGACCGCTGGCTGGAGAAACAGCCAGAGGCGCTGGCGCTGATTGCCG


gene
TCTCTTCGGAAACAGAAGAAGAGCGCACCTTTACCTTTCGTCAGCTGCATGACGA


prpE(Ec) at
AGTGAACGCGGTGGCCTCAATGTTGCGTTCATTGGGTGTGCAGCGCGGCGATCGG


locus
GTGCTGGTGTATATGCCGATGATTGCCGAAGCGCATATTACTCTGCTGGCCTGCG


b0335
CGCGCATTGGCGCTATTCACTCGGTGGTGTTTGGTGGATTTGCCTCGCACAGCGT



GGCGGCGCGAATTGATGACGCTAAACCGGTGCTGATTGTCTCGGCTGATGCCGGA



GCGCGCGGTGGCAAAATCATTCCCTATAAAAAATTGCTCGACGATGCGATAAGTC



AGGCGCAGCACCAGCCACGCCATGTTTTGCTGGTGGATCGCGGGCTGGCGAAAAT



GGCGCGCGTCAGCGGGCGGGATGTCGATTTCGCGTCGTTGCGCCATCAACACATC



GGCGCGCGGGTACCGGTGGCGTGGCTGGAATCCAACGAAACCTCCTGCATTCTCT



ACACTTCCGGCACGACCGGCAAACCTAAAGGCGTGCAGCGTGACGTCGGCGGATA



TGCGGTGGCGCTGGCGACCTCGATGGACACCATTTTTGGCGGCAAAGCGGGCAGC



GTGTTCTTTTGCGCATCGGATATCGGCTGGGTGGTGGGGCATTCGTATATCGTTT



ACGCGCCGCTGCTGGCGGGGATGGCGACTATCGTTTACGAAGGATTGCCGACCTG



GCCGGACTGCGGCGTGTGGTGGACAATCGTCGAGAAATATCAGGTTAGCCGGATG



TTCTCAGCGCCGACCGCCATTCGCGTGCTGAAAAAATTCCCTACCGCTGAAATTC



GCAAACACGATCTCTCGTCGCTGGAAGTGCTCTATCTGGCTGGAGAACCGCTGGA



CGAGCCGACCGCCAGTTGGGTGAGCAATACGCTGGATGTGCCGGTCATCGACAAC



TACTGGCAGACCGAATCCGGCTGGCCGATTATGGCGATTGCTCGCGGTCTGGACG



ACAGGCCGACGCGTCTGGGAAGCCCCGGTGTGCCGATGTATGGCTATAACGTGCA



GTTGCTTAATGAAGTCACCGGCGAACCGTGTGGCGTCAACGAGAAAGGGATGCTG



GTGGTGGAAGGGCCGCTGCCGCCGGGGTGTATTCAGACCATCTGGGGCGACGACG



GCCGCTTTGTGAAGACTTACTGGTCGCTGTTTTCCCGCCCGGTGTACGCCACCTT



TGACTGGGGCATCCGTGACGCTGACGGTTATCACTTTATTCTCGGGCGCACTGAC



GATGTAATTAACGTTGCCGGGCATCGGCTGGGGACGCGCGAGATTGAAGAGAGTA



TCTCCAGCCATCCGGGCGTTGCCGAAGTGGCGGTGGTTGGGGTGAAAGATGCGCT



GAAAGGGCAGGTGGCGGTGGCGTTTGTCATTCCGAAAGAGAGCGACAGTCTGGAA



GATCGTGATGTGGCGCACTCGCAAGAGAAGGCGATTATGGCGCTGGTGGACAGCC



AGATTGGCAACTTTGGCCGCCCGGCGCACGTCTGGTTTGTCTCGCAATTGCCAAA



AACGCGATCCGGAAAAATGCTGCGCCGCACGATCCAGGCGATTTGCGAAGGACGC



GATCCTGGAGATCTGACGACCATTGATGATCCTGCGTCGTTGGATCAGATCCGCC



AGGCGATGGAAGAGTAG





SEQ ID NO: 104
ATGTCTTTTAGCGAATTTTATCAGCGTTCCATTAACGAACCGGAGGCGTTCTGGG


nucleic acid
CCGAGCAGGCCCGGCGTATCGACTGGCGACAGCCGTTTACGCAGACGCTGGATCA


coding sequence
TAGCCGTCCACCGTTTGCCCGCTGGTTTTGCGGCGGCACCACTAACTTATGTCAT


of the gene
AACGCCGTCGACCGCTGGCGGGATAAACAGCCGGAGGCGCTGGCGCTGATTGCCG


prpE(Se) at locus
TCTCATCAGAGACCGATGAAGAGCGCACATTTACCTTCAGCCAGTTGCATGATGA


STM0371
AGTCAACATTGTGGCCGCCATGTTGCTGTCGCTGGGCGTGCAGCGTGGCGATCGC



GTATTGGTCTATATGCCGATGATTGCCGAAGCGCAGATAACCCTGCTGGCCTGCG



CGCGCATTGGCGCGATCCATTCGGTGGTCTTTGGCGGTTTTGCCTCGCACAGCGT



GGCGGCGCGCATTGACGATGCCAGACCGGCGCTGATTGTGTCGGCGGATGCCGGA



GCGCGGGGCGGTAAAATCCTGCCGTATAAAAAGCTGCTCGATGACGCTATTGCGC



AGGCGCAGCATCAGCCGAAACACGTTCTGCTGGTGGACAGAGGGCTGGCGAAAAT



GGCATGGGTGGATGGGCGCGATCTGGATTTTGCCACGTTGCGCCAGCAGCATCTC



GGCGCGAGCGTGCCGGTGGCGTGGCTGGAATCCAACGAAACCTCGTGCATTCTTT



ACACCTCCGGCACTACCGGCAAACCGAAAGGCGTCCAGCGCGACGTCGGCGGTTA



TGCGGTGGCGCTGGCAACCTCGATGGACACCATTTTTGGCGGCAAGGCGGGCGGC



GTATTCTTTTGCGCATCGGATATCGGCTGGGTCGTCGGCCACTCCTATATCGTTT



ACGCGCCGTTGCTGGCAGGCATGGCGACTATTGTTTACGAAGGACTGCCGACGTA



CCCGGACTGCGGGGTCTGGTGGAAAATTGTCGAGAAATACCAGGTTAACCGGATG



TTTTCCGCCCCGACCGCGATTCGCGTGCTGAAAAAATTCCCGACGGCGCAAATCC



GCAATCACGATCTCTCCTCGCTGGAGGCGCTTTATCTGGCCGGTGAGCCGCTGGA



CGAGCCGACGGCCAGTTGGGTAACGGAGACGCTGGGCGTACCGGTCATCGACAAT



TATTGGCAGACGGAGTCCGGCTGGCCGATCATGGCGCTGGCCCGCGCGCTGGACG



ACAGGCCGTCGCGTCTGGGAAGTCCCGGCGTGCCGATGTACGGTTATAACGTCCA



GCTACTCAATGAAGTCACCGGCGAACCTTGCGGCATAAATGAAAAGGGGATGCTG



GTGATCGAAGGGCCGCTGCCGCCGGGCTGTATTCAGACTATTTGGGGCGACGATG



CGCGTTTTGTGAAGACTTACTGGTCGCTGTTTAACCGTCAGGTTTATGCCACTTT



CGACTGGGGAATCCGCGACGCCGAGGGGTATTACTTTATTCTGGGCCGTACCGAT



GATGTGATTAATATTGCGGGTCATCGGCTGGGGACGCGAGAAATAGAAGAAAGTA



TCTCCAGCTACCCGAACGTAGCGGAAGTGGCGGTAGTGGGGATAAAAGACGCTCT



GAAAGGGCAGGTAGCGGTGGCGTTTGTCATTCCGAAGCAGAGCGATACGCTGGCG



GATCGCGAGGCGGCGCGCGACGAGGAAAACGCGATTATGGCGCTGGTGGACAACC



AGATCGGTCACTTTGGTCGTCCGGCGCATGTCTGGTTTGTTTCGCAGCTCCCCAA



AACGCGTTCCGGAAAGATGCTTCGCCGCACGATCCAGGCGATCTGCGAAGGCCGC



GATCCGGGCGATCTGACAACCATTGACGATCCCGCGTCGTTGCAGCAAATTCGCC



AGGCGATCGAAGAATAG





SEQ ID NO: 105
GTGTCCCGTATTATTATGCTGATCCCTACCGGAACCAGCGTCGGTCTGACCAGCG


nucleic acid
TCAGCCTTGGCGTGATCCGTGCAATGGAACGCAAAGGCGTTCGTCTGAGCGTTTT


coding sequence
CAAACCTATCGCTCAGCCGCGTACCGGTGGCGATGCGCCCGATCAGACTACGACT


of the gene
ATCGTGCGTGCGAACTCTTCCACCACGACGGCCGCTGAACCGCTGAAAATGAGCT


pta at
ACGTTGAAGGTCTGCTTTCCAGCAATCAGAAAGATGTGCTGATGGAAGAGATCGT


locus b2297
CGCAAACTACCACGCTAACACCAAAGACGCTGAAGTCGTTCTGGTTGAAGGTCTG



GTCCCGACACGTAAGCACCAGTTTGCCCAGTCTCTGAACTACGAAATCGCTAAAA



CGCTGAATGCGGAAATCGTCTTCGTTATGTCTCAGGGCACTGACACCCCGGAACA



GCTGAAAGAGCGTATCGAACTGACCCGCAACAGCTTCGGCGGTGCCAAAAACACC



AACATCACCGGCGTTATCGTTAACAAACTGAACGCACCGGTTGATGAACAGGGTC



GTACTCGCCCGGATCTGTCCGAGATTTTCGACGACTCTTCCAAAGCTAAAGTAAA



CAATGTTGATCCGGCGAAGCTGCAAGAATCCAGCCCGCTGCCGGTTCTCGGCGCT



GTGCCGTGGAGCTTTGACCTGATCGCGACTCGTGCGATCGATATGGCTCGCCACC



TGAATGCGACCATCATCAACGAAGGCGACATCAATACTCGCCGCGTTAAATCCGT



CACTTTCTGCGCACGCAGCATTCCGCACATGCTGGAGCACTTCCGTGCCGGTTCT



CTGCTGGTGACTTCCGCAGACCGTCCTGACGTGCTGGTGGCCGCTTGCCTGGCAG



CCATGAACGGCGTAGAAATCGGTGCCCTGCTGCTGACTGGCGGTTACGAAATGGA



CGCGCGCATTTCTAAACTGTGCGAACGTGCTTTCGCTACCGGCCTGCCGGTATTT



ATGGTGAACACCAACACCTGGCAGACCTCTCTGAGCCTGCAGAGCTTCAACCTGG



AAGTTCCGGTTGACGATCACGAACGTATCGAGAAAGTTCAGGAATACGTTGCTAA



CTACATCAACGCTGACTGGATCGAATCTCTGACTGCCACTTCTGAGCGCAGCCGT



CGTCTGTCTCCGCCTGCGTTCCGTTATCAGCTGACTGAACTTGCGCGCAAAGCGG



GCAAACGTATCGTACTGCCGGAAGGTGACGAACCGCGTACCGTTAAAGCAGCCGC



TATCTGTGCTGAACGTGGTATCGCAACTTGCGTACTGCTGGGTAATCCGGCAGAG



ATCAACCGTGTTGCAGCGTCTCAGGGTGTAGAACTGGGTGCAGGGATTGAAATCG



TTGATCCAGAAGTGGTTCGCGAAAGCTATGTTGGTCGTCTGGTCGAACTGCGTAA



GAACAAAGGCATGACCGAAACCGTTGCCCGCGAACAGCTGGAAGACAACGTGGTG



CTCGGTACGCTGATGCTGGAACAGGATGAAGTTGATGGTCTGGTTTCCGGTGCTG



TTCACACTACCGCAAACACCATCCGTCCGCCGCTGCAGCTGATCAAAACTGCACC



GGGCAGCTCCCTGGTATCTTCCGTGTTCTTCATGCTGCTGCCGGAACAGGTTTAC



GTTTACGGTGACTGTGCGATCAACCCGGATCCGACCGCTGAACAGCTGGCAGAAA



TCGCGATTCAGTCCGCTGATTCCGCTGCGGCCTTCGGTATCGAACCGCGCGTTGC



TATGCTCTCCTACTCCACCGGTACTTCTGGTGCAGGTAGCGACGTAGAAAAAGTT



CGCGAAGCAACTCGTCTGGCGCAGGAAAAACGTCCTGACCTGATGATCGACGGTC



CGCTGCAGTACGACGCTGCGGTAATGGCTGACGTTGCGAAATCCAAAGCGCCGAA



CTCTCCGGTTGCAGGTCGCGCTACCGTGTTCATCTTCCCGGATCTGAACACCGGT



AACACCACCTACAAAGCGGTACAGCGTTCTGCCGACCTGATCTCCATCGGGCCGA



TGCTGCAGGGTATGCGCAAGCCGGTTAACGACCTGTCCCGTGGCGCACTGGTTGA



CGATATCGTCTACACCATCGCGCTGACTGCGATTCAGTCTGCACAGCAGCAGTAA





SEQ ID NO: 106
ATGAGCAACAATGAATTCCATCAGCGTCGTCTTTCTGCCACTCCGCGCGGGGTTG


nucleic acid
GCGTGATGTGTAACTTCTTCGCCCAGTCGGCTGAAAACGCCACGCTGAAGGATGT


coding sequence
TGAGGGCAACGAGTACATCGATTTCGCCGCAGGCATTGCGGTGCTGAATACCGGA


of the gene
CATCGCCACCCTGATCTGGTCGCGGCGGTGGAGCAGCAACTGCAACAGTTTACCC


puuE
ACACCGCGTATCAGATTGTGCCGTATGAAAGCTACGTCACCCTGGCGGAGAAAAT


at locus b1302
CAACGCCCTTGCCCCGGTGAGCGGGCAGGCCAAAACCGCGTTCTTCACCACCGGT



GCGGAAGCGGTGGAAAACGCGGTGAAAATTGCTCGCGCCCATACCGGACGCCCTG



GCGTGATTGCGTTTAGCGGCGGCTTTCACGGTCGTACGTATATGACCATGGCGCT



GACCGGAAAAGTTGCGCCGTACAAAATCGGCTTCGGCCCGTTCCCTGGTTCGGTG



TATCACGTACCTTATCCGTCAGATTTACACGGCATTTCAACACAGGACTCCCTCG



ACGCCATCGAACGCTTGTTTAAATCAGACATCGAAGCGAAGCAGGTGGCGGCGAT



TATTTTCGAACCGGTGCAGGGCGAGGGCGGTTTCAACGTTGCGCCAAAAGAGCTG



GTTGCCGCTATTCGCCGCCTGTGCGACGAGCACGGTATTGTGATGATTGCTGATG



AAGTGCAAAGCGGCTTTGCGCGTACCGGTAAGCTGTTTGCCATGGATCATTACGC



CGATAAGCCGGATTTAATGACGATGGCGAAAAGCCTCGCGGGCGGGATGCCGCTT



TCGGGCGTGGTCGGTAACGCGAATATTATGGACGCACCCGCGCCGGGCGGGCTTG



GCGGCACCTACGCCGGTAACCCGCTGGCGGTGGCTGCCGCGCACGCGGTGCTCAA



CATTATCGACAAAGAATCACTCTGCGAACGCGCGAATCAACTGGGCCAGCGTCTC



AAAAACACGTTGATTGATGCCAAAGAAAGCGTTCCGGCCATTGCTGCGGTACGCG



GCCTGGGGTCGATGATTGCGGTAGAGTTTAACGATCCGCAAACGGGCGAGCCGTC



AGCGGCGATTGCACAGAAAATCCAGCAACGCGCGCTGGCGCAGGGGCTGCTCCTG



CTGACCTGTGGCGCATACGGCAACGTGATTCGCTTCCTGTATCCGCTGACCATCC



CGGATGCGCAATTCGATGCGGCAATGAAAATTTTGCAGGATGCGCTGAGCGATTA



A





SEQ ID NO: 107
ATGTCTAACGTGCAGGAGTGGCAACAGCTTGCCAACAAGGAATTGAGCCGTCGGG


nucleic acid
AGAAAACTGTCGACTCGCTGGTTCATCAAACCGCGGAAGGGATCGCCATCAAGCC


coding sequence
GCTGTATACCGAAGCCGATCTCGATAATCTGGAGGTGACAGGTACCCTTCCTGGT


of the gene
TTGCCGCCCTACGTTCGTGGCCCGCGTGCCACTATGTATACCGCCCAACCGTGGA


sbm at
CCATCCGTCAGTATGCTGGTTTTTCAACAGCAAAAGAGTCCAACGCTTTTTATCG


locus b2917
CCGTAACCTGGCCGCCGGGCAAAAAGGTCTTTCCGTTGCGTTTGACCTTGCCACC



CACCGTGGCTACGACTCCGATAACCCGCGCGTGGCGGGCGACGTCGGCAAAGCGG



GCGTCGCTATCGACACCGTGGAAGATATGAAAGTCCTGTTCGACCAGATCCCGCT



GGATAAAATGTCGGTTTCGATGACCATGAATGGCGCAGTGCTACCAGTACTGGCG



TTTTATATCGTCGCCGCAGAAGAGCAAGGTGTTACACCTGATAAACTGACCGGCA



CCATTCAAAACGATATTCTCAAAGAGTACCTCTGCCGCAACACCTATATTTACCC



ACCAAAACCGTCAATGCGCATTATCGCCGACATCATCGCCTGGTGTTCCGGCAAC



ATGCCGCGATTTAATACCATCAGTATCAGCGGTTACCACATGGGTGAAGCGGGTG



CCAACTGCGTGCAGCAGGTAGCATTTACGCTCGCTGATGGGATTGAGTACATCAA



AGCAGCAATCTCTGCCGGACTGAAAATTGATGACTTCGCTCCTCGCCTGTCGTTC



TTCTTCGGCATCGGCATGGATCTGTTTATGAACGTCGCCATGTTGCGTGCGGCAC



GTTATTTATGGAGCGAAGCGGTCAGTGGATTTGGCGCACAGGACCCGAAATCACT



GGCGCTGCGTACCCACTGCCAGACCTCAGGCTGGAGCCTGACTGAACAGGATCCG



TATAACAACGTTATCCGCACCACCATTGAAGCGCTGGCTGCGACGCTGGGCGGTA



CTCAGTCACTGCATACCAACGCCTTTGACGAAGCGCTTGGTTTGCCTACCGATTT



CTCAGCACGCATTGCCCGCAACACCCAGATCATCATCCAGGAAGAATCAGAACTC



TGCCGCACCGTCGATCCACTGGCCGGATCCTATTACATTGAGTCGCTGACCGATC



AAATCGTCAAACAAGCCAGAGCTATTATCCAACAGATCGACGAAGCCGGTGGCAT



GGCGAAAGCGATCGAAGCAGGTCTGCCAAAACGAATGATCGAAGAGGCCTCAGCG



CGCGAACAGTCGCTGATCGACCAGGGCAAGCGTGTCATCGTTGGTGTCAACAAGT



ACAAACTGGATCACGAAGACGAAACCGATGTACTTGAGATCGACAACGTGATGGT



GCGTAACGAGCAAATTGCTTCGCTGGAACGCATTCGCGCCACCCGTGATGATGCC



GCCGTAACCGCCGCGTTGAACGCCCTGACTCACGCCGCACAGCATAACGAAAACC



TGCTGGCTGCCGCTGTTAATGCCGCTCGCGTTCGCGCCACCCTGGGTGAAATTTC



CGATGCGCTGGAAGTCGCTTTCGACCGTTATCTGGTGCCAAGCCAGTGTGTTACC



GGCGTGATTGCGCAAAGCTATCATCAGTCTGAGAAATCGGCCTCCGAGTTCGATG



CCATTGTTGCGCAAACGGAGCAGTTCCTTGCCGACAATGGTCGTCGCCCGCGCAT



TCTGATCGCTAAGATGGGCCAGGATGGACACGATCGCGGCGCGAAAGTGATCGCC



AGCGCCTATTCCGATCTCGGTTTCGACGTAGATTTAAGCCCGATGTTCTCTACAC



CTGAAGAGATCGCCCGCCTGGCCGTAGAAAACGACGTTCACGTAGTGGGCGCATC



CTCACTGGCTGCCGGTCATAAAACGCTGATCCCGGAACTGGTCGAAGCGCTGAAA



AAATGGGGACGCGAAGATATCTGCGTGGTCGCGGGTGGCGTCATTCCGCCGCAGG



ATTACGCCTTCCTGCAAGAGCGCGGCGTGGCGGCGATTTATGGTCCAGGTACACC



TATGCTCGACAGTGTGCGCGACGTACTGAATCTGATAAGCCAGCATCATGATTAA





SEQ ID NO: 108
ATGAAATTGCCAGTCAGAGAATTTGATGCAGTTGTGATTGGTGCCGGTGGCGCAG


nucleic acid
GTATGCGCGCGGCGCTGCAAATTTCCCAGAGCGGCCAGACCTGTGCGCTGCTCTC


coding sequence
TAAAGTCTTCCCGACCCGTTCCCATACCGTTTCTGCGCAAGGCGGCATTACCGTT


of the gene
GCGCTGGGTAATACCCATGAAGATAACTGGGAATGGCATATGTACGACACCGTGA


sdhA
AAGGGTCGGACTATATCGGTGACCAGGACGCGATTGAATATATGTGTAAAACCGG


at locus b0723
GCCGGAAGCGATTCTGGAACTCGAACACATGGGCCTGCCGTTCTCGCGTCTCGAT



GATGGTCGTATCTATCAACGTCCGTTTGGCGGTCAGTCGAAAAACTTCGGCGGCG



AGCAGGCGGCACGCACTGCGGCAGCAGCTGACCGTACCGGTCACGCACTGTTGCA



CACGCTTTATCAGCAGAACCTGAAAAACCACACCACCATTTTCTCCGAGTGGTAT



GCGCTGGATCTGGTGAAAAACCAGGATGGCGCGGTGGTGGGTTGTACCGCACTGT



GCATCGAAACCGGTGAAGTGGTTTATTTCAAAGCCCGCGCTACCGTGCTGGCGAC



TGGCGGAGCAGGGCGTATTTATCAGTCCACCACCAACGCCCACATTAACACCGGC



GACGGTGTCGGCATGGCTATCCGTGCCGGCGTACCGGTGCAGGATATGGAAATGT



GGCAGTTCCACCCGACCGGCATTGCCGGTGCGGGCGTACTGGTCACCGAAGGTTG



CCGTGGTGAAGGCGGTTATCTGCTGAACAAACATGGCGAACGTTTTATGGAGCGT



TATGCGCCGAACGCCAAAGACCTGGCGGGCCGTGACGTGGTTGCGCGTTCCATCA



TGATCGAAATCCGTGAAGGTCGCGGCTGTGATGGTCCGTGGGGGCCACACGCGAA



ACTGAAACTCGATCACCTGGGTAAAGAAGTTCTCGAATCCCGTCTGCCGGGTATC



CTGGAGCTTTCCCGTACCTTCGCTCACGTCGATCCGGTGAAAGAGCCGATTCCGG



TTATCCCAACCTGTCACTACATGATGGGCGGTATTCCGACCAAAGTTACCGGTCA



GGCACTGACTGTGAATGAGAAAGGCGAAGATGTGGTTGTTCCGGGACTGTTTGCC



GTTGGTGAAATCGCTTGTGTATCGGTACACGGCGCTAACCGTCTGGGCGGCAACT



CGCTGCTGGACCTGGTGGTCTTTGGTCGCGCGGCAGGTCTGCATCTGCAAGAGTC



TATCGCCGAGCAGGGCGCACTGCGCGATGCCAGCGAGTCTGATGTTGAAGCGTCT



CTGGATCGCCTGAACCGCTGGAACAATAATCGTAACGGTGAAGATCCGGTGGCGA



TCCGTAAAGCGCTGCAAGAATGTATGCAGCATAACTTCTCGGTCTTCCGTGAAGG



TGATGCGATGGCGAAAGGGCTTGAGCAGTTGAAAGTGATCCGCGAGCGTCTGAAA



AATGCCCGTCTGGATGACACTTCCAGCGAGTTCAACACCCAGCGCGTTGAGTGCC



TGGAACTGGATAACCTGATGGAAACGGCGTATGCAACGGCTGTTTCTGCCAACTT



CCGTACCGAAAGCCGTGGCGCGCATAGCCGCTTCGACTTCCCGGATCGTGATGAT



GAAAACTGGCTGTGCCACTCCCTGTATCTGCCAGAGTCGGAATCCATGACGCGCC



GAAGCGTCAACATGGAACCGAAACTGCGCCCGGCATTCCCGCCGAAGATTCGTAC



TTACTAA





SEQ ID NO: 109
ATGAACTTACATGAATATCAGGCAAAACAACTTTTTGCCCGCTATGGCTTACCAG


nucleic acid
CACCGGTGGGTTATGCCTGTACTACTCCGCGCGAAGCAGAAGAAGCCGCTTCAAA


coding sequence
AATCGGTGCCGGTCCGTGGGTAGTGAAATGTCAGGTTCACGCTGGTGGCCGCGGT


of the gene
AAAGCGGGCGGTGTGAAAGTTGTAAACAGCAAAGAAGACATCCGTGCTTTTGCAG


sucC
AAAACTGGCTGGGCAAGCGTCTGGTAACGTATCAAACAGATGCCAATGGCCAACC


at locus b0728
GGTTAACCAGATTCTGGTTGAAGCAGCGACCGATATCGCTAAAGAGCTGTATCTC



GGTGCCGTTGTTGACCGTAGTTCCCGTCGTGTGGTCTTTATGGCCTCCACCGAAG



GCGGCGTGGAAATCGAAAAAGTGGCGGAAGAAACTCCGCACCTGATCCATAAAGT



TGCGCTTGATCCGCTGACTGGCCCGATGCCGTATCAGGGACGCGAGCTGGCGTTC



AAACTGGGTCTGGAAGGTAAACTGGTTCAGCAGTTCACCAAAATCTTCATGGGCC



TGGCGACCATTTTCCTGGAGCGCGACCTGGCGTTGATCGAAATCAACCCGCTGGT



CATCACCAAACAGGGCGATCTGATTTGCCTCGACGGCAAACTGGGCGCTGACGGC



AACGCACTGTTCCGCCAGCCTGATCTGCGCGAAATGCGTGACCAGTCGCAGGAAG



ATCCGCGTGAAGCACAGGCTGCACAGTGGGAACTGAACTACGTTGCGCTGGACGG



TAACATCGGTTGTATGGTTAACGGCGCAGGTCTGGCGATGGGTACGATGGACATC



GTTAAACTGCACGGCGGCGAACCGGCTAACTTCCTTGACGTTGGCGGCGGCGCAA



CCAAAGAACGTGTAACCGAAGCGTTCAAAATCATCCTCTCTGACGACAAAGTGAA



AGCCGTTCTGGTTAACATCTTCGGCGGTATCGTTCGTTGCGACCTGATCGCTGAC



GGTATCATCGGCGCGGTAGCAGAAGTGGGTGTTAACGTACCGGTCGTGGTACGTC



TGGAAGGTAACAACGCCGAACTCGGCGCGAAGAAACTGGCTGACAGCGGCCTGAA



TATTATTGCAGCAAAAGGTCTGACGGATGCAGCTCAGCAGGTTGTTGCCGCAGTG



GAGGGGAAATAA





SEQ ID NO: 110
ATGTCCATTTTAATCGATAAAAACACCAAGGTTATCTGCCAGGGCTTTACCGGTA


nucleic acid
GCCAGGGGACTTTCCACTCAGAACAGGCCATTGCATACGGCACTAAAATGGTTGG


coding sequence
CGGCGTAACCCCAGGTAAAGGCGGCACCACCCACCTCGGCCTGCCGGTGTTCAAC


of the gene
ACCGTGCGTGAAGCCGTTGCTGCCACTGGCGCTACCGCTTCTGTTATCTACGTAC


sucD
CAGCACCGTTCTGCAAAGACTCCATTCTGGAAGCCATCGACGCAGGCATCAAACT


at locus b0729
GATTATCACCATCACTGAAGGCATCCCGACGCTGGATATGCTGACCGTGAAAGTG



AAGCTGGATGAAGCAGGCGTTCGTATGATCGGCCCGAACTGCCCAGGCGTTATCA



CTCCGGGTGAATGCAAAATCGGTATCCAGCCTGGTCACATTCACAAACCGGGTAA



AGTGGGTATCGTTTCCCGTTCCGGTACACTGACCTATGAAGCGGTTAAACAGACC



ACGGATTACGGTTTCGGTCAGTCGACCTGTGTCGGTATCGGCGGTGACCCGATCC



CGGGCTCTAACTTTATCGACATTCTCGAAATGTTCGAAAAAGATCCGCAGACCGA



AGCGATCGTGATGATCGGTGAGATCGGCGGTAGCGCTGAAGAAGAAGCAGCTGCG



TACATCAAAGAGCACGTTACCAAGCCAGTTGTGGGTTACATCGCTGGTGTGACTG



CGCCGAAAGGCAAACGTATGGGCCACGCGGGTGCCATCATTGCCGGTGGGAAAGG



GACTGCGGATGAGAAATTCGCTGCTCTGGAAGCCGCAGGCGTGAAAACCGTTCGC



AGCCTGGCGGATATCGGTGAAGCACTGAAAACTGTTCTGAAATAA





SEQ ID NO: 111
ATGAGTCAGGCGCTAAAAAATTTACTGACATTGTTAAATCTGGAAAAAATTGAGG


nucleic acid
AAGGACTCTTTCGCGGCCAGAGTGAAGATTTAGGTTTACGCCAGGTGTTTGGCGG


coding sequence
CCAGGTCGTGGGTCAGGCCTTGTATGCTGCAAAAGAGACCGTCCCTGAAGAGCGG


of the gene
CTGGTACATTCGTTTCACAGCTACTTTCTTCGCCCTGGCGATAGTAAGAAGCCGA


tesB
TTATTTATGATGTCGAAACGCTGCGTGACGGTAACAGCTTCAGCGCCCGCCGGGT


at locus b0452
TGCTGCTATTCAAAACGGCAAACCGATTTTTTATATGACTGCCTCTTTCCAGGCA



CCAGAAGCGGGTTTCGAACATCAAAAAACAATGCCGTCCGCGCCAGCGCCTGATG



GCCTCCCTTCGGAAACGCAAATCGCCCAATCGCTGGCGCACCTGCTGCCGCCAGT



GCTGAAAGATAAATTCATCTGCGATCGTCCGCTGGAAGTCCGTCCGGTGGAGTTT



CATAACCCACTGAAAGGTCACGTCGCAGAACCACATCGTCAGGTGTGGATCCGCG



CAAATGGTAGCGTGCCGGATGACCTGCGCGTTCATCAGTATCTGCTCGGTTACGC



TTCTGATCTTAACTTCCTGCCGGTAGCTCTACAGCCGCACGGCATCGGTTTTCTC



GAACCGGGGATTCAGATTGCCACCATTGACCATTCCATGTGGTTCCATCGCCCGT



TTAATTTGAATGAATGGCTGCTGTATAGCGTGGAGAGCACCTCGGCGTCCAGCGC



ACGTGGCTTTGTGCGCGGTGAGTTTTATACCCAAGACGGCGTACTGGTTGCCTCG



ACCGTTCAGGAAGGGGTGATGCGTAATCACAATTAA





SEQ ID NO: 112
GTGAATACAACGCTGTTTCGATGGCCGGTTCGCGTCTACTATGAAGATACCGATG


nucleic acid
CCGGTGGTGTGGTGTACCACGCCAGTTACGTCGCTTTTTATGAAAGAGCACGCAC


coding sequence
AGAGATGCTGCGTCATCATCACTTCAGTCAGCAGGCGCTGATGGCTGAACGCGTT


of the gene
GCCTTTGTGGTACGTAAAATGACGGTGGAATATTACGCACCTGCGCGGCTCGACG


ybgC
ATATGCTCGAAATACAGACTGAAATAACATCAATGCGTGGCACCTCTTTGGTTTT


at locus b0736
CACGCAACGTATTGTCAACGCCGAGAATACTTTGCTGAATGAAGCAGAGGTTCTG



GTTGTTTGCGTTGACCCACTCAAAATGAAGCCTCGTGCGCTTCCCAAGTCTATTG



TCGCGGAGTTTAAGCAGTGA





SEQ ID NO: 113
ATGTCTACAACACATAACGTCCCTCAGGGCGATCTTGTTTTACGTACTTTAGCCA


nucleic acid
TGCCCGCCGATACCAATGCCAATGGTGACATCTTTGGTGGTTGGTTAATGTCACA


coding sequence
AATGGATATTGGCGGCGCTATTCTGGCAAAAGAAATTGCCCACGGTCGCGTAGTG


of the gene
ACTGTGCGGGTTGAAGGAATGACTTTCTTACGGCCGGTTGCGGTCGGCGATGTGG


yciA
TGTGCTGCTATGCACGCTGTGTCCAGAAAGGGACGACATCGGTCAGCATTAATAT


at locus b1253
TGAAGTGTGGGTGAAAAAAGTAGCGTCTGAACCAATTGGGCAACGCTATAAAGCG



ACAGAAGCATTATTTAAGTATGTCGCGGTTGATCCTGAAGGAAAACCTCGCGCCT



TACCTGTTGAGTAA





SEQ ID NO: 114
ATGATTAATGAAGCCACGCTGGCAGAAAGTATTCGCCGCTTACGTCAGGGTGAGC


nucleic acid
GTGCCACACTCGCCCAGGCCATGACGCTGGTGGAAAGCCGTCACCCGCGTCATCA


coding sequence
GGCACTAAGTACGCAGCTGCTTGATGCCATTATGCCGTACTGCGGTAACACCCTG


of the gene
CGACTGGGCGTTACCGGCACCCCCGGCGCGGGGAAAAGTACCTTTCTTGAGGCCT


ygfD
TTGGCATGTTGTTGATTCGAGAGGGATTAAAGGTCGCGGTTATTGCGGTCGATCC


at locus b2918
CAGCAGCCCGGTCACTGGCGGTAGCATTCTCGGGGATAAAACCCGCATGAATGAC



CTGGCGCGTGCCGAAGCGGCGTTTATTCGCCCGGTACCATCCTCCGGTCATCTGG



GCGGTGCCAGTCAGCGAGCGCGGGAATTAATGCTGTTATGCGAAGCAGCGGGTTA



TGACGTAGTGATTGTCGAAACGGTTGGCGTCGGGCAGTCGGAAACAGAAGTCGCC



CGCATGGTGGACTGTTTTATCTCGTTGCAAATTGCCGGTGGCGGCGATGATCTGC



AGGGCATTAAAAAAGGGCTGATGGAAGTGGCTGATCTGATCGTTATCAACAAAGA



CGATGGCGATAACCATACCAATGTCGCCATTGCCCGGCATATGTACGAGAGTGCC



CTGCATATTCTGCGACGTAAATACGACGAATGGCAGCCACGGGTTCTGACTTGTA



GCGCACTGGAAAAACGTGGAATCGATGAGATCTGGCACGCCATCATCGACTTCAA



AACCGCGCTAACTGCCAGTGGTCGTTTACAACAAGTGCGGCAACAACAATCGGTG



GAATGGCTGCGTAAGCAGACCGAAGAAGAAGTACTGAATCACCTGTTCGCGAATG



AAGATTTCGATCGCTATTACCGCCAGACGCTTTTAGCGGTCAAAAACAATACGCT



CTCACCGCGCACCGGCCTGCGGCAGCTCAGTGAATTTATCCAGACGCAATATTTT



GATTAA





SEQ ID NO: 115
ATGTCTTATCAGTATGTTAACGTTGTCACTATCAACAAAGTGGCGGTCATTGAGT


nucleic acid
TTAACTATGGCCGAAAACTTAATGCCTTAAGTAAAGTCTTTATTGATGATCTTAT


coding sequence
GCAGGCGTTAAGCGATCTCAACCGGCCGGAAATTCGCTGTATCATTTTGCGCGCA


of the gene
CCGAGTGGATCCAAAGTCTTCTCCGCAGGTCACGATATTCACGAACTGCCGTCTG


ygfG
GCGGTCGCGATCCGCTCTCCTATGATGATCCATTGCGTCAAATCACCCGCATGAT


at locus b2919
CCAAAAATTCCCGAAACCGATCATTTCGATGGTGGAAGGTAGTGTTTGGGGTGGC



GCATTTGAAATGATCATGAGTTCCGATCTGATCATCGCCGCCAGTACCTCAACCT



TCTCAATGACGCCTGTAAACCTCGGCGTCCCGTATAACCTGGTCGGCATTCACAA



CCTGACCCGCGACGCGGGCTTCCACATTGTCAAAGAGCTGATTTTTACCGCTTCG



CCAATCACCGCCCAGCGCGCGCTGGCTGTCGGCATCCTCAACCATGTTGTGGAAG



TGGAAGAACTGGAAGATTTCACCTTACAAATGGCGCACCACATCTCTGAGAAAGC



GCCGTTAGCCATTGCCGTTATCAAAGAAGAGCTGCGTGTACTGGGCGAAGCACAC



ACCATGAACTCCGATGAATTTGAACGTATTCAGGGGATGCGCCGCGCGGTGTATG



ACAGCGAAGATTACCAGGAAGGGATGAACGCTTTCCTCGAAAAACGTAAACCTAA



TTTCGTTGGTCATTAA





SEQ ID NO: 116
ATGGAAACTCAGTGGACAAGGATGACCGCCAATGAAGCGGCAGAAATTATCCAGC


nucleic acid
ATAACGACATGGTGGCATTTAGCGGCTTTACCCCGGCGGGTTCGCCGAAAGCCCT


coding sequence
ACCCACCGCGATTGCCCGCAGAGCTAACGAACAGCATGAGGCCAAAAAGCCGTAT


of the gene
CAAATTCGCCTTCTGACGGGTGCGTCAATCAGCGCCGCCGCTGACGATGTACTTT


yGfH
CTGACGCCGATGCTGTTTCCTGGCGTGCGCCATATCAAACATCGTCCGGTTTACG


at locus b2920
TAAAAAGATCAATCAGGGCGCGGTGAGTTTCGTTGACCTGCATTTGAGCGAAGTG



GCGCAAATGGTCAATTACGGTTTCTTCGGCGACATTGATGTTGCCGTCATTGAAG



CATCGGCACTGGCACCGGATGGTCGAGTCTGGTTAACCAGCGGGATCGGTAATGC



GCCGACCTGGCTGCTGCGGGCGAAGAAAGTGATCATTGAACTCAATCACTATCAC



GATCCGCGCGTTGCAGAACTGGCGGATATTGTGATTCCTGGCGCGCCACCGCGGC



GCAATAGCGTGTCGATCTTCCATGCAATGGATCGCGTCGGTACCCGCTATGTGCA



AATCGATCCGAAAAAGATTGTCGCCGTCGTGGAAACCAACTTGCCCGACGCCGGT



AATATGCTGGATAAGCAAAATCCCATGTGCCAGCAGATTGCCGATAACGTGGTCA



CGTTCTTATTGCAGGAAATGGCGCATGGGCGTATTCCGCCGGAATTTCTGCCGCT



GCAAAGTGGCGTGGGCAATATCAATAATGCGGTAATGGCGCGTCTGGGGGAAAAC



CCGGTAATTCCTCCGTTTATGATGTATTCGGAAGTGCTACAGGAATCGGTGGTGC



ATTTACTGGAAACCGGCAAAATCAGCGGGGCCAGCGCCTCCAGCCTGACAATCTC



GGCCGATTCCCTGCGCAAGATTTACGACAATATGGATTACTTTGCCAGCCGCATT



GTGTTGCGTCCGCAGGAGATTTCCAATAACCCGGAAATCATCCGTCGTCTGGGCG



TCATCGCTCTGAACGTCGGCCTGGAGTTTGATATTTACGGGCATGCCAACTCAAC



ACACGTAGCCGGGGTCGATCTGATGAACGGCATCGGCGGCAGCGGTGATTTTGAA



CGCAACGCGTATCTGTCGATCTTTATGGCCCCGTCGATTGCTAAAGAAGGCAAGA



TCTCAACCGTCGTGCCAATGTGCAGCCATGTTGATCACAGCGAACACAGCGTCAA



AGTGATCATCACCGAACAAGGGATCGCCGATCTGCGCGGTCTTTCCCCGCTTCAA



CGCGCCCGCACTATCATTGATAATTGTGCACATCCTATGTATCGGGATTATCTGC



ATCGCTATCTGGAAAATGCGCCTGGCGGACATATTCACCACGATCTTAGCCACGT



CTTCGACTTACACCGTAATTTAATTGCAACCGGCTCGATGCTGGGTTAA





SEQ ID NO: 117
ATGTCTGCCGTACTGACCGCTGAACAAGCCCTGAAATTAGTGGGTGAGATGTTTG


nucleic acid
TTTATCACATGCCATTTAACCGCGCATTGGGGATGGAACTGGAGCGTTACGAAAA


coding sequence
AGAGTTCGCACAGCTGGCCTTTAAAAATCAGCCAATGATGGTGGGCAACTGGGCG


of the gene
CAAAGCATTTTGCACGGCGGGGTCATTGCGTCGGCGCTGGATGTCGCCGCCGGTC


yigI at
TGGTGTGCGTGGGAAGTACCTTAACCCGCCACGAAACCATCAGTGAAGATGAACT


locus b3820
ACGCCAGCGGCTATCGCGGATGGGGACCATTGATCTTCGCGTTGATTATCTGCGC



CCAGGCAGGGGCGAGCGTTTTACTGCTACTAGTAGCCTGTTGCGTGCAGGCAATA



AAGTCGCCGTCGCCCGCGTTGAATTACACAATGAAGAACAGCTTTATATTGCCAG



TGCCACCGCCACCTATATGGTAGGTTGA





SEQ ID NO: 118
ATGAATAACTCTCGGTTATTCCGTTTGAGCAGGATTGTTATTGCGTTAACTGCCG


nucleic acid
CCAGCGGCATGATGGTAAATACCGCTAACGCGAAAGAGGAAGCGAAAGCCGCCAC


coding sequence
TCAATATACCCAACAGGTTAATCAGAATTACGCCAAATCATTACCGTTTAGCGAT


of the gene
CGTCAGGATTTTGACGATGCCCAGCGTGGATTTATCGCCCCGCTGCTGGATGAAG


yjcS at
GTATTCTGCGTGATGCGAACGGTAAAGTTTACTACCGCGCGGACGATTACAAATT


locus b4083
TGATATTAATGCCGCAGCGCCGGAAACCGTAAACCCCAGCCTGTGGCGTCAGTCG



CAAATCAACGGTATTTCTGGCCTGTTCAAAGTCACCGATAAAATGTATCAGGTGC



GCGGCCAGGATATCTCTAACATTACGTTCGTTGAGGGCGAGAAAGGCATTATTGT



TATCGACCCGCTGGTGACGCCGCCTGCCGCAAAAGCCGCACTTGACCTTTACTTC



CAGCATCGTCCGCAAAAACCGATTGTTGCCGTTATCTACACTCACAGCCACACCG



ACCACTATGGTGGCGTGAAAGGCATTATCTCTGAAGCCGATGTTAAATCCGGCAA



AGTTCAGGTGATTGCCCCTGCAGGCTTTATGGACGAAGCCATCAGCGAAAACGTG



CTGGCGGGTAACATCATGAGCCGCCGTGCGCTCTACTCTTACGGTCTGTTACTGC



CGCACAACGCGCAAGGCAATGTGGGTAATGGCCTTGGCGTGACGCTGGCAACGGG



CGACCCGAGCATTATTGCACCGACGAAAACTATCGTCAGAACTGGCGAGAAGATG



ATTATCGACGGCCTGGAGTTTGACTTCCTGATGACCCCAGGTAGCGAAGCGCCAG



CCGAAATGCACTTCTATATTCCGGCCCTGAAAGCCCTGTGTACCGCCGAGAACGC



CACGCATACCCTGCACAACTTCTACACTCTGCGCGGCGCGAAAACCCGCGACACC



AGCAAGTGGACCGAGTATCTGAACGAAACGCTGGATATGTGGGGTAACGACGCGG



AAGTGCTGTTTATGCCGCACACCTGGCCGGTCTGGGGCAATAAGCATATCAATGA



TTATATTGGTAAATACCGCGATACCATCAAGTACATTCACGACCAGACCCTGCAC



CTGGCGAACCAGGGCTACACCATGAATGAAATCGGCGACATGATTAAGCTGCCGC



CTGCACTTGCCAATAACTGGGCCAGCCGCGGCTATTACGGTTCTGTCAGCCACAA



CGCCCGCGCGGTGTATAACTTCTATCTTGGCTATTACGACGGTAACCCGGCTAAC



CTGCATCCGTATGGTCAGGTGGAGATGGGTAAACGTTACGTGCAGGCGCTGGGCG



GTTCTGCCCGTGTCATCAACCTGGCGCAAGAAGCGAACAAGCAAGGTGATTACCG



CTGGTCGGCAGAACTGCTGAAACAGGTGATTGCCGCCAACCCGGGTGACCAGGTC



GCGAAGAATCTGCAAGCGAATAACTTTGAACAGCTGGGCTATCAGGCCGAGTCCG



CCACATGGCGCGGTTTCTACCTGACCGGCGCGAAAGAGCTGCGCGAAGGGGTGCA



TAAGTTCAGCCACGGCACCACCGGTTCCCCGGACACCATTCGCGGGATGTCGGTC



GAAATGCTGTTCGACTTTATGGCCGTTCGCCTCGATAGCGCGAAAGCTGCGGGTA



AAAATATCAGCCTGAACTTCAATATGAGCAACGGCGATAACCTCAACCTGACGCT



GAACGATAGCGTGCTTAACTACCGGAAAACGCTGCAACCGCAAGCCGACGCCTCT



TTCTACATCAGCCGTGAAGATCTGCACGCCGTGCTGACCGGACAAGCCAAAATGG



CGGATCTGGTAAAAGCGAAGAAAGCCAAAATTATTGGCAATGGCGCGAAACTGGA



AGAAATTATCGCCTGTCTGGATAATTTCGATTTGTGGGTGAATATCGTAACCCCA



AATTAA





SEQ ID NO: 174
ATGGTTGAACGGAAAGGAAGAGCTTTGATTGCCTGGCGTTGTGCCCAATTCTTCA


nucleic acid
AAAATGGGGACTTCGTCAACTTAGGGATCGGCCTGCCCCTGATGTGCGTCAACTA


coding sequence
TCTGCCCGAAGGCGTATCCCTCTGGCTGGAAGCTGAAATCGGCACCGTTGGCAGC


of the gene
GGCCCGTCGCCGGACTGGAATCATGTCGATATCGACGTCATCGATGCTGGCGGCC


MELS_RS00170
AGCCGGCTTCGGTCATTACCGGCGGCAGTGTCTACGACCACGAAACGTCCTTCGC



TTTCATCCGCGGTGGCCATATTGACGCGACTGTCTTGGGGACGCTGCAAGTCGAC



CAGGAAGGGAATATCGCCAACTGGACCATCCCCGGGAAATTCGTGCCCGGTATGG



GCGGGGCCATGGACCTCTGTGCCGGTGTCAAGAAGATCATCGTCGCCACGGACCA



TTGCGAAAAGAGCGGCCATTCCAAGATACTGAAGAAATGCACGCTGCCCCTGACG



GGAGCCCGTTGCGTGACCGACATCGTAACCGAACGCTGCTACTTTGAAGTCACGC



CGCAAGGCCTGGTCCTGCGGGAACTGGCCCCGGGCTATACCGTAGAAGATATCCG



GGCCTGCACCGAAGCGGACTTCATCGTCCCCGAAACCATCGCCGTCATGGGCGAG



TGA





SEQ ID NO: 175
GTGTTATCGAAGGTATTTTCTCTCCAAGATATCCTGGAGCATATCCATGACGGAC


nucleic acid
AGACCATCATGTTCGGTGACTGGCATGGCCAATTCGCGGCTGATGAAATCATCGA


coding sequence
CGGCATGCTGGAAAAAGGCGTCAAGGATATCAAAGCCATCGCCGTATCGGCCGGC


of the gene
TATCCCGGCCAGGGCGTAGGCAAGCTGATCGTGGCTCATCGCGTGTCGTCCATCG


MELS_RS00175
TTACGACGCATATCGGCCTCAATCCGGAAGCGCTGAAACAGATGCTGGCCGGTGA



ACTGGCCGTCGAATTCGTCCCCCAGGGGACCTGGGCCGAACGCGTGCGCTGCGGC



GGTGCCGGCCTGGGCGGCGTCCTGACGCCGACCGGTGTCGGTACGAGTGTCGAAG



AAGGGAAACAGAAGCTGGTCATCGATGGGAAGGAATATCTCCTGGAATTACCGCT



CCATGCCGACGTAGCCCTGGTCAAGGCGACCAAAGCCGATACGGCAGGGAACCTC



TATTTCCGCATGAATTCGCGGGCGACGAACAGTACCATCGCTTATGCGGCTGATT



TCGTCGCCGCCGAAGTCGAAGAAATCGTCCCCGTCGGCCAGCTCTTGCCGGAAGA



AATCGCCATCCCGGCTCCTGTCGTCGACATGGTCTATGAACGGCAGGGCGAAAAA



CGGTTTATCTGCCCGATGTGGAAAAAGGCCAGGGCCCGTGCCGAAGCCAAGGCGC



GGGAACGGCAGGAAAGGGGATGA





SEQ ID NO: 185
ATGCAGACCCCGCACATTCTTATCGTTGAAGACGAGTTGGTAACACGCAACACGT


nucleic acid
TGAAAAGTATTTTCGAAGCGGAAGGCTATGATGTTTTCGAAGCGACAGATGGCGC


coding sequence
GGAAATGCATCAGATCCTCTCTGAATATGACATCAACCTGGTGATCATGGATATC


of the gene
AATCTGCCGGGTAAGAACGGTCTTCTGTTAGCGCGTGAACTGCGCGAGCAGGCGA


arcA
ATGTTGCGTTGATGTTCCTGACTGGCCGTGACAACGAAGTCGATAAAATTCTCGG


at locus b4401
CCTCGAAATCGGTGCAGATGACTACATCACCAAACCGTTCAACCCGCGTGAACTG



ACGATTCGTGCACGCAACCTACTGTCCCGTACCATGAATCTGGGTACTGTCAGCG



AAGAACGTCGTAGCGTTGAAAGCTACAAGTTCAATGGTTGGGAACTGGACATCAA



CAGCCGTTCGTTGATCGGCCCTGATGGCGAGCAGTACAAGCTGCCGCGCAGCGAG



TTCCGCGCCATGCTTCACTTCTGTGAAAACCCAGGCAAAATTCAGTCCCGTGCTG



AACTGCTGAAGAAAATGACCGGCCGTGAGCTGAAACCGCACGACCGTACTGTAGA



CGTGACGATCCGCCGTATTCGTAAACATTTCGAATCTACGCCGGATACGCCGGAA



ATCATCGCCACCATTCACGGTGAAGGTTATCGCTTCTGCGGTGATCTGGAAGATT



AA





SEQ ID NO: 186
ATGATCCCGGAAAAGCGAATTATACGGCGCATTCAGTCTGGCGGTTGTGCTATCC


nucleic acid
ATTGCCAGGATTGCAGCATCAGCCAGCTTTGCATCCCGTTCACACTCAACGAACA


coding sequence
TGAGCTTGATCAGCTTGATAATATCATTGAGCGGAAGAAGCCTATTCAGAAAGGC


of the gene
CAGACGCTGTTTAAGGCTGGTGATGAACTTAAATCGCTTTATGCCATCCGCTCCG


fnr at
GTACGATTAAAAGTTATACCATCACTGAGCAAGGCGACGAGCAAATCACTGGTTT


locus b1334
CCATTTAGCAGGCGACCTGGTGGGATTTGACGCCATCGGCAGCGGCCATCACCCG



AGCTTCGCGCAGGCGCTGGAAACCTCGATGGTATGTGAAATCCCGTTCGAAACGC



TGGACGATTTGTCCGGTAAAATGCCGAATCTGCGTCAGCAGATGATGCGTCTGAT



GAGCGGTGAAATCAAAGGCGATCAGGACATGATCCTGCTGTTGTCGAAGAAAAAT



GCCGAGGAACGTCTGGCTGCATTCATCTACAACCTGTCCCGTCGTTTTGCCCAAC



GCGGCTTCTCCCCTCGTGAATTCCGCCTGACGATGACTCGTGGCGATATCGGTAA



CTATCTGGGCCTGACGGTAGAAACCATCAGCCGTCTGCTGGGTCGCTTCCAGAAA



AGCGGCATGCTGGCAGTCAAAGGTAAATACATCACCATCGAAAATAACGATGCGC



TGGCCCAGCTTGCTGGTCATACGCGTAACGTTGCCTGA





SEQ ID NO: 187
ATGACCATTACTCCGGCAACTCATGCAATTTCGATAAATCCTGCCACGGGTGAAC


nucleic acid
AACTTTCTGTGCTGCCGTGGGCTGGCGCTGACGATATCGAAAACGCACTTCAGCT


coding sequence
GGCGGCAGCAGGCTTTCGCGACTGGCGCGAGACAAATATAGATTATCGTGCTGAA


of the gene
AAACTGCGTGATATCGGTAAGGCTCTGCGCGCTCGTAGCGAAGAAATGGCGCAAA


sad at
TGATCACCCGCGAAATGGGCAAACCAATCAACCAGGCGCGCGCTGAAGTGGCGAA


locus b1525
ATCGGCGAATTTGTGTGACTGGTATGCAGAACATGGTCCGGCAATGCTGAAGGCG



GAACCTACGCTGGTGGAAAATCAGCAGGCGGTTATTGAGTATCGACCGTTGGGGA



CGATTCTGGCGATTATGCCGTGGAATTTTCCGTTATGGCAGGTGATGCGTGGCGC



TGTTCCCATCATTCTTGCAGGTAACGGCTACTTACTTAAACATGCGCCGAATGTG



ATGGGCTGTGCACAGCTCATTGCCCAGGTGTTTAAAGATGCGGGTATCCCACAAG



GCGTATATGGCTGGCTGAATGCCGACAACGACGGTGTCAGTCAGATGATTAAAGA



CTCGCGCATTGCTGCTGTCACGGTGACCGGAAGTGTTCGTGCGGGAGCGGCTATT



GGCGCACAGGCTGGAGCGGCACTGAAAAAATGCGTACTGGAACTGGGCGGTTCGG



ATCCGTTTATTGTGCTTAACGATGCCGATCTGGAACTGGCGGTGAAAGCGGCGGT



AGCCGGACGTTATCAGAATACCGGACAGGTATGTGCAGCGGCAAAACGCTTTATT



ATCGAAGAGGGAATTGCTTCGGCATTTACCGAACGTTTTGTGGCAGCTGCGGCAG



CCTTGAAAATGGGCGATCCCCGTGACGAAGAGAACGCTCTCGGACCAATGGCTCG



TTTTGATTTACGTGATGAGCTGCATCATCAGGTGGAGAAAACCCTGGCGCAGGGT



GCGCGTTTGTTACTGGGCGGGGAAAAGATGGCTGGGGCAGGTAACTACTATCCGC



CAACGGTTCTGGCGAATGTTACCCCAGAAATGACCGCGTTTCGGGAAGAAATGTT



TGGCCCCGTTGCGGCAATCACCATTGCGAAAGATGCAGAACATGCACTGGAACTG



GCTAATGATAGTGAGTTCGGCCTTTCAGCGACCATTTTTACCACTGACGAAACAC



AGGCCAGACAGATGGCGGCACGTCTGGAATGCGGTGGGGTGTTTATCAATGGTTA



TTGTGCCAGCGACGCGCGAGTGGCCTTTGGTGGCGTGAAAAAGAGTGGCTTTGGT



CGTGAGCTTTCCCATTTCGGCTTACACGAATTCTGTAATATCCAGACGGTGTGGA



AAGACCGGATCTGA





SEQ ID NO: 188
ATGAAAGACGTTGTGATTGTCGGGGCGTTACGGACACCTATCGGCTGCTTTCGTG


nucleic acid
GTGCGTTAGCGGGTCATTCCGCCGTGGAACTTGGTAGTCTGGTCGTGAAAGCGTT


coding sequence
AATAGAACGTACCGGCGTTCCTGCATATGCGGTGGATGAAGTAATTCTTGGTCAG


of the gene
GTGTTGACTGCAGGGGCAGGGCAGAATCCGGCAAGGCAATCGGCTATTAAAGGTG


ygeF
GTCTGCCTAATAGCGTTTCTGCAATCACTATTAATGACGTTTGCGGTTCCGGGCT


at locus b2844
TAAAGCACTGCATCTGGCTACTCAGGCGATACAGTGTGGCGAGGCTGATATTGTC



ATCGCCGGTGGCCAGGAAAACATGAGCCGCGCACCACATGTTCTGACTGATAGCC



GCACCGGTGCACAGCTTGGCAATAGCCAGTTGGTTGACAGTCTTGTGCATGATGG



GTTGTGGGATGCCTTCAATGATTATCATATTGGTGTCACCGCCGAAAATCTGGCT



CGCGAATATGGCATCAGCCGTCAGTTGCAGGATGCTTACGCACTTAGCTCGCAAC



AAAAAGCGCGAGCGGCGATTGACGCCGGACGATTTAAAGATGAGATCGTCCCGGT



AATGACCCAAAGTAACGGGCAGACGTTGGTTGTTGATACCGATGAACAGCCACGC



ACTGACGCCAGCGCAGAAGGCTTAGCCCGTTTAAATCCTTCATTTGATAGTCTCG



GTTCTGTGACAGCGGGTAATGCATCATCCATAAACGATGGCGCAGCTGCGGTAAT



GATGATGAGCGAAGCCAAAGCACGAGCGTTGAATTTACCCGTGCTGGCCCGCATT



CGCGCATTTGCCAGCGTTGGTGTAGATCCGGCATTGATGGGAATTGCGCCGGTGT



ATGCGACCCGCCGTTGCCTGGAGCGTGTAGGCTGGCAGTTGGCTGAAGTCGATCT



TATCGAGGCTAATGAAGCGTTTGCTGCACAGGCGCTTTCGGTTGGCAAGATGCTT



GAGTGGGATGAGCGTCGGGTCAATGTCAATGGTGGCGCGATCGCACTCGGTCACC



CGATAGGCGCTTCCGGTTGCCGAATCCTGGTTTCTCTGGTTCATGAAATGGTGAA



ACGTAATGCCCGCAAAGGACTGGCAACGCTTTGTATCGGCGGGGGCCAGGGTGTG



GCATTGACCATTGAACGTGACGAATAG





SEQ ID NO: 189
ATGGAACAGGTTGTCATTGTCGATGCAATTCGCACCCCGATGGGCCGTTCGAAGG


nucleic acid
GCGGTGCTTTTCGTAACGTGCGTGCAGAAGATCTCTCCGCTCATTTAATGCGTAG


coding sequence
CCTGCTGGCGCGTAACCCGGCGCTGGAAGCGGCGGCCCTCGACGATATTTACTGG


of the gene
GGTTGTGTGCAGCAGACGCTGGAGCAGGGTTTTAATATCGCCCGTAACGCGGCGC


fadA
TGCTGGCAGAAGTACCACACTCTGTCCCGGCGGTTACCGTTAATCGCTTGTGTGG


at locus b3845
TTCATCCATGCAGGCACTGCATGACGCAGCACGAATGATCATGACTGGCGATGCG



CAGGCATGTCTGGTTGGCGGCGTGGAGCATATGGGCCATGTGCCGATGAGTCACG



GCGTCGATTTTCACCCCGGCCTGAGCCGCAATGTCGCCAAAGCGGCGGGCATGAT



GGGCTTAACGGCAGAAATGCTGGCGCGTATGCACGGTATCAGCCGTGAAATGCAG



GATGCCTTTGCCGCGCGGTCACACGCCCGCGCCTGGGCCGCCACGCAGTCGGCCG



CATTTAAAAATGAAATCATCCCGACCGGTGGTCACGATGCCGACGGCGTCCTGAA



GCAGTTTAATTACGACGAAGTGATTCGCCCGGAAACCACCGTGGAAGCCCTCGCC



ACGCTGCGTCCGGCGTTTGATCCAGTAAACGGTATGGTAACGGCGGGCACATCTT



CTGCACTTTCCGATGGCGCAGCTGCCATGCTGGTGATGAGTGAAAGCCGCGCCCA



TGAATTAGGTCTTAAGCCGCGCGCTCGTGTGCGTTCGATGGCGGTCGTTGGTTGT



GACCCATCGATTATGGGTTACGGCCCGGTTCCGGCCTCGAAACTGGCGCTGAAAA



AAGCGGGGCTTTCTGCCAGCGATATCGGCGTGTTTGAAATGAACGAAGCCTTTGC



CGCGCAGATCCTGCCATGTATTAAAGATCTGGGACTAATTGAGCAGATTGACGAG



AAGATCAACCTCAACGGTGGCGCGATCGCGCTGGGTCATCCGCTGGGTTGTTCCG



GTGCGCGTATCAGCACCACGCTGCTGAATCTGATGGAACGCAAAGACGTTCAGTT



TGGTCTGGCGACGATGTGTATCGGTCTGGGTCAGGGTATTGCGACGGTGTTTGAG



CGGGTTTAA





SEQ ID NO: 190
ATGGCAAAAATGAGAGCCGTTGACGCGGCAATGTATGTGCTGGAGAAAGAAGGTA


nucleic acid
TCACTACCGCCTTCGGTGTTCCGGGAGCTGCAATCAATCCGTTCTACTCAGCGAT


coding sequence
GCGTAAGCACGGCGGTATTCGTCACATTCTGGCGCGTCATGTGGAAGGTGCTTCG


of the gene
CACATGGCGGAAGGTTATACCCGCGCAACGGCAGGGAATATCGGCGTATGTCTGG


gcl at
GGACTTCCGGTCCTGCGGGCACGGACATGATCACCGCGCTCTATTCCGCTTCTGC


locus b0507
TGATTCCATTCCTATTCTGTGCATTACCGGCCAGGCACCGCGCGCCCGTCTGCAT



AAAGAAGATTTTCAGGCCGTAGATATTGAAGCAATTGCTAAACCGGTCAGCAAAA



TGGCGGTTACAGTTCGTGAAGCGGCGCTGGTGCCTCGCGTGCTGCAACAGGCATT



TCACCTGATGCGTTCTGGTCGTCCGGGTCCGGTACTGGTGGATTTACCGTTCGAC



GTTCAGGTTGCGGAAATCGAGTTTGATCCTGACATGTACGAACCGCTGCCGGTCT



ACAAACCTGCTGCCAGCCGTATGCAGATCGAAAAAGCTGTAGAAATGTTAATCCA



GGCCGAACGTCCGGTGATTGTTGCCGGGGGCGGGGTAATTAATGCTGACGCAGCT



GCACTGTTACAACAGTTTGCTGAACTGACCAGCGTTCCGGTGATCCCAACGCTAA



TGGGCTGGGGCTGTATCCCGGACGATCATGAACTGATGGCCGGGATGGTGGGTCT



GCAAACCGCGCATCGTTACGGTAACGCAACGCTGCTGGCGTCTGACATGGTGTTT



GGTATCGGTAACCGTTTTGCTAACCGTCATACCGGCTCGGTAGAGAAATACACCG



AAGGGCGCAAAATCGTTCATATTGATATTGAGCCGACGCAAATTGGTCGCGTGCT



GTGTCCGGATCTCGGTATTGTCTCTGATGCTAAAGCGGCGCTGACACTGCTGGTT



GAAGTGGCGCAGGAGATGCAAAAAGCGGGTCGTCTGCCGTGTCGTAAAGAATGGG



TCGCCGACTGCCAGCAGCGTAAACGCACTTTGCTGCGCAAAACCCACTTCGACAA



CGTGCCGGTGAAACCGCAGCGCGTGTATGAAGAGATGAACAAAGCCTTTGGTCGC



GATGTTTGTTATGTCACCACCATTGGTCTGTCACAAATCGCTGCGGCACAAATGC



TGCATGTCTTTAAAGACCGCCACTGGATCAACTGTGGTCAGGCTGGTCCGTTAGG



CTGGACGATTCCGGCTGCGCTAGGGGTTTGTGCCGCTGATCCGAAACGCAATGTG



GTGGCGATTTCTGGCGACTTTGACTTCCAGTTCCTGATTGAAGAGTTAGCTGTTG



GCGCGCAGTTCAACATTCCGTACATCCATGTGCTGGTCAACAACGCTTATCTGGG



GCTGATTCGTCAGTCACAACGCGCTTTTGACATGGACTACTGCGTGCAACTCGCT



TTCGAGAATATCAACTCCAGTGAAGTGAATGGCTACGGTGTTGACCACGTAAAAG



TAGCGGAAGGTTTAGGTTGTAAAGCTATTCGGGTCTTCAAACCGGAAGATATTGC



GCCAGCCTTTGAACAGGCGAAAGCCTTAATGGCGCAATATCGGGTACCGGTAGTC



GTGGAAGTTATTCTCGAGCGTGTGACCAATATTTCGATGGGCAGCGAACTGGATA



ACGTCATGGAATTTGAAGATATCGCCGATAACGCAGCGGACGCACCGACTGAAAC



CTGCTTCATGCACTATGAATAA





SEQ ID NO: 191
ATGAAAAATTGTGTCATCGTCAGTGCGGTACGTACTGCTATCGGTAGTTTTAACG


nucleic acid
GTTCACTCGCTTCCACCAGCGCCATCGACCTGGGGGCGACAGTAATTAAAGCCGC


coding sequence
CATTGAACGTGCAAAAATCGATTCACAACACGTTGATGAAGTGATTATGGGTAAC


of the gene
GTGTTACAAGCCGGGCTGGGGCAAAATCCGGCGCGTCAGGCACTGTTAAAAAGCG


atoB
GGCTGGCAGAAACGGTGTGCGGATTCACGGTCAATAAAGTATGTGGTTCGGGTCT


at locus b2224
TAAAAGTGTGGCGCTTGCCGCCCAGGCCATTCAGGCAGGTCAGGCGCAGAGCATT



GTGGCGGGGGGTATGGAAAATATGAGTTTAGCCCCCTACTTACTCGATGCAAAAG



CACGCTCTGGTTATCGTCTTGGAGACGGACAGGTTTATGACGTAATCCTGCGCGA



TGGCCTGATGTGCGCCACCCATGGTTATCATATGGGGATTACCGCCGAAAACGTG



GCTAAAGAGTACGGAATTACCCGTGAAATGCAGGATGAACTGGCGCTACATTCAC



AGCGTAAAGCGGCAGCCGCAATTGAGTCCGGTGCTTTTACAGCCGAAATCGTCCC



GGTAAATGTTGTCACTCGAAAGAAAACCTTCGTCTTCAGTCAAGACGAATTCCCG



AAAGCGAATTCAACGGCTGAAGCGTTAGGTGCATTGCGCCCGGCCTTCGATAAAG



CAGGAACAGTCACCGCTGGGAACGCGTCTGGTATTAACGACGGTGCTGCCGCTCT



GGTGATTATGGAAGAATCTGCGGCGCTGGCAGCAGGCCTTACCCCCCTGGCTCGC



ATTAAAAGTTATGCCAGCGGTGGCGTGCCCCCCGCATTGATGGGTATGGGGCCAG



TACCTGCCACGCAAAAAGCGTTACAACTGGCGGGGCTGCAACTGGCGGATATTGA



TCTCATTGAGGCTAATGAAGCATTTGCTGCACAGTTCCTTGCCGTTGGGAAAAAC



CTGGGCTTTGATTCTGAGAAAGTGAATGTCAACGGCGGGGCCATCGCGCTCGGGC



ATCCTATCGGTGCCAGTGGTGCTCGTATTCTGGTCACACTATTACATGCCATGCA



GGCACGCGATAAAACGCTGGGGCTGGCAACACTGTGCATTGGCGGCGGTCAGGGA



ATTGCGATGGTGATTGAACGGTTGAATTAA





SEQ ID NO: 192
ATGATGAACTTCAACAATGTTTTCCGCTGGCATTTGCCCTTCCTGTTCCTGGTCC


nucleic acid
TGTTAACCTTCCGTGCCGCCGCAGCGGACACGTTATTGATTCTGGGTGATAGCCT


coding sequence
GAGCGCCGGGTATCGAATGTCTGCCAGCGCGGCCTGGCCTGCCTTGTTGAATGAT


of the gene
AAGTGGCAGAGTAAAACGTCGGTAGTTAATGCCAGCATCAGCGGCGACACCTCGC


tesA
AACAAGGACTGGCGCGCCTTCCGGCTCTGCTGAAACAGCATCAGCCGCGTTGGGT


at locus b0494
GCTGGTTGAACTGGGCGGCAATGACGGTTTGCGTGGTTTTCAGCCACAGCAAACC



GAGCAAACGCTGCGCCAGATTTTGCAGGATGTCAAAGCCGCCAACGCTGAACCAT



TGTTAATGCAAATACGTCTGCCTGCAAACTATGGTCGCCGTTATAATGAAGCCTT



TAGCGCCATTTACCCCAAACTCGCCAAAGAGTTTGATGTTCCGCTGCTGCCCTTT



TTTATGGAAGAGGTCTACCTCAAGCCACAATGGATGCAGGATGACGGTATTCATC



CCAACCGCGACGCCCAGCCGTTTATTGCCGACTGGATGGCGAAGCAGTTGCAGCC



TTTAGTAAATCATGACTCATAA





SEQ ID NO: 193
ATGAATAAAGACACACTAATACCTACAACTAAAGATTTAAAAGTAAAAACAAATG


nucleic acid
GTGAAAACATTAATTTAAAGAACTACAAGGATAATTCTTCATGTTTCGGAGTATT


coding sequence
CGAAAATGTTGAAAATGCTATAAGCAGCGCTGTACACGCACAAAAGATATTATCC


of the gene
CTTCATTATACAAAAGAGCAAAGAGAAAAAATCATAACTGAGATAAGAAAGGCCG


ald at
CATTACAAAATAAAGAGGTCTTGGCTACAATGATTCTAGAAGAAACACATATGGG


locus AAT48939
AAGATATGAGGATAAAATATTAAAACATGAATTGGTAGCTAAATATACTCCTGGT



ACAGAAGATTTAACTACTACTGCTTGGTCAGGTGATAATGGTCTTACAGTTGTAG



AAATGTCTCCATATGGTGTTATAGGTGCAATAACTCCTTCTACGAATCCAACTGA



AACTGTAATATGTAATAGCATAGGCATGATAGCTGCTGGAAATGCTGTAGTATTT



AACGGACACCCATGCGCTAAAAAATGTGTTGCCTTTGCTGTTGAAATGATAAATA



AGGCAATTATTTCATGTGGCGGTCCTGAAAATCTAGTAACAACTATAAAAAATCC



AACTATGGAGTCTCTAGATGCAATTATTAAGCATCCTTCAATAAAACTTCTTTGC



GGAACTGGGGGTCCAGGAATGGTAAAAACCCTCTTAAATTCTGGTAAGAAAGCTA



TAGGTGCTGGTGCTGGAAATCCACCAGTTATTGTAGATGATACTGCTGATATAGA



AAAGGCTGGTAGGAGCATCATTGAAGGCTGTTCTTTTGATAATAATTTACCTTGT



ATTGCAGAAAAAGAAGTATTTGTTTTTGAGAATGTTGCAGATGATTTAATATCTA



ACATGCTAAAAAATAATGCTGTAATTATAAATGAAGATCAAGTATCAAAATTAAT



AGATTTAGTATTACAAAAAAATAATGAAACTCAAGAATACTTTATAAACAAAAAA



TGGGTAGGAAAAGATGCAAAATTATTCTTAGATGAAATAGATGTTGAGTCTCCTT



CAAATGTTAAATGCATAATCTGCGAAGTAAATGCAAATCATCCATTTGTTATGAC



AGAACTCATGATGCCAATATTGCCAATTGTAAGAGTTAAAGATATAGATGAAGCT



ATTAAATATGCAAAGATAGCAGAACAAAATAGAAAACATAGTGCCTATATTTATT



CTAAAAATATAGACAACCTAAATAGATTTGAAAGAGAAATAGATACTACTATTTT



TGTAAAGAATGCTAAATCTTTTGCTGGTGTTGGTTATGAAGCAGAAGGATTTACA



ACTTTCACTATTGCTGGATCTACTGGTGAGGGAATAACCTCTGCAAGGAATTTTA



CAAGACAAAGAAGATGTGTACTTGCCGGCTAA





SEQ ID NO: 204
ATGGATAAGAAGCAAGTAACGGATTTAAGGTCGGAACTACTCGATTCACGTTTTG


nucleic acid
GTGCGAAGTCTATTTCCACTATCGCAGAATCAAAACGTTTTCCGCTGCACGAAAT


coding sequence
GCGCGACGATGTCGCATTCCAGATTATCAATGACGAATTATATCTTGATGGCAAC


of the gene
GCTCGTCAGAACCTGGCCACTTTCTGCCAGACCTGGGACGACGAAAATGTCCACA


gadBe(Ec)
AATTGATGGATTTATCCATTAACAAAAACTGGATCGACAAAGAACAGTATCCGCA



ATCCGCAGCCATCGACCTGCGTTGCGTAAATATGGTTGCCGATCTGTGGCATGCG



CCTGCGCCGAAAAATGGTCAGGCCGTTGGCACCAACACCATTGGTTCTTCCGAGG



CCTGTATGCTCGGCGGGATGGCGATGAAATGGCGTTGGCGCAAGCGTATGGAAGC



TGCAGGCAAACCAACGGATAAACCAAACCTGGTGTGCGGTCCGGTACAAATCTGC



TGGCATAAATTCGCCCGCTACTGGGATGTGGAGCTGCGTGAGATCCCTATGCGCC



CCGGTCAGTTGTTTATGGACCCGAAACGCATGATTGAAGCCTGTGACGAAAACAC



CATCGGCGTGGTGCCGACTTTCGGCGTGACCTACACTGGTAACTATGAGTTCCCA



CAACCGCTGCACGATGCGCTGGATAAATTCCAGGCCGATACCGGTATCGACATCG



ACATGCACATCGACGCTGCCAGCGGTGGCTTCCTGGCACCGTTCGTCGCCCCGGA



TATCGTCTGGGACTTCCGCCTGCCGCGTGTGAAATCGATCAGTGCTTCAGGCCAT



AAATTCGGTCTGGCTCCGCTGGGCTGCGGCTGGGTTATCTGGCGTGACGAAGAAG



CGCTGCCGCAGGAACTGGTGTTCAACGTTGACTACCTGGGTGGTCAAATTGGTAC



TTTTGCCATCAACTTCTCCCGCCCGGCGGGTCAGGTAATTGCACAGTACTATGAA



TTCCTGCGCCTCGGTCGTGAAGGCTATACCAAAGTACAGAACGCCTCTTACCAGG



TTGCCGCTTATCTGGCGGATGAAATCGCCAAACTGGGGCCGTATGAGTTCATCTG



TACGGGTCGCCCGGACGAAGGCATCCCGGCGGTTTGCTTCAAACTGAAAGATGGT



GAAGATCCGGGATACACCCTGTATGACCTCTCTGAACGTCTGCGTCTGCGCGGCT



GGCAGGTTCCGGCCTTCACTCTCGGCGGTGAAGCCACCGACATCGTGGTGATGCG



CATTATGTGTCGTCGCGGCTTCGAAATGGACTTTGCTGAACTGTTGCTGGAAGAC



TACAAAGCCTCCCTGAAATATCTCAGCGATCACTAA





SEQ ID NO: 205
ATGGCTATTAGCACACCGATGTTGGTGACATTTTGTGTCTATATCTTTGGCATGA


nucleic acid
TATTGATTGGGTTTATCGCCTGGCGATCAACGAAAAACTTTGACGACTATATTCT


coding sequence
GGGCGGTCGTAGTCTTGGGCCATTCGTGACGGCATTATCGGCGGGTGCGTCGGAT


of the gene
ATGAGCGGCTGGCTGTTAATGGGGTTGCCGGGCGCTGTTTTTCTTTCCGGGATTT


putP
CCGAAAGCTGGATCGCCATTGGCCTGACATTAGGCGCGTGGATTAACTGGAAGCT


at locus b1015
GGTGGCCGGGCGGTTGCGTGTGCATACCGAATACAACAATAACGCCTTAACACTG



CCGGATTATTTCACCGGGCGCTTTGAAGATAAAAGCCGCATTTTGCGCATTATCT



CTGCGCTGGTTATTTTGCTGTTCTTCACCATTTATTGCGCTTCGGGCATTGTGGC



AGGCGCGCGTCTGTTTGAAAGTACCTTTGGCATGAGCTACGAAACGGCTCTGTGG



GCGGGCGCTGCGGCGACGATCCTTTACACCTTTATTGGCGGTTTCCTCGCGGTGA



GCTGGACTGACACTGTACAGGCCAGCCTGATGATTTTTGCCCTGATCCTGACGCC



GGTTATCGTCATTATCAGTGTCGGTGGCTTTGGTGACTCGCTGGAAGTGATCAAA



CAAAAGAGCATCGAAAACGTTGATATGCTCAAAGGTCTGAACTTTGTTGCCATTA



TCTCACTGATGGGTTGGGGGCTGGGTTACTTCGGGCAGCCGCACATTCTGGCGCG



TTTTATGGCGGCGGATTCTCACCACAGCATTGTCCATGCGCGTCGTATTAGTATG



ACCTGGATGATCCTCTGCCTGGCAGGGGCGGTGGCTGTCGGCTTCTTTGGGATTG



CTTACTTTAACGATCATCCGGCGTTGGCTGGTGCGGTAAATCAGAACGCCGAGCG



TGTGTTTATCGAACTGGCGCAAATTCTGTTTAACCCGTGGATTGCCGGGATTCTG



CTGTCGGCAATTCTGGCGGCGGTAATGTCAACCTTAAGTTGCCAGCTGCTGGTGT



GCTCCAGTGCGATTACCGAAGATTTGTACAAAGCGTTTCTGCGTAAACATGCCAG



CCAGAAAGAGCTGGTGTGGGTAGGGCGTGTGATGGTGCTGGTGGTGGCGCTGGTG



GCGATTGCGCTGGCGGCAAACCCGGAAAACCGCGTGCTGGGCTTAGTGAGCTACG



CGTGGGCAGGCTTTGGCGCGGCGTTTGGTCCAGTGGTGCTGTTCTCGGTGATGTG



GTCACGCATGACGCGTAACGGTGCGCTGGCGGGGATGATCATCGGTGCGCTGACG



GTTATCGTCTGGAAACAGTTCGGCTGGCTGGGACTGTACGAAATTATTCCGGGCT



TTATCTTCGGCAGTATTGGGATTGTAGTGTTTAGTTTGCTGGGTAAAGCGCCGTC



AGCGGCGATGCAAAAACGCTTTGCCGAGGCCGATGCGCACTATCATTCGGCTCCG



CCGTCACGGTTGCAGGAAAGCTAA





SEQ ID NO: 206
ATGAGTGAAGCGGTCCGCGACTTTTCGCAGTGCTACGGTCACGATTTCGAGGACC


nucleic acid
TGAAAGTTGGTATGTCAGCGGCCATCGGGCGCACCGTGACGGAGGCGGATATCGC


coding sequence
TATTTTCGCTGGCATTTCGGGTGATACGAATCCCGTTCACCTCGATGCCGAATTT


of the
GCGGCGTCGACGATGTTTGGCGAACGAATCGCTCATGGGATGCTGTCGGCGAGCT


gene
TCATTTCTGCAGTGTTCGGTACGAAGCTGCCAGGACCGGGATGCATCTATCTCGG


phaJ(Aa) at
GCAGTCGCTGAACTTCAAGGCCTCAGTGAAAGTCGGCGAAACGGTCGTCGCCCGT


locus
GTGACAGTACGCGAGCTCGTGGCTCACAAGCGCCGGGCGTTCTTTGATACTGTCT


ebA4434
GTACGGTGGCCGGAAAAGTGGTACTCGAAGGCCATGCGGAGATCTACCTTCCCGC



CAGGCAATAA





SEQ ID NO: 207
ATGTTTATTCCCTCCATTTACTTACACCAGCAGTTACATTATTGTAAGACAGCAA


nucleic acid
TTCTCAACTGGAGCCGAAAAATGGCGCTTTCAAGACAAAAATTTACCTTCGAAAG


coding sequence
ACTTCGCAGATTCACCTTACCGGAAGGGAAAAAACAAACTTTTCTTTGGGATGCA


of the gene
GATGTAACAACCCTGGCATGCCGAGCAACTAGCGGAGCAAAAGCCTTTGTATTCC


intF at
AAAGCGTATATGCGGGGAAAACCCTTCGCATGACTATTGGCAACATTAACGACTG


locus b0281
GAAGATTGATGATGCGAGAGCCGAGGCAAGACGGTTACAAACATTGATCGATACA



GGGATAGATCCACGAATTGCTAAGGCTGTAAAAATCGCAGAAGCAGAATCCCTGC



AGGCAGAATCACGTAAAACAAAAGTGACTTTCTCCGTCGCCTGGGAAGACTATCT



TCAAGAATTGAGAACCGGTATCAGTGCAAAAACTAAACGCCCATATTCTACTCGA



TACATTGCCGATCACATTAACTTGTCCAGTCGTGGAGGCGAAAGTAAAAAAAGAG



GCCAAGGCCCGACTTCGGCTGGACCATTGGCTAGTTTGCTCAACCTGCCGTTATC



GGAGCTAACCCCAGATTACATAGCAGCGTGGCTGAGTACAGAAAGGCAAAATAGA



CCTACCGTCACTGCTCACGCTTATCGCCTACTACGTGCTTTCATCAAATGGAGTA



ATTATCAGAAAAAATATCAAGGGATCATTCCTGGCGATCTGGCACAAGATTACAA



CGTAAGAAAAATGGTTCCCGTGTCAGCGAGTAAAGCTGATGATTGCCTGCAAAAG



GAACAACTAAAAAGCTGGTTTAGTGCCGTGCGTAGCCTCAATAATCCTATTGCAT



CGGCCTATCTCCAAGTACTTTTGCTCACTGGTGCTCGGCGTGAAGAAATTGCGTC



GCTTCGCTGGTCAGACGTAGATTTCAAATGGTCAAGCATGCGAATTAAAGACAAG



ATCGAAGGTGAACGTATCATCCCTCTCACTCCTTATGTTTCTGAATTGTTAAATG



TACTAGCGCAATCCCCAAATTCTGACGTAAATAAGGAGGGTTGGGTTTTCAGAAG



TAACAGTAAAAGTGGCAAAATTATTGAGCCGCGTTCAGCGCACAACAGAGCATTA



GTGCTGGCTGAGTTACCACATATCAGCCTTCACGGTTTACGTCGTAGTTTTGGTA



CTTTGGCCGAGTGGGTTGAAGTTCCCACTGGTATTGTTGCTCAAATTATGGGACA



CAAACCCAGCGCTCTTGCCGAAAAACACTATCGCCGTCGTCCGTTAGATCTGTTA



CGAAAATGGCACGAGAAAATTGAGACATGGATCTTAAATGAAGCAGGTATTACCA



TAAAAAACAACGTTGATATGCGTTGA





SEQ ID NO: 208
ATGAGTATCCTGACCCGGTGGTTGCTTATCCCGCCGGTCAACGCGCGGCTTATCG


nucleic acid
GGCGTTATCGCGATTATCGTCGTCACGGTGCGTCGGCTTTCAGCGCGACGCTCGG


coding sequence
CTGTTTCTGGATGATCCTGGCCTGGATTTTTATTCCGCTGGAGCACCCGCGCTGG


of the gene bcsA
CAGCGTATTCGCGCAGAACATAAAAACCTGTATCCGCATATCAACGCCTCGCGTC


at locus b3533
CGCGTCCGCTGGACCCGGTCCGTTATCTCATTCAAACATGCTGGTTATTGATCGG



TGCATCGCGCAAAGAAACGCCGAAACCGCGCAGGCGGGCATTTTCAGGTCTGCAA



AATATTCGTGGACGTTACCATCAATGGATGAACGAGCTGCCTGAGCGCGTTAGCC



ATAAAACACAGCATCTGGATGAGAAAAAAGAGCTCGGTCATTTGAGTGCCGGGGC



GCGGCGGTTGATCCTCGGTATCATCGTCACCTTCTCGCTGATTCTGGCGTTAATC



TGCGTTACTCAGCCGTTTAACCCGCTGGCGCAGTTTATCTTCCTGATGCTGCTGT



GGGGGGTAGCGCTGATCGTACGGCGGATGCCGGGGCGCTTCTCGGCGCTAATGTT



GATTGTGCTGTCGCTGACCGTTTCTTGCCGTTATATCTGGTGGCGTTACACCTCT



ACGCTGAACTGGGACGATCCGGTCAGCCTGGTGTGCGGGCTTATTCTGCTCTTCG



CTGAAACGTACGCGTGGATTGTGCTGGTGCTCGGCTACTTCCAGGTAGTATGGCC



GCTGAATCGTCAGCCGGTGCCATTGCCGAAAGATATGTCGCTGTGGCCGTCGGTG



GATATCTTTGTCCCGACTTACAACGAAGATCTCAACGTGGTGAAAAATACCATTT



ACGCCTCGCTGGGTATCGACTGGCCGAAAGATAAGCTGAATATCTGGATCCTTGA



TGACGGCGGCAGGGAAGAGTTTCGCCAGTTTGCGCAAAACGTGGGGGTGAAATAT



ATCGCCCGCACCACTCATGAACATGCGAAAGCAGGCAACATCAACAATGCGCTGA



AATATGCCAAAGGCGAGTTCGTGTCGATTTTCGACTGCGACCACGTACCAACGCG



ATCGTTCTTGCAAATGACCATGGGCTGGTTCCTGAAAGAAAAACAGCTGGCGATG



ATGCAGACGCCGCACCACTTCTTCTCACCGGACCCGTTTGAACGCAACCTGGGGC



GTTTCCGTAAAACGCCGAACGAAGGCACGCTGTTCTATGGTCTGGTGCAGGATGG



CAACGATATGTGGGACGCCACTTTCTTCTGCGGTTCCTGTGCGGTGATTCGTCGT



AAGCCGCTGGATGAAATTGGCGGCATTGCTGTCGAAACCGTGACTGAAGATGCGC



ATACTTCTCTGCGGTTGCACCGTCGTGGCTATACCTCCGCGTATATGCGTATTCC



GCAGGCGGCGGGGCTGGCGACCGAAAGTCTGTCGGCGCATATCGGTCAGCGTATT



CGCTGGGCGCGCGGGATGGTACAAATCTTCCGTCTCGATAACCCGCTCACCGGTA



AAGGGCTGAAGTTTGCTCAGCGGCTATGTTACGTCAACGCCATGTTCCACTTCTT



GTCGGGCATTCCACGGCTGATCTTCCTGACTGCGCCGCTGGCGTTCCTGCTGCTT



CATGCCTACATCATCTATGCGCCAGCGTTGATGATCGCCCTATTCGTGCTGCCGC



ATATGATCCATGCCAGCCTGACCAACTCCAAGATCCAGGGCAAATATCGCCACTC



TTTCTGGAGTGAAATCTACGAAACGGTGCTGGCGTGGTATATCGCACCACCGACG



CTGGTGGCGCTGATTAACCCGCACAAAGGCAAATTTAACGTCACCGCCAAAGGTG



GACTGGTGGAAGAAGAGTACGTCGACTGGGTGATCTCGCGGCCCTACATCTTCCT



TGTCCTGCTCAACCTGGTGGGCGTTGCGGTAGGCATCTGGCGCTACTTCTATGGC



CCGCCAACCGAGATGCTCACCGTGGTCGTCAGTATGGTGTGGGTGTTCTACAACC



TGATTGTTCTTGGCGGCGCAGTTGCGGTATCGGTAGAAAGCAAACAGGTACGCCG



ATCGCACCGCGTGGAGATGACGATGCCCGCGGCAATTGCCCGCGAAGATGGTCAC



CTCTTCTCGTGTACCGTTCAGGATTTCTCCGACGGTGGTTTGGGGATCAAGATCA



ACGGTCAGGCGCAGATTCTGGAAGGGCAGAAAGTGAATCTGTTGCTTAAACGCGG



TCAGCAGGAATACGTCTTCCCGACCCAGGTGGCGCGCGTGATGGGTAATGAAGTT



GGGCTGAAATTAATGCCGCTCACCACCCAGCAACATATCGATTTTGTGCAGTGTA



CGTTTGCCCGTGCGGATACATGGGCGCTCTGGCAGGACAGCTACCCGGAAGATAA



GCCGCTGGAAAGTCTGCTGGATATTCTGAAGCTCGGCTTCCGTGGCTACCGCCAT



CTGGCGGAGTTTGCGCCTTCTTCGGTGAAGGGCATATTCCGTGTGCTGACTTCTC



TGGTTTCCTGGGTTGTATCGTTTATTCCGCGCCGCCCGGAGCGGAGCGAAACGGC



ACAACCATCGGATCAGGCTTTGGCTCAACAATGA





SEQ ID NO: 209
ATGCGCAAATTCACACTAAACATATTCACGCTTTCCCTCGGTCTGGCCGTCATGC


nucleic acid
CGATGGTCGAGGCAGCACCAACCGCTCAGCAACAGTTGCTGGAGCAAGTTCGGTT


coding sequence
AGGCGAAGCGACCCATCGTGAAGATCTGGTGCAACAGTCGTTATATCGGCTGGAA


of the gene bcsC
CTTATTGATCCGAATAACCCGGACGTCGTTGCCGCCCGTTTCCGTTCTTTGTTAC


at locus b3530
GTCAGGGCGATATTGATGGCGCGCAAAAACAGCTCGATCGGCTGTCGCAGTTAGC



GCCGAGTTCAAATGCGTATAAATCGTCGCGGACTACGATGCTACTTTCCACGCCG



GATGGTCGTCAGGCACTGCAACAGGCACGATTGCAGGCGACGACCGGTCATGCAG



AAGAAGCTGTGGCGAGTTACAACAAACTGTTCAACGGTGCGCCGCCGGAAGGTGA



CATTGCTGTCGAGTACTGGAGTACGGTGGCGAAAATTCCGGCTCGCCGTGGCGAA



GCGATTAATCAGTTAAAACGCATCAATGCGGATGCACCGGGCAATACGGGCCTGC



AAAACAATCTGGCGCTATTGCTGTTTAGTAGCGATCGCCGTGACGAAGGTTTTGC



CGTCCTGGAACAGAT



GGCAAAATCGAACGCCGGGCGCGAAGGGGCCTCTAAAATCTGGTACGGGCAGATT



AAAGACATGCCCGTCAGTGATGCCAGTGTGTCGGCGCTGAAAAAATATCTCTCGA



TCTTTAGTGATGGCGATAGCGTGGCGGCTGCGCAATCGCAACTGGCAGAACAGCA



AAAACAGCTGGCCGATCCTGCTTTCCGCGCTCGTGCGCAAGGTTTAGCGGCGGTG



GACTCTGGTATGGCGGGTAAAGCCATTCCCGAACTACAACAGGCGGTGCGGGCGA



ACCCGAAAGACAGTGAAGCTCTGGGGGCGCTGGGCCAGGCGTATTCTCAGAAAGG



CGATCGCGCCAATGCAGTGGCGAATCTGGAAAAAGCCCTCGCACTGGACCCGCAC



AGCAGCAACAACGACAAATGGAACAGTCTGCTGAAAGTAAACCGCTACTGGCTGG



CGATCCAGCAGGGCGATGCTGCGCTGAAAGCCAATAATCCTGACCGGGCAGAACG



CCTGTTCCAGCAGGCGCGTAATGTCGATAACACCGACAGTTATGCAGTGCTGGGG



CTGGGCGATGTGGCGATGGCGCGAAAAGATTATCCCGCCGCCGAACGTTATTATC



AGCAGACCTTGCGTATGGACAGCGGCAACACTAACGCCGTGCGCGGGCTGGCAAA



TATTTACCGCCAGCAATCGCCAGAAAAAGCTGAAGCGTTTATCGCCTCGCTCTCT



GCCAGTCAGCGGCGTAGCATTGATGATATCGAACGCAGCCTGCAAAACGACCGTC



TGGCACAGCAGGCAGAGGCACTGGAAAACCAGGGCAAATGGGCGCAGGCGGCAGC



ACTTCAGCGGCAACGACTGGCGCTGGACCCCGGCAGCGTATGGATTACTTACCGA



CTTTCGCAGGATCTCTGGCAGGCCGGACAACGCAGCCAGGCCGATACGTTAATGC



GCAATCTGGCGCAGCAGAAGTCGAACGACCCGGAGCAGGTTTACGCTTACGGGCT



GTACCTCTCTGGTCATGACCAGGACAGAGCGGCGCTGGCGCATATCAATAGCCTG



CCGCGTGCGCAGTGGAACAGCAATATTCAGGAGCTGGTTAATCGACTGCAAAGCG



ATCAGGTGCTGGAAACCGCTAACCGCCTGCGAGAAAGCGGCAAAGAGGCAGAAGC



GGAAGCGATGCTGCGCCAGCAACCACCTTCCACGCGTATTGACCTCACGCTGGCT



GACTGGGCGCAACAACGACGTGATTACACCGCCGCCCGCGCTGCATATCAGAATG



TCCTGACGCGGGAGCCAGCTAACGCCGACGCCATTCTTGGTCTGACGGAAGTGGA



TATTGCTGCCGGTGACAAAGCGGCGGCACGTAGCCAGCTGGCGAAACTGCCCGCT



ACCGATAACGCCTCGCTGAACACACAGCGGCGCGTGGCGCTGGCACAGGCGCAGC



TTGGCGATACCGCAGCAGCGCAGCGGACGTTTAATAAGTTGATCCCGCAGGCAAA



ATCTCAGCCACCGTCGATGGAAAGCGCGATGGTGCTGCGTGATGGTGCGAAGTTT



GAAGCGCAGGCGGGCGATCCAACGCAGGCGCTGGAAACCTACAAAGACGCCATGG



TCGCATCCGGTGTGACTACGACGCGTCCGCAGGATAACGACACCTTTACCCGACT



GACCCGTAACGACGAGAAAGATGACTGGCTGAAACGTGGCGTGCGCAGCGATGCG



GCGGACCTCTATCGCCAGCAGGATCTTAACGTCACCCTTGAGCACGATTACTGGG



GTTCGAGCGGCACCGGTGGTTACTCCGATCTGAAAGCGCACACTACCATGTTGCA



GGTGGATGCGCCGTATTCTGACGGGCGGATGTTCTTTCGCAGTGATTTCGTCAAT



ATGAACGTCGGCAGTTTCTCCACTAATGCCGATGGCAAATGGGATGACAACTGGG



GCACCTGTACATTACAGGACTGTAGCGGCAACCGCAGCCAGTCGGATTCCGGTGC



CAGCGTGGCGGTCGGCTGGCGAAATGACGTCTGGAGCTGGGATATCGGTACCACG



CCGATGGGCTTCAACGTGGTGGATGTGGTCGGCGGCATCAGTTACAGCGATGATA



TCGGGCCGCTGGGTTACACCGTTAACGCCCACCGTCGGCCCATCTCCAGTTCTTT



GCTGGCCTTTGGTGGGCAAAAAGACTCCCCGAGCAATACCGGGAAAAAATGGGGT



GGCGTACGTGCCGACGGTGTGGGGCTAAGTCTGAGCTACGATAAAGGTGAAGCAA



ACGGCGTCTGGGCATCGCTTAGTGGCGACCAGTTAACCGGTAAAAATGTCGAAGA



TAACTGGCGCGTGCGCTGGATGACGGGCTATTACTATAAGGTCATTAACCAGAAC



AATCGCCGCGTCACAATCGGCCTGAACAACATGATCTGGCATTACGACAAAGATC



TGAGTGGCTACTCACTCGGTCAGGGCGGTTACTACAGTCCGCAGGAATACC\TGT



CGTTTGCCATACCGGTGATGTGGCGGGAGCGCACGGAAAACTGGTCGTGGGAGCT



GGGTGCGTCTGGCTCGTGGTCGCATTCACGCACCAAAACCATGCCGCGTTATCCG



CTGATGAATCTGATCCCGACCGACTGGCAGGAAGAAGCTGCGCGGCAATCCAACG



ATGGCGGCAGCAGTCAGGGCTTCGGCTACACGGCGCGGGCATTACTTGAACGACG



TGTTACTTCCAACTGGTTTGTTGGCACGGCAATTGATATCCAGCAGGCGAAAGAT



TACGCACCCAGCCATTTCCTGCTCTACGTACGTTATTCCGCCGCCGGATGGCAGG



GTGACATGGATTTACCGCCGCAGCCGCTGATACCTTACGCCGACTGGTAA





SEQ ID NO: 210
ATGGCTACATCAGTACAGACAGGTAAAGCTAAGCAGCTCACATTACTTGGATTCT


nucleic acid
TTGCCATAACGGCATCGATGGTAATGGCTGTTTATGAATACCCTACCTTCGCAAC


coding sequence
ATCGGGCTTTTCATTAGTCTTCTTCCTGCTATTAGGCGGGATTTTATGGTTTATT


of the gene
CCCGTGGGACTTTGTGCTGCGGAAATGGCCACCGTCGACGGCTGGGAAGAAGGTG


gadC
GTGTCTTCGCCTGGGTATCAAATACTCTGGGGCCGAGATGGGGATTTGCAGCGAT


at locus b1492
CTCATTTGGCTATCTGCAAATCGCCATTGGTTTTATTCCGATGCTCTATTTCGTG



TTAGGGGCACTCTCCTACATCCTGAAATGGCCAGCGCTGAATGAAGACCCCATTA



CCAAAACTATTGCAGCACTCATCATTCTTTGGGCGCTGGCATTAACGCAGTTTGG



TGGCACGAAATACACGGCGCGAATTGCTAAAGTTGGCTTCTTCGCCGGTATCCTG



TTACCTGCATTTATTTTGATCGCATTAGCGGCTATTTATCTGCACTCCGGTGCCC



CCGTTGCTATCGAAATGGATTCGAAGACCTTCTTCCCTGACTTCTCTAAAGTGGG



CACCCTGGTAGTATTTGTTGCCTTCATTTTGAGTTATATGGGCGTAGAAGCATCC



GCAACCCACGTCAATGAAATGAGCAACCCAGGGCGCGACTATCCGTTGGCTATGT



TACTGCTGATGGTGGCGGCAATCTGCTTAAGCTCTGTTGGTGGTTTGTCTATTGC



GATGGTCATTCCGGGTAATGAAATCAACCTCTCCGCAGGGGTAATGCAAACCTTT



ACCGTTCTGATGTCCCATGTGGCACCAGAAATTGAGTGGACGGTTCGCGTGATCT



CCGCACTGCTGTTGCTGGGTGTTCTGGCGGAAATCGCCTCCTGGATTGTTGGTCC



TTCTCGCGGGATGTATGTAACAGCGCAGAAAAACCTGCTGCCAGCGGCATTCGCT



AAAATGAACAAAAATGGCGTACCGGTAACGCTGGTCATTTCGCAGCTGGTGATTA



CGTCTATCGCGTTGATCATCCTCACCAATACCGGTGGCGGTAACAACATGTCCTT



CCTGATCGCACTGGCGCTGACGGTGGTGATTTATCTGTGTGCTTATTTCATGCTG



TTTATTGGCTACATTGTGTTGGTTCTTAAACATCCTGACTTAAAACGCACATTTA



ATATCCCTGGTGGTAAAGGGGTGAAACTGGTCGTGGCAATTGTCGGTCTGCTGAC



TTCAATTATGGCGTTTATTGTTTCCTTCCTGCCGCCGGATAACATCCAGGGTGAT



TCTACCGATATGTATGTTGAATTACTGGTTGTTAGTTTCCTGGTGGTACTTGCCC



TGCCCTTTATTCTCTATGCTGTTCATGATCGTAAAGGCAAAGCAAATACCGGCGT



CACTCTGGAGCCAATCAACAGTCAGAACGCACCAAAAGGTCACTTCTTCCTGCAC



CCGCGTGCACGTTCACCACACTATATTGTGATGAATGACAAGAAACACTAA





SEQ ID NO: 211
ATGGTCATTAAGGCGCAAAGCCCGGCGGGTTTCGCGGAAGAGTACATTATTGAAA


nucleic acid
GTATCTGGAATAACCGCTTCCCTCCCGGGACTATTTTGCCCGCAGAACGTGAACT


coding sequence
TTCAGAATTAATTGGCGTAACGCGTACTACGTTACGTGAAGTGTTACAGCGTCTG


of the gene fadR
GCACGAGATGGCTGGTTGACCATTCAACATGGCAAGCCGACGAAGGTGAATAATT


at locus b1187
TCTGGGAAACTTCCGGTTTAAATATCCTTGAAACACTGGCGCGACTGGATCACGA



AAGTGTGCCGCAGCTTATTGATAATTTGCTGTCGGTGCGTACCAATATTTCCACT



ATTTTTATTCGCACCGCGTTTCGTCAGCATCCCGATAAAGCGCAGGAAGTGCTGG



CTACCGCTAATGAAGTGGCCGATCACGCCGATGCCTTTGCCGAGCTGGATTACAA



CATATTCCGCGGCCTGGCGTTTGCTTCCGGCAACCCGATTTACGGTCTGATTCTT



AACGGGATGAAAGGGCTGTATACGCGTATTGGTCGTCACTATTTCGCCAATCCGG



AAGCGCGCAGTCTGGCGCTGGGCTTCTACCACAAACTGTCGGCGTTGTGCAGTGA



AGGCGCGCACGATCAGGTGTACGAAACAGTGCGTCGCTATGGGCATGAGAGTGGC



GAGATTTGGCACCGGATGCAGAAAAATCTGCCGGGTGATTTAGCCATTCAGGGGC



GATAA





SEQ ID NO: 212
ATGAACAACTTTAATCTGCACACCCCAACCCGCATTCTGTTTGGTAAAGGCGCAA


nucleic acid
TCGCTGGTTTACGCGAACAAATTCCTCACGATGCTCGCGTATTGATTACCTACGG


coding sequence
CGGCGGCAGCGTGAAAAAAACCGGCGTTCTCGATCAAGTTCTGGATGCCCTGAAA


of the gene yqhD
GGCATGGACGTGCTGGAATTTGGCGGTATTGAGCCAAACCCGGCTTATGAAACGC


at locus b3011
TGATGAACGCCGTGAAACTGGTTCGCGAACAGAAAGTGACTTTCCTGCTGGCGGT



TGGCGGCGGTTCTGTACTGGACGGCACCAAATTTATCGCCGCAGCGGCTAACTAT



CCGGAAAATATCGATCCGTGGCACATTCTGCAAACGGGCGGTAAAGAGATTAAAA



GCGCCATCCCGATGGGCTGTGTGCTGACGCTGCCAGCAACCGGTTCAGAATCCAA



CGCAGGCGCGGTGATCTCCCGTAAAACCACAGGCGACAAGCAGGCGTTCCATTCT



GCCCATGTTCAGCCGGTATTTGCCGTGCTCGATCCGGTTTATACCTACACCCTGC



CGCCGCGTCAGGTGGCTAACGGCGTAGTGGACGCCTTTGTACACACCGTGGAACA



GTATGTTACCAAACCGGTTGATGCCAAAATTCAGGACCGTTTCGCAGAAGGCATT



TTGCTGACGCTAATCGAAGATGGTCCGAAAGCCCTGAAAGAGCCAGAAAACTACG



ATGTGCGCGCCAACGTCATGTGGGCGGCGACTCAGGCGCTGAACGGTTTGATTGG



CGCTGGCGTACCGCAGGACTGGGCAACGCATATGCTGGGCCACGAACTGACTGCG



ATGCACGGTCTGGATCACGCGCAAACACTGGCTATCGTCCTGCCTGCACTGTGGA



ATGAAAAACGCGATACCAAGCGCGCTAAGCTGCTGCAATATGCTGAACGCGTCTG



GAACATCACTGAAGGTTCCGATGATGAGCGTATTGACGCCGCGATTGCCGCAACC



CGCAATTTCTTTGAGCAATTAGGCGTGCCGACCCACCTCTCCGACTACGGTCTGG



ACGGCAGCTCCATCCCGGCTTTGCTGAAAAAACTGGAAGAGCACGGCATGACCCA



ACTGGGCGAAAATCATGACATTACGTTGGATGTCAGCCGCCGTATATACGAAGCC



GCCCGCTAA





SEQ ID NO: 213
ATGACTGCTATTAATCGCATCCTTATTGTGGATGATGAAGATAATGTTCGCCGTA


nucleic acid
TGCTGAGCACCGCTTTTGCACTACAAGGATTCGAAACACATTGTGCGAACAACGG


coding sequence
ACGCACAGCATTACACCTGTTTGCCGATATTCACCCTGATGTGGTGTTGATGGAT


of the gene
ATCCGCATGCCAGAGATGGACGGCATCAAGGCACTAAAGGAGATGCGCAGCCATG


atoC(Con) at
AGACCCGGACACCCGTTATTCTGATGACGGCCTATGCGGAAGTGGAAACCGCCGT


locus b2220
CGAAGCGCTACGCTGCGGAGCCTTCGACTATGTTATTAAACCGTTTGATCTCGAT



GAGTTGAATTTAATCGTTCAGCGCGCTTTACAACTCCAGTCAATGAAAAAAGAat



cgCGTCATCTGCACCAGGCACTGAGCACCAGCTGGCAATGGGGGCACATTCTCAC



CAACAGCCCGGCGATGATGGACATCTGCAAAGACACCGCCAAAATTGCCCTTTCT



CAGGCCAGCGTCTTGATTAGCGGTGAAAGCGGCACCGGGAAAGAGTTGATTGCCA



GAGCGATTCACTACAATTCGCGGCGGGCAAAGGGGCCGTTCATTAAAGTCAACTG



CGCGGCGCTGCCGGAATCGTTGCTCGAAAGTGAACTGTTTGGTCATGAAAAAGGT



GCATTTACTGGTGCACAAACCTTGCGTCAGGGATTATTTGAACGAGCCAACGAAG



GTACTCTGCTCCTCGACGAAATTGGCGAAATGCCGCTGGTACTACAAGCCAAATT



ACTACGCATTCTACAGGAACGGGAATTTGAACGGATTGGCGGCCATCAGACCATA



AAAGTTGATATCCGCATCATTGCTGCCACCAACCGCGACTTGCAGGCAATGGTAA



AAGAAGGCACCTTCCGTGAAGATCTCTTTTATCGCCTTAACGTTATTCATTTAAT



ACTGCCGCCTCTGCGCGATCGCCGGGAAGATATTTCCCTGTTAGCTAATCACTTT



TTGCAAAAATTCAGTAGTGAGAATCAGCGCGATATTATCGACATCGATCCGATGG



CAATGTCACTGCTTACCGCCTGGTCATGGCCGGGAAATATTCGAGAGCTTTCCAA



CGTTATTGAACGCGCCGTCGTGATGAATTCAGGCCCGATCATTTTTTCTGAGGAT



CTTCCGCCACAGATTCGTCAGCCAGTCTGTAATGCTGGCGAGGTAAAAACAGCCC



CTGTCGGTGAGCGTAATTTAAAAGAGGAAATTAAACGCGTCGAAAAACGCATCAT



TATGGAAGTGCTGGAACAACAAGAAGGAAACCGAACCCGCACTGCTTTAATGCTG



GGCATCAGTCGCCGTGCATTGATGTATAAACTCCAGGAATACGGTATCGATCCGG



CGGATGTATAA





SEQ ID NO: 218
ATGGATCAGACATATTCTCTGGAGTCATTCCTCAACCATGTCCAAAAGCGCGACC


nucleic acid
CGAATCAAACCGAGTTCGCGCAAGCCGTTCGTGAAGTAATGACCACACTCTGGCC


coding sequence
TTTTCTTGAACAAAATCCAAAATATCGCCAGATGTCATTACTGGAGCGTCTGGTT


of the gene gdhA
GAACCGGAGCGCGTGATCCAGTTTCGCGTGGTATGGGTTGATGATCGCAACCAGA


at locus b1761
TACAGGTCAACCGTGCATGGCGTGTGCAGTTCAGCTCTGCCATCGGCCCGTACAA



AGGCGGTATGCGCTTCCATCCGTCAGTTAACCTTTCCATTCTCAAATTCCTCGGC



TTTGAACAAACCTTCAAAAATGCCCTGACTACTCTGCCGATGGGCGGTGGTAAAG



GCGGCAGCGATTTCGATCCGAAAGGAAAAAGCGAAGGTGAAGTGATGCGTTTTTG



CCAGGCGCTGATGACTGAACTGTATCGCCACCTGGGCGCGGATACCGACGTTCCG



GCAGGTGATATCGGGGTTGGTGGTCGTGAAGTCGGCTTTATGGCGGGGATGATGA



AAAAGCTCTCCAACAATACCGCCTGCGTCTTCACCGGTAAGGGCCTTTCATTTGG



CGGCAGTCTTATTCGCCCGGAAGCTACCGGCTACGGTCTGGTTTATTTCACAGAA



GCAATGCTAAAACGCCACGGTATGGGTTTTGAAGGGATGCGCGTTTCCGTTTCTG



GCTCCGGCAACGTCGCCCAGTACGCTATCGAAAAAGCGATGGAATTTGGTGCTCG



TGTGATCACTGCGTCAGACTCCAGCGGCACTGTAGTTGATGAAAGCGGATTCACG



AAAGAGAAACTGGCACGTCTTATCGAAATCAAAGCCAGCCGCGATGGTCGAGTGG



CAGATTACGCCAAAGAATTTGGTCTGGTCTATCTCGAAGGCCAACAGCCGTGGTC



TCTACCGGTTGATATCGCCCTGCCTTGCGCCACCCAGAATGAACTGGATGTTGAC



GCCGCGCATCAGCTTATCGCTAATGGCGTTAAAGCCGTCGCCGAAGGGGCAAATA



TGCCGACCACCATCGAAGCGACTGAACTGTTCCAGCAGGCAGGCGTACTATTTGC



ACCGGGTAAAGCGGCTAATGCTGGTGGCGTCGCTACATCGGGCCTGGAAATGGCA



CAAAACGCTGCGCGCCTGGGCTGGAAAGCCGAGAAAGTTGACGCACGTTTGCATC



ACATCATGCTGGATATCCACCATGCCTGTGTTGAGCATGGTGGTGAAGGTGAGCA



AACCAACTACGTGCAGGGCGCGAACATTGCCGGTTTTGTGAAGGTTGCCGATGCG



ATGCTGGCGCAGGGTGTGATTTAA





SEQ ID NO: 219
ATGGCTATGTTGTATGGAAAACACACGCATGAAACAGATGAGACGCTCAttCCAA


nucleic acid
TCTTCGGGGCCAGCGCTGAACGCCACGACCTCCCCAAATATAAATTGGCAAAGCA


coding sequence
CGCGCTCGAGCCCCGTGAAGCCGATCGATTGGTTCGCGATCAACTATTGGATGAA


of the gene
GGAAACTCGCGGCTGAATCTCGCCACGTTCTGTCAGACTTACATGGAACCGGAAG


gadBe(Lb)
CGGTTGAACTCATGAAAGATACACTGGAGAAAAACGCCATCGATAAATCCGAGTA



TCCTCGGACCGCTGAAATTGAAAATCGTTGCGTTAATATCATTGCCAACCTCTGG



CATGCTCCAGAAGCTGAGTCGTTCACTGGCACCTCGACGATTGGTTCCTCCGAGG



CCTGCATGCTGGCCGGTTTGGCGATGAAGTTTGCTTGGCGTAAGCGCGCCAAAGC



GAACGGTCTTGACTTAACTGCCCATCAACCTAATATTGTCATCTCAGCCGGTTAT



CAAGTTTGTTGGGAAAAATTCTGTGTCTATTGGGACATCGACATGCATGTCGTTC



CCATGGACGATGACCACATGTCCTTGAATGTCGATCACGTGTTAGATTACGTGGA



TGACTACACCATTGGTATCGTTGGCATTATGGGCATCACTTATACTGGACAATAC



GACGATTTAGCCCGATTAGATGCCGTTGTAGAGCGGTACAATCGGACGACTAAGT



TCCCGGTATATATCCATGTCGATGCCGCTTCCGGCGGATTTTACACGCCGTTTAT



TGAACCCGAGCTCAAGTGGGACTTCCGTTTAAACAACGTGATTTCCATCAATGCC



TCCGGCCACAAATATGGCTTGGTTTATCCCGGAGTCGGCTGGGTAATCTGGCGTG



gCCAACAGTATCTACCAAAAGAGCTGGTCTTTAAGGTCAGCTACTTGGGTGGTag



cCTACCTACGATGGCCATCAACTTCTCCCACAGTGCCTCCCAATTAATCGGTCAG



TATTACAACTTTATTCGCTTTGGTTTTGATGGCTATCGTGAAATTCAtGAAAAAA



CTCACGACGTTGCCCGCTATCTCGCGAAATCGCTCACTAAATTAGGGGGCTTTTC



CCTCATTAATGACGGCCACGAGTTACCGCTGATCTGTTATGAACTCACTGCCGAT



TCTGATCGCGAATGGACCCTCTACGATTTATCCGATCGGTTATTAATGAAGGGCT



GGCAGGTTCCCACCTATCCCTTACCAAAAAACATGACGGACCGCGTTATTCAACG



GATCGTGGTTCGGGCTGACTTTGGTATGAGTATGGCCCACGACTTTATTGATGAT



CTAACCCAAGCCATTCACGATCTCGACCAAGCACACATCGTTTTCCATAGTGATC



CGCAACCTAAAAAATACGGGTTCACGCACTAA





SEQ ID NO: 220
ATGGCAATGTTATACGGTAAACACAATCATGAAGCTGAAGAATACTTGGAACCAG


nucleic acid
TCTTTGGTGCGCCTTCTGAACAACATGATCTTCCTAAGTATCGGTTACCAAAGCA


coding sequence
TTCATTATCCCCTCGAGAAGCCGATCGCTTAGTTCGTGATGAATTATTAGATGAA


of the gene
GGCAATTCACGACTGAACCTGGCAACTTTTTGTCAGACCTATATGGAACCCGAAG


gadB(Lp) at locus
CCGTTGAATTGATGAAGGATACGCTGGCTAAGAATGCCATCGACAAATCTGAGTA


HMPREF0531_1
CCCCCGCACGGCCGAGATTGAAAATCGGTGTGTGAACATTATTGCCAATCTGTGG


2685
CACGCACCTGATGACGAACACTTTACGGGTACCTCTACGATTGGCTCCTCTGAAG



CTTGTATGTTAGGCGGTTTAGCAATGAAATTCGCCTGGCGTAAACGCGCTCAAGC



GGCAGGTTTAGATCTGAATGCCCATCGACCTAACCTCGTTATTTCGGCTGGCTAT



CAAGTTTGCTGGGAAAAGTTTTGTGTCTACTGGGACGTTGACATGCACGTGGTCC



CAATGGATGAGCAACACATGGCCCTTGACGTTAACCACGTCTTAGACTACGTGGA



CGAATACACAATTGGTATCGTCGGTATCATGGGCATCACTTATACCGGTCAATAT



GACGACCTAGCCGCACTCGATAAGGTCGTTACTCACTACAATCATCAGCATCCCA



AATTACCAGTCTACATTCACGTTGACGCAGCGTCAGGTGGCTTCTATACCCCATT



TATTGAGCCGCAACTCATCTGGGACTTCCGGTTGGCTAACGTCGTTTCGATCAAC



GCCTCCGGGCACAAGTACGGTTTAGTTTATCCCGGGGTCGGCTGGGTCGTTTGGC



GTGATCGTCAGTTTTTACCGCCAGAATTAGTCTTCAAAGTTAGTTATTTAGGTGG



GGAGTTGCCGACAATGGCGATCAACTTCTCACATAGTGCAGCCCAGCTCATTGGA



CAATACTATAATTTCATTCGCTTTGGTATGGACGGTTACCGCGAGATTCAAACAA



AGACTCACGATGTTGCCCGCTACCTGGCAGCCGCTCTGGATAAAGTTGGTGAGTT



TAAGATGATCAATAACGGACACCAACTCCCCCTGATTTGTTACCAACTAGCCCCG



CGCGAAGATCGTGAATGGACCCTTTATGATTTATCGGATCGCCTATTAATGAACG



GTTGGCAAGTACCAACGTATCCTTTACCTGCTAATCTGGAACAACAAGTCATCCA



ACGAATCGTCGTTCGGGCTGACTTTGGCATGAATATGGCCCACGATTTCATGGAT



GACCTGACCAAGGCTGTCCATGACTTAAACCACGCCCACATTGTCTATCATCATG



ACGCGGCACCTAAGAAATACGGATTCACACACTGA





SEQ ID NO: 227
ATGAGCAAAAACGATCAGGAGACGCAGCAGATGCTGGATGCAGCACAGCTGGAAA


nucleic acid
AAACGTTTCTGGGAAGCACCGCAGCCGGGGAATCGCTTCCCAAAAATACAATGCC


coding sequence
GGCAGGCCCAATGGCCCCAGATGTAGCCGTAGAAATGGTGGACCACTTTCGCCTG


of the gene
AACGAGGCAAAAGCGAATCAGAATCTGGCGACCTTTTGTACCACTGAGATGGAAC


gad(Ls) (codon-
CGCAAGCGGATCAACTGATGATGCGTACCCTGAACACCAACGCCATTGATAAGTC


optimized)
CGAATACCCCAAAACGTCCGCAATGGAAAATTATTGTGTGAGTATGATTGCGCAT



CTGTGGGGCATTCCGGACGAAGAGAAGTTCGGCGATGATTTCATTGGGACCTCAA



CCGTTGGGTCTTCTGAAGGATGCATGTTAGGAGGACTTGCATTGCTGCATACCTG



GAAACATCGCGCGAAAGCGGCGGGCCTTGATATCGATGATCTGCACGCGCACAAA



CCCAATTTAGTGATTATGAGCGGCAATCAGGTGGTGTGGGAAAAGTTCTGCACGT



ACTGGAACGTCGATTTTCGCCAAGTCCCGATTAATGGCGATCAGGTGTCGCTGGA



CCTCGACCATGTGATGGACTACGTCGATGAGAACACCATTGGCATCATTGGCATT



GAAGGGATTACCTATACTGGTTCCGTCGATGATATCCAGGGCCTGGATAAACTGG



TGACCGAGTACAATAAGACTGCTGCTTTGCCGGTCCGCATTCATGTGGATGCTGC



CTTTGGTGGTTTGTTTGCCCCGTTTGTTGACGGCTTCAAACCGTGGGATTTCCGC



CTCGATAACGTGGTTAGCATTAATGTTTCGGGCCACAAATATGGCATGGTGTATC



CGGGTTTAGGCTGGATTGTATGGCGTAAAAACAGCTACGACATCCTCCCGAAGGA



AATGCGTTTCAGCGTTCCTTATCTTGGTTCAAGTGTCGATTCAATCGCCATCAAT



TTCTCGCATTCTGGTGCGCACATTAACGCCCAGTACTACAACTTCCTGCGCTTTG



GTTTAGCAGGCTATAAAGCGATCATGAACAATGTACGCAAAGTGTCACTGAAACT



GACAGACGAATTACGTAAGTTTGGCATCTTTGACATCCTCGTGGATGGTAAAGAA



TTACCGATCAACTGCTGGAAACTGAGCGACAATGCCAATGTAAGTTGGAGTCTGT



ACGACATGGAAGATGCTCTGGCGAAATATGGCTGGCAAGTACCTGCGTATCCACT



TCCGAAAAACCGTGAAGAGACTATTACCAGCCGCATTGTTGTTCGTCCTGGTATG



ACAATGGCCATTGCCGATGACTTCATCGATGACTTGAAGCTGGCGATTGCGGATT



TGAATCATAGCTTTGGTGATGTTAAAGATGTTAACGACAAGAACAAAACGACGGT



GCGTTAA





SEQ ID NO: 228
ATGGCGAATCAGGCTCCGGTCGCTTGGGTTACCGGAGGTACGGGCGGAATTGGCA


nucleic acid
CGTCGATCTGCCACTCACTGGCCGATGCCGGTTATCTTGTGGTAGCGGGTTATCA


coding sequence
TAACCCTGAAAAAGCAAAGACTTGGTTAGAAACGCAGCAGGCCGCCGGTTACGAT


of the gene
AACATTGCGCTGTCCGGTGTGGACTTAAGCGACCACAACGCCTGTTTGGAAGGAG


phab(Hb)
CGCGTGAGATCCAGGAAAAATACGGACCGGTTAGCGTGCTGGTGAACTGTGCGGG


(codon-
TATCACCCGTGATGGCACCATGAAAAAGATGTCCTACGAACAATGGCATCAAGTT


optimized)
ATTGACACCAACTTGAACTCGGTGTTTAATACCTGCCGTAGTGTAATTGAAATGA



TGCTGGAACAAGGCTATGGCCGTATCATTAATATTAGCTCAATTAACGGCCGCAA



AGGCCAGTTTGGGCAGGTCAATTATGCGGCAGCCAAAGCAGGCATGCATGGCCTG



ACCATGAGTCTTGCGCAAGAAACGGCGACCAAGGGCATTACAGTTAATACCGTGT



CTCCGGGCTATATTGCAACGGATATGATTATGAAAATTCCCGAACAGGTCCGCGA



GGCCATCCGCGAAACTATCCCAGTGAAACGCTACGGCACCCCGGAAGAGATTGGT



CGCCTGGTAACTTTTCTCGCGGATAAAGAGAGCGGGTTCATTACAGGCGCAAATA



TCGATATCAATGGTGGCCAGTTCATGGGGTAA





SEQ ID NO: 229
ATGGCGACCGGCAAAGGCGCGGCAGCTTCCACGCAGGAAGGCAAGTCCCAACCAT


nucleic acid
TCAAGGTCACGCCGGGGCCATTCGATCCAGCCACATGGCTGGAATGGTCCCGCCA


coding sequence
GTGGCAGGGCACTGAAGGCAACGGCCACGCGGCCGCGTCCGGCATTCCGGGCCTG


of the
GATGCGCTGGCAGGCGTCAAGATCGCGCCGGCGCAGCTGGGTGATATCCAGCAGC


gene
GCTACATGAAGGACTTCTCAGCGCTGTGGCAGGCCATGGCCGAGGGCAAGGCCGA


phaC
GGCCACCGGTCCGCTGCACGACCGGCGCTTCGCCGGCGACGCATGGCGCACCAAC


(F420S)
CTCCCATATCGCTTCGCTGCCGCGTTCTACCTGCTCAATGCGCGCGCCTTGACCG



AGCTGGCCGATGCCGTCGAGGCCGATGCCAAGACCCGCCAGCGCATCCGCTTCGC



GATCTCGCAATGGGTCGATGCGATGTCGCCCGCCAACTTCCTTGCCACCAATCCC



GAGGCGCAGCGCCTGCTGATCGAGTCGGGCGGCGAATCGCTGCGTGCCGGCGTGC



GCAACATGATGGAAGACCTGACACGCGGCAAGATCTCGCAGACCGACGAGAGCGC



GTTTGAGGTCGGCCGCAATGTCGCGGTGACCGAAGGCGCCGTGGTCTTCGAGAAC



GAGTACTTCCAGCTGTTGCAGTACAAGCCGCTGACCGACAAGGTGCACGCGCGCC



CGCTGCTGATGGTGCCGCCGTGCATCAACAAGTACTACATCCTGGACCTGCAGCC



GGAGAGCTCGCTGGTGCGCCATGTGGTGGAGCAGGGACATACGGTGTTTCTGGTG



TCGTGGCGCAATCCGGACGCCAGCATGGCCGGCAGCACCTGGGACGACTACATCG



AGCACGCGGCCATCCGCGCCATCGAAGTCGCGCGCGACATCAGCGGCCAGGACAA



GATCAACGTGCTCGGCTTCTGCGTGGGCGGCACCATTGTCTCGACCGCGCTGGCG



GTGCTGGCCGCGCGCGGCGAGCACCCGGCCGCCAGCGTCACGCTGCTGACCACGC



TGCTGGACTTTGCCGACACGGGCATCCTCGACGTCTTTGTCGACGAGGGCCATGT



GCAGTTGCGCGAGGCCACGCTGGGCGGCGGCGCCGGCGCGCCGTGCGCGCTGCTG



CGCGGCCTTGAGCTGGCCAATACCTTCTCGTTCTTGCGCCCGAACGACCTGGTGT



GGAACTACGTGGTCGACAACTACCTGAAGGGCAACACGCCGGTGCCGAGCGACCT



GCTGTTCTGGAACGGCGACGCCACCAACCTGCCGGGGCCGTGGTACTGCTGGTAC



CTGCGCCACACCTACCTGCAGAACGAGCTCAAGGTACCGGGCAAGCTGACCGTGT



GCGGCGTGCCGGTGGACCTGGCCAGCATCGACGTGCCGACCTATATCTACGGCTC



GCGCGAAGACCATATCGTGCCGTGGACCGCGGCCTATGCCTCGACCGCGCTGCTG



GCGAACAAGCTGCGCTTCGTGCTGGGTGCGTCGGGCCATATCGCCGGTGTGATCA



ACCCGCCGGCCAAGAACAAGCGCAGCCACTGGACTAACGATGCGCTGCCGGAGTC



GCCGCAGCAATGGCTGGCCGGCGCCATCGAGCATCACGGCAGCTGGTGGCCGGAC



TGGACCGCATGGCTGGCCGGGCAGGCCGGCGCGAAACGCGCCGCGCCCGCCAACT



ATGGCAATGCGCGCTATCGCGCAATCGAACCCGCGCCTGGGCGATACGTCAAAGC



CAAGGCATGA





SEQ ID NO: 231
ATGGCGACCGATAAAGGCGCGGCAGCTTCCACGCAGGAAGGCAAGTCCCAACCAT


nucleic acid
TCAAGGTCACGCCGGGGCCATTCGATCCAGCCACATGGCTGGAATGGTCCCGCCA


coding sequence
GTGGCAGGGCACTGAAGGCAACGGCCACGCGGCCGCGTCCGGCATTCCGGGCCTG


of the gene
GATGCGCTGGCAGGCGTCAAGATCGCGCCGGCGCAGCTGGGTGATATCCAGCAGC


phaC(G4D)
GCTACATGAAGGACTTCTCAGCGCTGTGGCAGGCCATGGCCGAGGGCAAGGCCGA



GGCCACCGGTCCGCTGCACGACCGGCGCTTCGCCGGCGACGCATGGCGCACCAAC



CTCCCATATCGCTTCGCTGCCGCGTTCTACCTGCTCAATGCGCGCGCCTTGACCG



AGCTGGCCGATGCCGTCGAGGCCGATGCCAAGACCCGCCAGCGCATCCGCTTCGC



GATCTCGCAATGGGTCGATGCGATGTCGCCCGCCAACTTCCTTGCCACCAATCCC



GAGGCGCAGCGCCTGCTGATCGAGTCGGGCGGCGAATCGCTGCGTGCCGGCGTGC



GCAACATGATGGAAGACCTGACACGCGGCAAGATCTCGCAGACCGACGAGAGCGC



GTTTGAGGTCGGCCGCAATGTCGCGGTGACCGAAGGCGCCGTGGTCTTCGAGAAC



GAGTACTTCCAGCTGTTGCAGTACAAGCCGCTGACCGACAAGGTGCACGCGCGCC



CGCTGCTGATGGTGCCGCCGTGCATCAACAAGTACTACATCCTGGACCTGCAGCC



GGAGAGCTCGCTGGTGCGCCATGTGGTGGAGCAGGGACATACGGTGTTTCTGGTG



TCGTGGCGCAATCCGGACGCCAGCATGGCCGGCAGCACCTGGGACGACTACATCG



AGCACGCGGCCATCCGCGCCATCGAAGTCGCGCGCGACATCAGCGGCCAGGACAA



GATCAACGTGCTCGGCTTCTGCGTGGGCGGCACCATTGTCTCGACCGCGCTGGCG



GTGCTGGCCGCGCGCGGCGAGCACCCGGCCGCCAGCGTCACGCTGCTGACCACGC



TGCTGGACTTTGCCGACACGGGCATCCTCGACGTCTTTGTCGACGAGGGCCATGT



GCAGTTGCGCGAGGCCACGCTGGGCGGCGGCGCCGGCGCGCCGTGCGCGCTGCTG



CGCGGCCTTGAGCTGGCCAATACCTTCTCGTTCTTGCGCCCGAACGACCTGGTGT



GGAACTACGTGGTCGACAACTACCTGAAGGGCAACACGCCGGTGCCGTTCGACCT



GCTGTTCTGGAACGGCGACGCCACCAACCTGCCGGGGCCGTGGTACTGCTGGTAC



CTGCGCCACACCTACCTGCAGAACGAGCTCAAGGTACCGGGCAAGCTGACCGTGT



GCGGCGTGCCGGTGGACCTGGCCAGCATCGACGTGCCGACCTATATCTACGGCTC



GCGCGAAGACCATATCGTGCCGTGGACCGCGGCCTATGCCTCGACCGCGCTGCTG



GCGAACAAGCTGCGCTTCGTGCTGGGTGCGTCGGGCCATATCGCCGGTGTGATCA



ACCCGCCGGCCAAGAACAAGCGCAGCCACTGGACTAACGATGCGCTGCCGGAGTC



GCCGCAGCAATGGCTGGCCGGCGCCATCGAGCATCACGGCAGCTGGTGGCCGGAC



TGGACCGCATGGCTGGCCGGGCAGGCCGGCGCGAAACGCGCCGCGCCCGCCAACT



ATGGCAATGCGCGCTATCGCGCAATCGAACCCGCGCCTGGGCGATACGTCAAAGC



CAAGGCATGA
















TABLE 3A







Nucleic Acid Sequences: Primers










SEQ ID NO
Nucleotide Sequence






SEQ ID NO: 119
TGAAGGAAATGAAGTCCTGAGCGA



nucleic acid
GAGTAGGGAACTGCC



sequence




the primer P01







SEQ ID NO: 120
TATCTTTACCTCCTTTGCTAGCTC



nucleic acid
AGCCCATATGCAGGCCG



sequence




the primer P02







SEQ ID NO: 121
GCTAGCAAAGGAGGTAAAGATAAT



nucleic acid
GAGAAAGGTTCCCATTATTACC



sequence




the primer P03







SEQ ID NO: 122
TCAGGACTTCATTTCCTTCAGAC



nucleic acid




sequence




the primer P04







SEQ ID NO: 123
CCATGGGACTGAAAAAATAAGCGA



nucleic acid
GAGTAGGGAACTGCC



sequence




the primer P05







SEQ ID NO: 124
GCTAGCAAAGGAGGTAAAGATAAT



nucleic acid
GAGAAAAGTAGAAATCATTACAGC



sequence




the primer P06







SEQ ID NO: 125
TTATTTTTTCAGTCCCATGGGAC



nucleic acid




sequence




the primer P07







SEQ ID NO: 126
CAATTTCACACAGGAGGAATCAAA



nucleic acid
AATGATGGTTCCAACCCTCGAACA



sequence
C



the primer P08







SEQ ID NO: 127
CATTATCTTATCCTCCTTTCTCGA



nucleic acid
GTCAATGCTCGGCGTCGGCGATC



sequence




the primer P09







SEQ ID NO: 128
TGACTCGAGAAAGGAGGATAAGAT



nucleic acid
AATGAGTCAGGCGCTAAAAAATTT



sequence
ACTGAC



the primer P10







SEQ ID NO: 129
GGTTGGAACCATCATTTTTGATTC



nucleic acid
CTCCTGTGTGAAATTGTTATCCGC



sequence
TCACAATTC



the primer P11
C






SEQ ID NO: 130
CAATTTCACACAGGAGGAATCAAA



nucleic acid
AATGCTGGTAAATGACGAGCAAC



sequence




the primer P12







SEQ ID NO: 131
CATTATCTTTACCTCCTTTGCTAG



nucleic acid
CTCAAAGATTGCGCGCAATGACC



sequence




the primer P13







SEQ ID NO: 132
TGAGCTAGCAAAGGAGGTAAAGAT



nucleic acid
AATGTACGCAGCTAAGGACATCAC



sequence
C



the primer P14







SEQ ID NO: 133
TCTCTCATCCGCCAAAACAGCCTC



nucleic acid
ATTGGGCCCTCCTGGAGAG



sequence




the primer P15







SEQ ID NO: 134
TCTCCAGGAGGGCCCAATGAGGCT



nucleic acid
GTTTTGGCGGATGAGAG



sequence




the primer P16







SEQ ID NO: 135
GTCATTTACCAGCATTTTTGATTC



nucleic acid
CTCCTGTGTGAAATTGTTATCCGC



sequence
TC



the primer P17







SEQ ID NO: 136
TTCACACAGGAGGAATCAAAAATG



nucleic acid
CATTTTAAACTATCAGAAGAAC



sequence




the primer P18







SEQ ID NO: 137
TATCTTTACCTCCTTTGCTAGCCT



nucleic acid
ACTTCGTTAACATACGAGAAATTA



sequence
C



the primer P19







SEQ ID NO: 138
CTCGTATGTTAACGAAGTAGGCTA



nucleic acid
GCAAAGGAGGTAAAGATAATG



sequence




the primer P20







SEQ ID NO: 139
TTCTGATAGTTTAAAATGCATTTT



nucleic acid
TGATTCCTCCTGTGTGAAATTG



sequence




the primer P21







SEQ ID NO: 140
TTGTGAGCGGATAACAATTTCGGT



nucleic acid
GTATGCAAGAGGGATAAAAAATG



sequence




the primer P22







SEQ ID NO: 141
TCTTATCCTCCTTTCTCGAGTCAG



nucleic acid
AACAGCGTTAAACCAATGAC



sequence




the primer P23







SEQ ID NO: 142
TATCCCTCTTGCATACACCGAAAT



nucleic acid
TGTTATCCGCTCACAATTCCAC



sequence




the primer P24







SEQ ID NO: 143
CGGTGGTAAAACTCCCTTGAGGCT



nucleic acid
GTTTTGGCGGATGAG



sequence




the primer P25







SEQ ID NO: 144
GCAAGGGTTTGTGTACTCATTATC



nucleic acid
TTTACCTCCTTTGCTAGC



sequence




the primer P26







SEQ ID NO: 145
TAGCAAAGGAGGTAAAGATAATGA



nucleic acid
GTACACAAACCCTTGCC



sequence




the primer P27







SEQ ID NO: 146
TCTCATCCGCCAAAACAGCCTCAA



nucleic acid
GGGAGTTTTACCACCGC



sequence




the primer P28







SEQ ID NO: 147
TGACTCGAGAAAGGAGGATAAGAT



nucleic acid
AATGGACCAGAAGCTGTTAACGG



sequence




the primer P29







SEQ ID NO: 148
CTTTCTACGTGTTCCGCTTCCTTT



nucleic acid
AGTGATCGCTGAGATATTTCAGG



sequence




the primer P30







SEQ ID NO: 149
AATATCTCAGCGATCACTAAAGGA



nucleic acid
AGCGGAACACGTAGAAAGC



sequence




the primer P31







SEQ ID NO: 150
CAATTTCACACAGGAGGAATCAAA



nucleic acid
AATGAATCAACAGGTAAATGTGGC



sequence
C



the primer P32







SEQ ID NO: 151
CATTATCTTTACCTCCTTTGCTAG



nucleic acid
CTTAAGCGACCCCGTTCAGTGC



sequence




the primer P33







SEQ ID NO: 152
TAAGCTAGCAAAGGAGGTAAAGAT



nucleic acid
AATGAATACTTCTGAACTCGAAAC



sequence
CC



the primer P34







SEQ ID NO: 153
CATTTAGTTATCCTCCTTTCTCGA



nucleic acid
GTTAGCGAATAGAAAAGCCGTTGG



sequence




the primer P35







SEQ ID NO: 154
TAACTCGAGAAAGGAGGATAACTA



nucleic acid
AATGAAACTTAACGACAGTAACTT



sequence
ATTCC



the primer P36







SEQ ID NO: 155
TCTCTCATCCGCCAAAACAGCCTT



nucleic acid
AAAGACCGATGCACATATATTTGA



sequence
TTTCTAAG



the primer P37







SEQ ID NO: 156
ATATGTGCATCGGTCTTTAAGGCT



nucleic acid
GTTTTGGCGGATGAGAG



sequence




the primer P38







SEQ ID NO: 157
TACCTGTTGATTCATTTTTGATTC



nucleic acid
CTCCTGTGTGAAATTGTTATCCGC



sequence
TC



the primer P39







SEQ ID NO: 158
CTCGAGAAAGGAGGATAACTAAAT



nucleic acid
G



sequence




the primer P40







SEQ ID NO: 159
CATTATCTTTACCTCCTTTGCTAG



nucleic acid
C



sequence




the primer P41







SEQ ID NO: 160
TAGCAAAGGAGGTAAAGATAATGA



nucleic acid
ATACAGCAGAACTGGAAACC



sequence




the primer P42







SEQ ID NO: 161
AGTTATCCTCCTTTCTCGAGTTAG



nucleic acid
CGAATGGAAAAACCGTTGGT



sequence




the primer P43
















TABLE 3B







Nucleic Acid Sequences:


DNA encoding Small Noncoding RNA










SEQ ID NO
Nucleotide Sequence






SEQ ID NO: 27
AACACATCAGATTTCCTGGTGTA



nucleic acid
ACGAATTTTTTAAGTGCTTCTTG



sequence dsrA
CTTAAGCAAGTTTCATCCCGACC



encoding for
CCCTCAGGGTCGGGATTT



small noncoding




RNA DsrA




at locus b1954







SEQ ID NO: 39
ACGGTTATAAATCAACATATTGAT



nucleic acid
TTATAAGCATGGAAATCCCCTGAG



sequence rprA
TGAAACAACGAATTGCTGTGTGTA



encoding for
GTCTTTGCCCATCTCCCACGATGG



small noncoding
GCTTTTTTT



RNA RprA




at locus b4431







SEQ ID NO: 214
GTGCGGCCTGAAAAACAGTGCTGT



nucleic acid
GCCCTTGTAACTCATCATAATAAT



sequence arcZ
TTACGGCGCAGCCAAGATTTCCCT



encoding for
GGTGTTGGCGCAGTATTCGCGCAC



small noncoding
CCCGGTCTAGCCGGGGTCATTTTT



RNA ArcZ
T



at locus b4450
















TABLE 3C







Nucleic Acid Sequences: Small Noncoding RNA








SEQ ID NO
Nucleotide Sequence





SEQ ID NO: 221
AACACAUCAGAUUUCCUGGUGUAACGA


nucleic acid
AUUUUUUAAGUGCUUCUUGCUUAAGCA


sequence for
AGUUUCAUCCCGACCCCCUCAGGGUCG


small noncoding
GGAUUU


RNA DsrA






SEQ ID NO: 222
ACGGUUAUAAAUCAACAUAUUGAUUUA


nucleic acid
UAAGCAUGGAAAUCCCCUGAGUGAAAC


sequence for
AACGAAUUGCUGUGUGUAGUCUUUGCC


small noncoding
CAUCUCCCACGAUGGGCUUUUUUU


RNA RprA






SEQ ID NO: 223
GUGCGGCCUGAAAAACAGUGCUGUGCC


nucleic acid
CUUGUAACUCAUCAUAAUAAUUUACGG


sequence for
CGCAGCCAAGAUUUCCCUGGUGUUGGC


small noncoding
GCAGUAUUCGCGCACCCCGGUCUAGCC


RNA ArcZ
GGGGUCAUUUUUU
















TABLE 3D







Nucleic Acid Sequences: Regulatory


Elements and Cassettes










SEQ ID NO
Nucleotide Sequence






SEQ ID NO: 232;
TGCCTGAACGAGAAGCTATCACCGC



Pgracmax2::
CCAGCCTAAACGGATATCATCATCG



(T7.RBS)
CTCATCCGAAAAGAATGATGGATCA




CTAGAAAATTTTTTAAAAAATCTCT




TGACATTGGAAGGGAGATATGTTAT




AATAAGAATTGCGGAATTGTGAGCG




GATAACAATTTCTAGAAATAATTTT




GTTTAACTTTAAGAAGGAGATATAC




AT






SEQ ID NO: 233;
GAAAAGAATGATGGATCACTAGAAA



Pgracmax2
ATTTTTTAAAAAATCTCTTGACATT




GGAAGGGAGATATGTTATAATAAGA




ATTGCGGAATTGTGAGCGGATAACA




ATT






SEQ ID NO: 234;
TTAACTTTAAGAAGGAG



T7.RBS




with 9 bp




TTAACTTTA




sequence for




16S rRNA







SEQ ID NO: 235;
AAGGAGG



Gram-positive




RBS







SEQ ID NO: 236;
TTAACTTTAAAAAGGAGG



RBSI with 9 bp




TTAACTTTA




sequence for




16S rRNA







SEQ ID NO: 237;
TTAACTTTA



16S rRNA




base-pair




facilitator




from RBS1




and T7.RBS







SEQ ID NO: 238;
GCAGCCCGCCTAATGAGCGGGCTTT



transcriptional
TTT



terminator







SEQ ID NO: 239;
TGCCTGAACGAGAAGCTATCACCGC



nucleic acid
CCAGCCTAAACGGATATCATCATCG



sequence of
CTCATCCGAAAAGAATGATGGATCA



Pgracmax2::
CTAGAAAATTTTTTAAAAAATCTCT



(T7.RBS)bktB:
TGACATTGGAAGGGAGATATGTTAT



(RBS1)phaB
AATAAGAATT




GCGGAATTGTGAGCGGATAACAATT




TCTAGAAATAATTTTGTTTAACTTT




AAGAAGGAGATATACATATGACGCG




TGAAGTGGTAGTGGTAAGCGGTGTC




CGTACCGCGATCGGGACCTTTGGCG




GCAGCCTGAAGGATGTGGCACCGGC




GGAGCTGGGCGCACTGGTGGTGCGC




GAGGCGCTGGCGCGCGCGCAGGTGT




CGGGCGACGATGTCGGCCACGTGGT




ATTCGGCAACGTGATCCAGACCGAG




CCGCGCGACATGTATCTGGGCCGCG




TCGCGGCCGTCAACGGCGGGGTGAC




GATCAACGCCCCCGCGCTGACCGTG




AACCGCCTGTGCGGCTCGGGCCTGC




AGGCCATTGTCAGCGCCGCGCAGAC




CATCCTGCTGGGCGATACCGACGTC




GCCATCGGCGGCGGCGCGGAAAGCA




TGAGCCGCGCACCGTACCTGGCGCC




GGCAGCGCGCTGGGGCGCACGCATG




GGCGACGCCGGCCTGGTCGACATGA




TGCTGGGTGCGCTGCACGATCCCTT




CCATCGCATCCACATGGGCGTGACC




GCCGAGAATGTCGCCAAGGAATACG




ACATCTCGCGCGCGCAGCAGGACGA




GGCCGCGCTGGAATCGCACCGCCGC




GCTTCGGCAGCGATCAAGGCCGGCT




ACTTCAAGGACCAGATCGTCCCGGT




GGTGAGCAAGGGCCGCAAGGGCGAC




GTGACCTTCGACACCGACGAGCACG




TGCGCCATGACGCCACCATCGACGA




CATGACCAAGCTCAGGCCGGTCTTC




GTCAAGGAAAACGGCACGGTCACGG




CCGGCAATGCCTCGGGCCTGAACGA




CGCCGCCGCCGCGGTGGTGATGATG




GAGCGCGCCGAAGCCGAGCGCCGCG




GCCGAAGCCGCTGGCCCGCCTGGTG




TCGTACGGCCATGCCGGCGTGGACC




CGAAGGCCATGGGCATCGGCCCGGT




GCCGGCGACGAAGATCGCGCTGGAG




CGCGCCGGCCTGCAGGTGTCGGACC




TGGACGTGATCGAAGCCAACGAAGC




CTTTGCCGCACAGGCGTGCGCCGTG




ACCAAGGCGCTCGGTCTGGACCCGG




CCAAGGTTAACCCGAACGGCTCGGG




CATCTCGCTGGGCCACCCGATCGGC




GCCACCGGTGCCCTGATCACGGTGA




AGGCGCTGCATGAGCTGAACCGCGT




GCAGGGCCGCTACGCGCTGGTGACG




ATGTGCATCGGCGGCGGGCAGGGCA




TTGCCGCCATCTTCGAGCGTATCTG




AGCTAGCATTAACTTTAAAAAGGAG




GAAGAATTCATGACTCAGCGCATTG




CGTATGTGACCGGCGGCATGGGTGG




TATCGGAACCGCCATTTGCCAGCGG




CTGGCCAAGGATGGCTTTCGTGTGG




TGGCCGGTTGCGGCCCCAACTCGCC




GCGCCGCGAAAAGTGGCTGGAGCAG




CAGAAGGCCCTGGGCTTCGATTTCA




TTGCCTCGGAAGGCAATGTGGCTGA




CTGGGACTCGACCAAGACCGCATTC




GACAAGGTCAAGTCCGAGGTCGGCG




AGGTTGATGTGCTGATCAACAACGC




CGGTATCACCCGCGACGTGGTGTTC




CGCAAGATGACCCGCGCCGACTGGG




ATGCGGTGATCGACACCAACCTGAC




CTCGCTGTTCAACGTCACCAAGCAG




GTGATCGACGGCATGGCCGACCGTG




GCTGGGGCCGCATCGTCAACATCTC




GTCGGTGAACGGGCAGAAGGGCCAG




TTCGGCCAGACCAACTACTCCACCG




CCAAGGCCGGCCTGCATGGCTTCAC




CATGGCACTGGCGCAGGAAGTGGCG




ACCAAGGGCGTGACCGTCAACACGG




TCTCTCCGGGCTATATCGCCACCGA




CATGGTCAAGGCGATCCGCCAGGAC




GTGCTCGACAAGATCGTCGCGACGA




TCCCGGTCAAGCGCCTGGGCCTGCC




GGAAGAGATCGCCTCGATCTGCGCC




TGGTTGTCGTCGGAGGAGTCCGGTT




TCTCGACCGGCGCCGACTTCTCGCT




CAACGGCGGCCTGCATATGGGCTGA




ACCGGTGCAGCCCGCCTAATGAGCG




GGCTTTTTT






SEQ ID NO: 240;
TGCCTGAACGAGAAGCTATCACCGC



nucleic acid
CCAGCCTAAACGGATATCATCATCG



sequence of
CTCATCCGAAAAGAATGATGGATCA



Pgracmax2:
CTAGAAAATTTTTTAAAAAATCTCT



(T7.RBS)phaC:
TGACATTGGAAGGGAGATATGTTAT



(RBS1)
AATAAGAATTGCGGAATTGTGAGCG



phaA
GATAACAATTTCTAGAAATAATTTT




GTTTAACTTTAAGAAGGAGATATAC




ATATGGCGACCGGCAAAGGCGCGGC




AGCTTCCACGCAGGAAGGCAAGTCC




CAACCATTCAAGGTCACGCCGGGGC




CATTCGATCCAGCCACATGGCTGGA




ATGGTCCCGCCAGTGGCAGGGCACT




GAAGGCAACGGCCACGCGGCCGCGT




CCGGCATTCCGGGCCTGGATGCGCT




GGCAGGCGTCAAGATCGCGCCGGCG




CAGCTGGGTGATATCCAGCAGCGCT




ACATGAAGGACTTCTCAGCGCTGTG




GCAGGCCATGGCCGAGGGCAAGGCC




GAGGCCACCGGTCCGCTGCACGACC




GGCGCTTCGCCGGCGACGCATGGCG




CACCAACCTCCCATATCGCTTCGCT




GCCGCGTTCTACCTGCTCAATGCGC




GCGCCTTGACCGAGCTGGCCGATGC




CGTCGAGGCCGATGCCAAGACCCGC




CAGCGCATCCGCTTCGCGATCTCGC




AATGGGTCGATGCGATGTCGCCCGC




CAACTTCCTTGCCACCAATCCCGAG




GCGCAGCGCCTGCTGATCGAGTCGG




GCGGCGAATCGCTGCGTGCCGGCGT




GCGCAACATGATGGAAGACCTGACA




CGCGGCAAGATCTCGCAGACCGACG




AGAGCGCGTTTGAGGTCGGCCGCAA




TGTCGCGGTGACCGAAGGCGCCGTG




GTCTTCGAGAACGAGTACTTCCAGC




TGTTGCAGTACAAGCCGCTGACCGA




CAAGGTGCACGCGCGCCCGCTGCTG




ATGGTGCCGCCGTGCATCAACAAGT




ACTACATCCTGGACCTGCAGCCGGA




GAGCTCGCTGGTGCGCCATGTGGTG




GAGCAGGGACATACGGTGTTTCTGG




TGTCGTGGCGCAATCCGGACGCCAG




CATGGCCGGCAGCACCTGGGACGAC




TACATCGAGCACGCGGCCATCCGCG




CCATCGAAGTCGCGCGCGACATCAG




CGGCCAGGACAAGATCAACGTGCTC




GGCTTCTGCGTGGGCGGCACCATTG




TCTCGACCGCGCTGGCGGTGCTGGC




CGCGCGCGGCGAGCACCCGGCCGCC




AGCGTCACGCTGCTGACCACGCTGC




TGGACTTTGCCGACACGGGCATCCT




CGACGTCTTTGTCGACGAGGGCCAT




GTGCAGTTGCGCGAGGCCACGCTGG




GCGGCGGCGCCGGCGCGCCGTGCGC




GCTGCTGCGCGGCCTTGAGCTGGCC




AATACCTTCTCGTTCTTGCGCCCGA




ACGACCTGGTGTGGAACTACGTGGT




CGACAACTACCTGAAGGGCAACACG




CCGGTGCCGTTCGACCTGCTGTTCT




GGAACGGCGACGCCACCAACCTGCC




GGGGCCGTGGTACTGCTGGTACCTG




CGCCACACCTACCTGCAGAACGAGC




TCAAGGTACCGGGCAAGCTGACCGT




GTGCGGCGTGCCGGTGGACCTGGCC




AGCATCGACGTGCCGACCTATATCT




ACGGCTCGCGCGAAGACCATATCGT




GCCGTGGACCGCGGCCTATGCCTCG




ACCGCGCTGCTGGCGAACAAGCTGC




GCTTCGTGCTGGGTGCGTCGGGCCA




TATCGCCGGTGTGATCAACCCGCCG




GCCAAGAACAAGCGCAGCCACTGGA




CTAACGATGCGCTGCCGGAGTCGCC




GCAGCAATGGCTGGCCGGCGCCATC




GAGCATCACGGCAGCTGGTGGCCGG




ACTGGACCGCATGGCTGGCCGGGCA




GGCCGGCGCGAAACGCGCCGCGCCC




GCCAACTATGGCAATGCGCGCTATC




GCGCAATCGAACCCGCGCCTGGGCG




ATACGTCAAAGCCAAGGCATGAGCT




AGCATTAACTTTAAAAAGGAGGATA




AGATAATGACTGACGTTGTCATCGT




ATCCGCCGCCCGCACCGCGGTCGGC




AAGTTTGGCGGCTCGCTGGCCAAGA




TCCCGGCACCGGAACTGGGTGCCGT




GGTCATCAAGGCCGCGCTGGAGCGC




GCCGGCGTCAAGCCGGAGCAGGTGA




GCGAAGTCATCATGGGCCAGGTGCT




GACCGCCGGTTCGGGCCAGAACCCC




GCACGCCAGGCCGCGATCAAGGCCG




GCCTGCCGGCGATGGTGCCGGCCAT




GACCATCAACAAGGTGTGCGGCTCG




GGCCTGAAGGCCGTGATGCTGGCCG




CCAACGCGATCATGGCGGGCGACGC




CGAGATCGTGGTGGCCGGCGGCCAG




GAAAACATGAGCGCCGCCCCGCACG




TGCTGCCGGGCTCGCGCGATGGTTT




CCGCATGGGCGATGCCAAGCTGGTC




GACACCATGATCGTCGACGGCCTGT




GGGACGTGTACAACCAGTACCACAT




GGGCATCACCGCCGAGAACGTGGCC




AAGGAATACGGCATCACACGCGAGG




CGCAGGATGAGTTCGCCGTCGGCTC




GCAGAACAAGGCCGAAGCCGCGCAG




AAGGCCGGCAAGTTTGACGAAGAGA




TCGTCCCGGTGCTGATCCCGCAGCG




CAAGGGCGACCCGGTGGCCTTCAAG




ACCGACGAGTTCGTGCGCCAGGGCG




CCACGCTGGACAGCATGTCCGGCCT




CAAGCCCGCCTTCGACAAGGCCGGC




ACGGTGACCGCGGCCAACGCCTCGG




GCCTGAACGACGGCGCCGCCGCGGT




GGTGGTGATGTCGGCGGCCAAGGCC




AAGGAACTGGGCCTGACCCCGCTGG




CCACGATCAAGAGCTATGCCAACGC




CGGTGTCGATCCCAAGGTGATGGGC




ATGGGCCCGGTGCCGGCCTCCAAGC




GCGCCCTGTCGCGCGCCGAGTGGAC




CCCGCAAGACCTGGACCTGATGGAG




ATCAACGAGGCCTTTGCCGCGCAGG




CGCTGGCGGTGCACCAGCAGATGGG




CTGGGACACCTCCAAGGTCAATGTG




AACGGCGGCGCCATCGCCATCGGCC




ACCCGATCGGCGCGTCGGGCTGCCG




TATCCTGGTGACGCTGCTGCACGAG




ATGAAGCGCCGTGACGCGAAGAAGG




GCCTGGCCTCGCTGTGCATCGGCGG




CGGCATGGGCGTGGCGCTGGCAGTC




GAGCGCAAATAAACCGGTGCAGCCC




GCCTAATGAGCGGGCTTTTTT
















TABLE 4







Nucleic Acid Sequences: Plasmids








SEQ ID



NO
Nucleotide Sequence





SEQ ID
GTTTGACAGCTTATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCA


NO: 162
GGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCA


nucleic acid
TAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCG


sequence
CCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAAT


for the
TAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTC


plasmid
ACACAGGAAACAGACTGACTGACGTTGTCATCGTATCCGCCGCCCGCACC


pTrc-
GCGGTCGGCAAGTTTGGCGGCTCGCTGGCCAAGATCCCGGCACCGGAACT


phaAB:
GGGTGCCGTGGTCATCAAGGCCGCGCTGGAGCGCGCCGGCGTCAAGCCGG


pct(Cp)
AGCAGGTGAGCGAAGTCATCATGGGCCAGGTGCTGACCGCCGGTTCGGGC



CAGAACCCCGCACGCCAGGCCGCGATCAAGGCCGGCCTGCCGGCGATGGT



GCCGGCCATGACCATCAACAAGGTGTGCGGCTCGGGCCTGAAGGCCGTGA



TGCTGGCCGCCAACGCGATCATGGCGGGCGACGCCGAGATCGTGGTGGCC



GGCGGCCAGGAAAACATGAGCGCCGCCCCGCACGTGCTGCCGGGCTCGCG



CGATGGTTTCCGCATGGGCGATGCCAAGCTGGTCGACACCATGATCGTCG



ACGGCCTGTGGGACGTGTACAACCAGTACCACATGGGCATCACCGCCGAG



AACGTGGCCAAGGAATACGGCATCACACGCGAGGCGCAGGATGAGTTCGC



CGTCGGCTCGCAGAACAAGGCCGAAGCCGCGCAGAAGGCCGGCAAGTTTG



ACGAAGAGATCGTCCCGGTGCTGATCCCGCAGCGCAAGGGCGACCCGGTG



GCCTTCAAGACCGACGAGTTCGTGCGCCAGGGCGCCACGCTGGACAGCAT



GTCCGGCCTCAAGCCCGCCTTCGACAAGGCCGGCACGGTGACCGCGGCCA



ACGCCTCGGGCCTGAACGACGGCGCCGCCGCGGTGGTGGTGATGTCGGCG



GCCAAGGCCAAGGAACTGGGCCTGACCCCGCTGGCCACGATCAAGAGCTA



TGCCAACGCCGGTGTCGATCCCAAGGTGATGGGCATGGGCCCGGTGCCGG



CCTCCAAGCGCGCCCTGTCGCGCGCCGAGTGGACCCCGCAAGACCTGGAC



CTGATGGAGATCAACGAGGCCTTTGCCGCGCAGGCGCTGGCGGTGCACCA



GCAGATGGGCTGGGACACCTCCAAGGTCAATGTGAACGGCGGCGCCATCG



CCATCGGCCACCCGATCGGCGCGTCGGGCTGCCGTATCCTGGTGACGCTG



CTGCACGAGATGAAGCGCCGTGACGCGAAGAAGGGCCTGGCCTCGCTGTG



CATCGGCGGCGGCATGGGCGTGGCGCTGGCAGTCGAGCGCAAATAAGGAA



GGGGTTTTCCGGGGCCGCGCGCGGTTGGCGCGGACCCGGCGACGATAACG



AAGCCAATCAAGGAGTGGACATGACTCAGCGCATTGCGTATGTGACCGGC



GGCATGGGTGGTATCGGAACCGCCATTTGCCAGCGGCTGGCCAAGGATGG



CTTTCGTGTGGTGGCCGGTTGCGGCCCCAACTCGCCGCGCCGCGAAAAGT



GGCTGGAGCAGCAGAAGGCCCTGGGCTTCGATTTCATTGCCTCGGAAGGC



AATGTGGCTGACTGGGACTCGACCAAGACCGCATTCGACAAGGTCAAGTC



CGAGGTCGGCGAGGTTGATGTGCTGATCAACAACGCCGGTATCACCCGCG



ACGTGGTGTTCCGCAAGATGACCCGCGCCGACTGGGATGCGGTGATCGAC



ACCAACCTGACCTCGCTGTTCAACGTCACCAAGCAGGTGATCGACGGCAT



GGCCGACCGTGGCTGGGGCCGCATCGTCAACATCTCGTCGGTGAACGGGC



AGAAGGGCCAGTTCGGCCAGACCAACTACTCCACCGCCAAGGCCGGCCTG



CATGGCTTCACCATGGCACTGGCGCAGGAAGTGGCGACCAAGGGCGTGAC



CGTCAACACGGTCTCTCCGGGCTATATCGCCACCGACATGGTCAAGGCGA



TCCGCCAGGACGTGCTCGACAAGATCGTCGCGACGATCCCGGTCAAGCGC



CTGGGCCTGCCGGAAGAGATCGCCTCGATCTGCGCCTGGTTGTCGTCGGA



GGAGTCCGGTTTCTCGACCGGCGCCGACTTCTCGCTCAACGGCGGCCTGC



ATATGGGCTGAGCTAGCAAAGGAGGTAAAGATAATGAGAAAGGTTCCCAT



TATTACCGCAGATGAGGCTGCAAAGCTTATTAAAGACGGTGATACAGTTA



CAACAAGTGGTTTCGTTGGAAATGCAATCCCTGAGGCTCTTGATAGAGCT



GTAGAAAAAAGATTCTTAGAAACAGGCGAACCCAAAAACATTACATATGT



TTATTGTGGTTCTCAAGGTAACAGAGACGGAAGAGGTGCTGAGCACTTTG



CTCATGAAGGCCTTTTAAAACGTTACATCGCTGGTCACTGGGCTACAGTT



CCTGCTTTGGGTAAAATGGCTATGGAAAATAAAATGGAAGCATATAATGT



ATCTCAGGGTGCATTGTGTCATTTGTTCCGTGATATAGCTTCTCATAAGC



CAGGCGTATTTACAAAGGTAGGTATCGGTACTTTCATTGACCCCAGAAAT



GGCGGCGGTAAAGTAAATGATATTACCAAAGAAGATATTGTTGAATTGGT



AGAGATTAAGGGTCAGGAATATTTATTCTACCCTGCTTTTCCTATTCATG



TAGCTCTTATTCGTGGTACTTACGCTGATGAAAGCGGAAATATCACATTT



GAGAAAGAAGTTGCTCCTCTGGAAGGAACTTCAGTATGCCAGGCTGTTAA



AAACAGTGGCGGTATCGTTGTAGTTCAGGTTGAAAGAGTAGTAAAAGCTG



GTACTCTTGACCCTCGTCATGTAAAAGTTCCAGGAATTTATGTTGACTAT



GTTGTTGTTGCTGACCCAGAAGATCATCAGCAATCTTTAGATTGTGAATA



TGATCCTGCATTATCAGGCGAGCATAGAAGACCTGAAGTTGTTGGAGAAC



CACTTCCTTTGAGTGCAAAGAAAGTTATTGGTCGTCGTGGTGCCATTGAA



TTAGAAAAAGATGTTGCTGTAAATTTAGGTGTTGGTGCGCCTGAATATGT



AGCAAGTGTTGCTGATGAAGAAGGTATCGTTGATTTTATGACTTTAACTG



CTGAAAGTGGTGCTATTGGTGGTGTTCCTGCTGGTGGCGTTCGCTTTGGT



GCTTCTTATAATGCGGATGCATTGATCGATCAAGGTTATCAATTCGATTA



CTATGATGGCGGCGGCTTAGACCTTTGCTATTTAGGCTTAGCTGAATGCG



ATGAAAAAGGCAATATCAACGTTTCAAGATTTGGCCCTCGTATCGCTGGT



TGTGGTGGTTTCATCAACATTACACAGAATACACCTAAGGTATTCTTCTG



TGGTACTTTCACAGCAGGTGGCTTAAAGGTTAAAATTGAAGATGGCAAGG



TTATTATTGTTCAAGAAGGCAAGCAGAAAAAATTCTTGAAAGCTGTTGAG



CAGATTACATTCAATGGTGACGTTGCACTTGCTAATAAGCAACAAGTAAC



TTATATTACAGAAAGATGCGTATTCCTTTTGAAGGAAGATGGTTTGCACT



TATCTGAAATTGCACCTGGTATTGATTTGCAGACACAGATTCTTGACGTT



ATGGATTTTGCACCTATTATTGACAGAGATGCAAACGGCCAAATCAAATT



GATGGACGCTGCTTTGTTTGCAGAAGGCTTAATGGGTCTGAAGGAAATGA



AGTCCTGAGCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGC



TCAGTCGAAAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACG



CTCTCCTGAGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAG



CAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCA



TCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTAC



AAACTCTTTTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCA



TGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGT



ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATT



TTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATG



CTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAAC



AGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT



GAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACG



CCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTG



GTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGT



AAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCA



ACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTG



CACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCT



GAATGAAGCCATACCAAACGACGAGCGTGACACCACGATGCCTACAGCAA



TGGCAACAACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCT



TCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACC



ACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTG



GAGCCGGTGAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGAT



GGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAAC



TATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTA



AGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGAT



TTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGA



TAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGT



CAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTG



CGCGTAATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGT



TTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCT



TCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTA



GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCT



AATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCG



GGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGA



ACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA



ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAG



GGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAG



CGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGT



CGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAG



GGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTC



CTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCC



TGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTC



GCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAA



GAGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACA



CCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAA



GCCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCC



GACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCG



GCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCA



GAGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCAGATCAATTCGC



GCGCGAAGGCGAAGCGGCATGCATTTACGTTGACACCATCGAATGGTGCA



AAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGG



GTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGG



TGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTT



CTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTAC



ATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGAT



TGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCG



CGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCG



ATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCT



TCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACC



AGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTT



CTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGA



AGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGC



AAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGT



CTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGC



GGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGC



AAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGAT



CAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGT



TGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCAT



GTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGG



CAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAA



GGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGG



CGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATG



CAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACG



CAATTAATGTGAGTTAGCGCGAATTGATCTG





SEQ ID
GTTTGACAGCTTATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCA


NO: 163
GGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCA


nucleic acid
TAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCG


sequence
CCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAAT


for the
TAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTC


plasmid
ACACAGGAAACAGACTGACTGACGTTGTCATCGTATCCGCCGCCCGCACC


plrc-
GCGGTCGGCAAGTTTGGCGGCTCGCTGGCCAAGATCCCGGCACCGGAACT


phaAB:pct(Me)
GGGTGCCGTGGTCATCAAGGCCGCGCTGGAGCGCGCCGGCGTCAAGCCGG



AGCAGGTGAGCGAAGTCATCATGGGCCAGGTGCTGACCGCCGGTTCGGGC



CAGAACCCCGCACGCCAGGCCGCGATCAAGGCCGGCCTGCCGGCGATGGT



GCCGGCCATGACCATCAACAAGGTGTGCGGCTCGGGCCTGAAGGCCGTGA



TGCTGGCCGCCAACGCGATCATGGCGGGCGACGCCGAGATCGTGGTGGCC



GGCGGCCAGGAAAACATGAGCGCCGCCCCGCACGTGCTGCCGGGCTCGCG



CGATGGTTTCCGCATGGGCGATGCCAAGCTGGTCGACACCATGATCGTCG



ACGGCCTGTGGGACGTGTACAACCAGTACCACATGGGCATCACCGCCGAG



AACGTGGCCAAGGAATACGGCATCACACGCGAGGCGCAGGATGAGTTCGC



CGTCGGCTCGCAGAACAAGGCCGAAGCCGCGCAGAAGGCCGGCAAGTTTG



ACGAAGAGATCGTCCCGGTGCTGATCCCGCAGCGCAAGGGCGACCCGGTG



GCCTTCAAGACCGACGAGTTCGTGCGCCAGGGCGCCACGCTGGACAGCAT



GTCCGGCCTCAAGCCCGCCTTCGACAAGGCCGGCACGGTGACCGCGGCCA



ACGCCTCGGGCCTGAACGACGGCGCCGCCGCGGTGGTGGTGATGTCGGCG



GCCAAGGCCAAGGAACTGGGCCTGACCCCGCTGGCCACGATCAAGAGCTA



TGCCAACGCCGGTGTCGATCCCAAGGTGATGGGCATGGGCCCGGTGCCGG



CCTCCAAGCGCGCCCTGTCGCGCGCCGAGTGGACCCCGCAAGACCTGGAC



CTGATGGAGATCAACGAGGCCTTTGCCGCGCAGGCGCTGGCGGTGCACCA



GCAGATGGGCTGGGACACCTCCAAGGTCAATGTGAACGGCGGCGCCATCG



CCATCGGCCACCCGATCGGCGCGTCGGGCTGCCGTATCCTGGTGACGCTG



CTGCACGAGATGAAGCGCCGTGACGCGAAGAAGGGCCTGGCCTCGCTGTG



CATCGGCGGCGGCATGGGCGTGGCGCTGGCAGTCGAGCGCAAATAAGGAA



GGGGTTTTCCGGGGCCGCGCGCGGTTGGCGCGGACCCGGCGACGATAACG



AAGCCAATCAAGGAGTGGACATGACTCAGCGCATTGCGTATGTGACCGGC



GGCATGGGTGGTATCGGAACCGCCATTTGCCAGCGGCTGGCCAAGGATGG



CTTTCGTGTGGTGGCCGGTTGCGGCCCCAACTCGCCGCGCCGCGAAAAGT



GGCTGGAGCAGCAGAAGGCCCTGGGCTTCGATTTCATTGCCTCGGAAGGC



AATGTGGCTGACTGGGACTCGACCAAGACCGCATTCGACAAGGTCAAGTC



CGAGGTCGGCGAGGTTGATGTGCTGATCAACAACGCCGGTATCACCCGCG



ACGTGGTGTTCCGCAAGATGACCCGCGCCGACTGGGATGCGGTGATCGAC



ACCAACCTGACCTCGCTGTTCAACGTCACCAAGCAGGTGATCGACGGCAT



GGCCGACCGTGGCTGGGGCCGCATCGTCAACATCTCGTCGGTGAACGGGC



AGAAGGGCCAGTTCGGCCAGACCAACTACTCCACCGCCAAGGCCGGCCTG



CATGGCTTCACCATGGCACTGGCGCAGGAAGTGGCGACCAAGGGCGTGAC



CGTCAACACGGTCTCTCCGGGCTATATCGCCACCGACATGGTCAAGGCGA



TCCGCCAGGACGTGCTCGACAAGATCGTCGCGACGATCCCGGTCAAGCGC



CTGGGCCTGCCGGAAGAGATCGCCTCGATCTGCGCCTGGTTGTCGTCGGA



GGAGTCCGGTTTCTCGACCGGCGCCGACTTCTCGCTCAACGGCGGCCTGC



ATATGGGCTGAGCTAGCAAAGGAGGTAAAGATAATGAGAAAAGTAGAAAT



CATTACAGCTGAACAAGCAGCTCAGCTCGTAAAAGACAACGACACGATTA



CGTCTATCGGCTTTGTCAGCAGCGCCCATCCGGAAGCACTGACCAAAGCT



TTGGAAAAACGGTTCCTGGACACGAACACCCCGCAGAACTTGACCTACAT



CTATGCAGGCTCTCAGGGCAAACGCGATGGCCGTGCCGCTGAACATCTGG



CACACACAGGCCTTTTGAAACGCGCCATCATCGGTCACTGGCAGACTGTA



CCGGCTATCGGTAAACTGGCTGTCGAAAACAAGATTGAAGCTTACAACTT



CTCGCAGGGCACGTTGGTCCACTGGTTCCGCGCCTTGGCAGGTCATAAGC



TCGGCGTCTTCACCGACATCGGTCTGGAAACTTTCCTCGATCCCCGTCAG



CTCGGCGGCAAGCTCAATGACGTAACCAAAGAAGACCTCGTCAAACTGAT



CGAAGTCGATGGTCATGAACAGCTTTTCTACCCGACCTTCCCGGTCAACG



TAGCTTTCCTCCGCGGTACGTATGCTGATGAATCCGGCAATATCACCATG



GACGAAGAAATCGGGCCTTTCGAAAGCACTTCCGTAGCCCAGGCCGTTCA



CAACTGTGGCGGTAAAGTCGTCGTCCAGGTCAAAGACGTCGTCGCTCACG



GCAGCCTCGACCCGCGCATGGTCAAGATCCCTGGCATCTATGTCGACTAC



GTCGTCGTAGCAGCTCCGGAAGACCATCAGCAGACGTATGACTGCGAATA



CGATCCGTCCCTCAGCGGTGAACATCGTGCTCCTGAAGGCGCTACCGATG



CAGCTCTCCCCATGAGCGCTAAGAAAATCATCGGCCGCCGCGGCGCTTTG



GAATTGACTGAAAACGCTGTCGTCAACCTCGGCGTCGGTGCTCCGGAATA



CGTTGCTTCTGTTGCCGGTGAAGAAGGTATCGCCGATACCATTACCCTGA



CCGTCGAAGGTGGCGCCATCGGTGGCGTACCGCAGGGCGGTGCCCGCTTC



GGTTCGTCCCGCAATGCCGATGCCATCATCGACCACACCTATCAGTTCGA



CTTCTACGATGGCGGCGGTCTGGACATCGCTTACCTCGGCCTGGCCCAGT



GCGATGGCTCGGGCAACATCAACGTCAGCAAGTTCGGTACTAACGTTGCC



GGCTGCGGCGGTTTCCCCAACATTTCCCAGCAGACACCGAATGTTTACTT



CTGCGGCACCTTCACGGCTGGCGGCTTGAAAATCGCTGTCGAAGACGGCA



AAGTCAAGATCCTCCAGGAAGGCAAAGCCAAGAAGTTCATCAAAGCTGTC



GACCAGATCACTTTCAACGGTTCCTATGCAGCCCGCAACGGCAAACACGT



TCTCTACATCACAGAACGCTGCGTATTTGAACTGACCAAAGAAGGCTTGA



AACTCATCGAAGTCGCACCGGGCATCGATATTGAAAAAGATATCCTCGCT



CACATGGACTTCAAGCCGATCATTGATAATCCGAAACTCATGGATGCCCG



CCTCTTCCAGGACGGTCCCATGGGACTGAAAAAATAAGCGAGAGTAGGGA



ACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTT



TCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATC



CGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGG



GCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCAT



CCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTTTTTGTTTATTTTT



CTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAA



TGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGT



GTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCA



CCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCAC



GAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGT



TTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCT



ATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTC



GCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACA



GAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGC



CATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCG



GAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTA



ACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGA



CGAGCGTGACACCACGATGCCTACAGCAATGGCAACAACGTTGCGCAAAC



TATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGAC



TGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCC



GGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC



GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTA



GTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACA



GATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACC



AAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTT



AAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCC



TTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCA



AAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAA



ACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCT



ACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAA



ATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCT



GTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGC



TGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGT



TACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAG



CCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGA



GCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATC



CGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCA



GGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTG



ACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGA



AAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCT



TTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCG



TATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCG



AGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTAT



TTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCT



CAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCT



ATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCG



CTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAA



GCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATC



ACCGAAACGCGCGAGGCAGCAGATCAATTCGCGCGCGAAGGCGAAGCGGC



ATGCATTTACGTTGACACCATCGAATGGTGCAAAACCTTTCGCGGTATGG



CATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCA



GTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGT



TTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAA



AAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCA



CAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAG



TCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCG



CCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGC



GTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAG



TGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGG



AAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAG



ACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGG



CGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGG



GCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAA



TATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTG



GAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCA



TCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCA



ATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGT



AGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAA



CCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGC



TTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCC



CGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCG



CCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTT



TCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGC



GCGAATTGATCTG





SEQ ID
ATGATGGTTCCAACCCTCGAACACGAGCTTGCTCCCAACGAAGCCAACCA


NO: 164
TGTCCCGCTGTCGCCGCTGTCGTTCCTCAAGCGTGCCGCGCAGGTGTACC


nucleic acid
CGCAGCGCGATGCGGTGATCTATGGCGCAAGGCGCTACAGCTACCGTCAG


sequence
TTGCACGAGCGCAGCCGCGCCCTGGCCAGTGCCTTGGAGCGGGTCGGTGT


for the
TCAGCCGGGCGAGCGGGTGGCGATATTGGCGCCGAACATCCCGGAAATGC


plasmid
TCGAGGCCCACTATGGCGTGCCCGGTGCCGGGGCGGTGCTGGTGTGCATC


pK-lvaE:
AACATCCGCCTGGAGGGGCGCAGCATTGCCTTCATCCTGCGTCACTGCGC


tesB
GGCCAAGGTATTGATCTGCGATCGTGAGTTCGGTGCCGTGGCCAATCAGG



CGCTGGCCATGCTCGATGCGCCGCCCTTGCTGGTGGGCATCGACGATGAT



CAGGCCGAGCGCGCCGATTTGGCCCACGACCTGGACTACGAAGCGTTCTT



GGCCCAGGGCGACCCCGCGCGGCCGTTGAGTGCGCCACAGAACGAATGGC



AGTCGATCGCCATCAACTACACCTCCGGCACCACGGGGGACCCCAAGGGC



GTGGTGCTGCATCACCGCGGCGCCTACCTCAACGCCTGCGCCGGGGCGCT



GATCTTCCAGTTGGGGCCGCGCAGCGTCTACTTGTGGACCTTGCCGATGT



TCCACTGCAACGGCTGGAGCCATACCTGGGCGGTGACGTTGTCCGGTGGC



ACCCACGTGTGTCTGCGCAAGGTCCAGCCTGATGCGATCAACGCCGCCAT



CGCCGAGCATGCCGTGACTCACCTGAGCGCCGCCCCAGTGGTGATGTCGA



TGCTGATCCACGCCGAGCATGCCAGCGCCCCTCCGGTGCCGGTTTCGGTG



ATCACTGGCGGTGCCGCCCCGCCCAGTGCGGTCATCGCGGCGATGGAGGC



GCGTGGCTTCAACATCACCCATGCCTATGGCATGACCGAAAGCTACGGTC



CCAGCACATTGTGCCTGTGGCAGCCGGGTGTCGACGAGTTGCCGCTGGAG



GCCCGGGCCCAGTTCATGAGCCGCCAGGGCGTCGCCCACCCGCTGCTCGA



GGAGGCCACGGTGCTGGATACCGACACCGGCCGCCCGGTCCCGGCCGACG



GCCTTACCCTCGGCGAGCTGGTGGTGCGGGGCAACACTGTGATGAAAGGC



TACCTGCACAACCCAGAGGCTACCCGTGCCGCGTTGGCCAACGGCTGGCT



GCACACGGGCGACCTGGCCGTGCTGCACCTGGACGGCTATGTGGAAATCA



AGGACCGAGCCAAGGACATCATCATTTCTGGCGGCGAGAACATCAGTTCG



CTGGAGATAGAAGAAGTGCTCTACCAGCACCCCGAGGTGGTCGAGGCTGC



GGTGGTGGCGCGTCCGGATTCGCGCTGGGGCGAGACACCTCACGCTTTCG



TCACGCTGCGCGCTGATGCACTGGCCAGCGGGGACGACCTGGTCCGCTGG



TGCCGTGAGCGTCTGGCGCACTTCAAGGCGCCGCGCCATGTGTCGCTCGT



GGACCTGCCCAAGACCGCCACTGGAAAAATACAGAAGTTCGTCCTGCGTG



AGTGGGCCCGGCAACAGGAGGCGCAGATCGCCGACGCCGAGCATTGACTC



GAGAAAGGAGGATAAGATAATGAGTCAGGCGCTAAAAAATTTACTGACAT



TGTTAAATCTGGAAAAAATTGAGGAAGGACTCTTTCGCGGCCAGAGTGAA



GATTTAGGTTTACGCCAGGTGTTTGGCGGCCAGGTCGTGGGTCAGGCCTT



GTATGCTGCAAAAGAGACCGTCCCTGAAGAGCGGCTGGTACATTCGTTTC



ACAGCTACTTTCTTCGCCCTGGCGATAGTAAGAAGCCGATTATTTATGAT



GTCGAAACGCTGCGTGACGGTAACAGCTTCAGCGCCCGCCGGGTTGCTGC



TATTCAAAACGGCAAACCGATTTTTTATATGACTGCCTCTTTCCAGGCAC



CAGAAGCGGGTTTCGAACATCAAAAAACAATGCCGTCCGCGCCAGCGCCT



GATGGCCTCCCTTCGGAAACGCAAATCGCCCAATCGCTGGCGCACCTGCT



GCCGCCAGTGCTGAAAGATAAATTCATCTGCGATCGTCCGCTGGAAGTCC



GTCCGGTGGAGTTTCATAACCCACTGAAAGGTCACGTCGCAGAACCACAT



CGTCAGGTGTGGATCCGCGCAAATGGTAGCGTGCCGGATGACCTGCGCGT



TCATCAGTATCTGCTCGGTTACGCTTCTGATCTTAACTTCCTGCCGGTAG



CTCTACAGCCGCACGGCATCGGTTTTCTCGAACCGGGGATTCAGATTGCC



ACCATTGACCATTCCATGTGGTTCCATCGCCCGTTTAATTTGAATGAATG



GCTGCTGTATAGCGTGGAGAGCACCTCGGCGTCCAGCGCACGTGGCTTTG



TGCGCGGTGAGTTTTATACCCAAGACGGCGTACTGGTTGCCTCGACCGTT



CAGGAAGGGGTGATGCGTAATCACAATTAATGATTACGAATTCGAGCTCG



GTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAGCTTGGCACT



GGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAAC



TTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAA



GAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGA



ATGGCGCGATAAGCTAGCTTCACGCTGCCGCAAGCACTCAGGGCGCAAGG



GCTGCTAAAGGAAGCGGAACACGTAGAAAGCCAGTCCGCAGAAACGGTGC



TGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAAGGGAAAACGC



AAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACATGGCGATAGC



TAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGG



GCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTT



CTTGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGA



CAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGT



TCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACA



GACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGC



GCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTC



CAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTG



CGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTGCTAT



TGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCC



GAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCATACGCTTGA



TCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGAGCGAG



CACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAA



GAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCG



GATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATGCCTGCTTGC



CGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGC



CGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGTGA



TATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTT



ACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTATCGCCTTCTT



GACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGCGATGATAAGCTGTCAA



ACATGAGAATTACAACTTATATCGTATGGGGCTGACTTCAGGTGCTACAT



TTGAAGAGATAAATTGCACTGAAATCTAGAAATATTTTATCTGATTAATA



AGATGATCTTCTTGAGATCGTTTTGGTCTGCGCGTAATCTCTTGCTCTGA



AAACGAAAAAACCGCCTTGCAGGGCGGTTTTTCGAAGGTTCTCTGAGCTA



CCAACTCTTTGAACCGAGGTAACTGGCTTGGAGGAGCGCAGTCACCAAAA



CTTGTCCTTTCAGTTTAGCCTTAACCGGCGCATGACTTCAAGACTAACTC



CTCTAAATCAATTACCAGTGGCTGCTGCCAGTGGTGCTTTTGCATGTCTT



TCCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGA



CTGAACGGGGGGTTCGTGCATACAGTCCAGCTTGGAGCGAACTGCCTACC



CGGAACTGAGTGTCAGGCGTGGAATGAGACAAACGCGGCCATAACAGCGG



AATGACACCGGTAAACCGAAAGGCAGGAACAGGAGAGCGCACGAGGGAGC



CGCCAGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACC



ACTGATTTGAGCGTCAGATTTCGTGATGCTTGTCAGGGGGGCGGAGCCTA



TGGAAAAACGGCTTTGCCTTCTTTCCTGCGTTATCCCCTGATTCTGTGGA



TAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAA



CGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATA



CGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCA



CGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATG



TGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCG



GCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAGG



AATCAAAA





SEQ ID
GTTTGACAGCTTATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCA


NO: 165
GGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCA


nucleic acid
TAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCG


sequence
CCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAAT


for the
TAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTC


plasmid
ACACAGGAGGAATCAAAAATGCTGGTAAATGACGAGCAACAACAGATCGC


pTrc-
CGACGCGGTACGTGCGTTCGCCCAGGAACGCCTGAAGCCGTTTGCCGAGC


PP_2216:H
AATGGGACAAGGACCATCGCTTCCCGAAAGAGGCCATCGACGAGATGGCC


16_RS27940
GAACTGGGCCTGTTCGGCATGCTGGTGCCGGAGCAGTGGGGCGGTAGCGA



CACCGGTTATGTGGCCTATGCCATGGCCTTGGAGGAAATCGCTGCGGGCG



ATGGCGCCTGCTCGACCATCATGAGCGTGCACAACTCGGTGGGTTGCGTG



CCGATCCTGCGCTTCGGCAACGAGCAGCAGAAAGAGCAGTTCCTCACCCC



GCTGGCGACAGGTGCGATGCTCGGTGCTTTCGCCCTGACCGAGCCGCAGG



CTGGCTCCGATGCCAGCAGCCTGAAGACCCGCGCACGCCTGGAAGGCGAC



CATTACGTGCTCAATGGCAGCAAGCAGTTCATTACCTCGGGGCAGAACGC



CGGCGTAGTGATCGTGTTTGCGGTCACCGACCCGGAGGCCGGCAAGCGTG



GCATCAGCGCCTTCATCGTGCCGACCGATTCGCCGGGCTACCAGGTAGCG



CGGGTGGAGGACAAACTCGGCCAGCACGCCTCCGACACCTGCCAGATCGT



TTTCGACAATGTGCAAGTGCCAGTGGCCAACCGGCTGGGGGCGGAGGGTG



AAGGCTACAAGATCGCCCTGGCCAACCTTGAAGGCGGCCGTATCGGCATC



GCCTCGCAAGCGGTGGGTATGGCCCGCGCGGCGTTCGAAGTGGCGCGGGA



CTATGCCAACGAGCGCCAGAGCTTTGGCAAACCGCTGATCGAGCACCAGG



CCGTGGCGTTTCGCCTGGCCGACATGGCAACGAAAATTTCCGTTGCCCGG



CAGATGGTATTGCACGCCGCTGCCCTTCGTGATGCGGGGCGCCCGGCGCT



GGTGGAAGCGTCGATGGCCAAGCTGTTCGCCTCGGAAATGGCCGAAAAGG



TCTGTTCGGACGCCTTGCAGACCCTGGGCGGTTATGGCTATCTGAGTGAC



TTCCCGCTGGAGCGGATCTACCGCGACGTTCGGGTTTGCCAGATCTACGA



AGGCACCAGCGACATTCAGCGCATGGTCATTGCGCGCAATCTTTGAGCTA



GCAAAGGAGGTAAAGATAATGTACGCAGCTAAGGACATCACCGTGGAGGA



GCGCGCCGGCGGCGCGCTATGGATCACGATCGACCGGGCGCAGAAACACA



ATGCGCTGGCCCGCCACGTGCTGGCGGGATTGGCGCAGGTGGTGAGCGCC



GCGGCGGCGCAGCCCGGGGTGCGCTGCATCGTGCTGACCGGCGCCGGCCA



GCGCTTCTTTGCGGCAGGCGGCGATCTGGTCGAGCTGTCCGGCGTGCGCG



ACCGGGAGGCTACGCTGGCCATGAGCGAGCAGGCGCGCGGTGCCCTGGAT



GCGGTGCGCGACTGCCCGCTGCCGGTGCTGGCCTACCTGAACGGCGATGC



CATCGGCGGCGGCGCCGAGCTGGCATTGGCCTGCGACATGCGGCTGCAGT



CGGCGAGCGCGCGCATCGGCTTTATCCAGGCGCGGCTGGCCATCACCTCG



GCCTGGGGCGGCGGCCCCGACCTGTGCCGGATCGTCGGCGCGGCGCGGGC



CATGCGCATGATGAGCCGTTGCGAGCTTGTCGATGCGCAGCAGGCGCTGC



AGTGGGGCTTGGCCGATGCGGTGGTCACGGACGGACCCGCCGGCAAGGAC



ATCCACGCCTTCCTGCAACCGCTGCTGGGCTGCGCCCCGCAGGTGCTGCG



CGGCATCAAGGCGCAGACCGCGGCCAGCCGGCGCGGCGAGTCGCATGACG



CTGCCCGCACCATCGAGCAGCAGCAACTGTTGCATACCTGGCTCCATGCG



GACCATTGGAACGCTGCCGAGGGCATCCTCTCCAGGAGGGCCCAATGAGG



CTGTTTTGGCGGATGAGAGAAGATTTTCAGCCTGATACAGATTAAATCAG



AACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTAGCGCG



GTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGTAGCGC



CGATGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCAGGCAT



CAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTTATCTG



TTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGGAGCGG



ATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCG



CCATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGG



CCTTTTTGCGTTTCTACAAACTCTTTTTGTTTATTTTTCTAAATACATTC



AAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAAT



ATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATT



CCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCT



GGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACA



TCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAA



GAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGT



ATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACT



ATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTT



ACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAG



TGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGG



AGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGAT



CGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGTGACAC



CACGATGCCTACAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCG



AACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCG



GATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTT



TATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATTG



CAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACG



ACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGAT



AGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCAT



ATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAG



GTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTT



TTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT



GAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAAAACCA



CCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTT



TCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTC



TAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCT



ACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGA



TAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGG



CGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAG



CGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAG



CGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCA



GGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGG



TATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATT



TTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACG



CGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTC



TTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGA



GTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAG



TGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCAT



CTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTC



TGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGTGACTG



GGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCCCTGAC



GGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCC



GGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGCGCGAG



GCAGCAGATCAATTCGCGCGCGAAGGCGAAGCGGCATGCATTTACGTTGA



CACCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGG



AAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGAT



GTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAA



CCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGA



TGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGC



AAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGC



GCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTG



CCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAA



GCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAA



CTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTA



ATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGT



ATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGT



CGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTG



TCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAAT



CAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGG



TTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGA



TGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACC



GAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGA



TACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGG



ATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCT



CAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAA



AAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGT



TGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGC



GGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCGCGAATTGATCTG





SEQ ID
GTTTGACAGCTTATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCA


NO: 166
GGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCA


nucleic acid
TAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCG


sequence
CCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAAT


for the
TAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTC


plasmid
ACACAGGAGGAATCAAAAATGCATTTTAAACTATCAGAAGAACATGAAAT


pTrc-
GATAAGAAAAATGGTTCGAGATTTTGCTAAAAATGAAGTGGCACCAACAG


BC 5341:
CAGCTGAGCGTGATGAGGAAGAGCGATTTGATCGAGAATTATTTGATCAA


H16_RS27940
ATGGCAGAGCTTGGTTTAACCGGTATTCCGTGGCCTGAAGAGTACGGTGG



AATTGGAAGCGATTACTTAGCGTACGTAATCGCTATTGAAGAATTATCCC



GCGTTTGTGCTTCAACAGGCGTAACACTGTCCGCGCATACTTCACTTGCA



GGATGGCCAATTTTTAAATTTGGGACGGAAGAGCAAAAGCAAAAGTTTTT



ACGACCGATGGCTGAAGGAAAGAAAATTGGTGCATACGGCTTAACGGAGC



CAGGATCTGGATCGGATGCTGGTGGAATGAAGACAATCGCAAAGAGAGAT



GGAGACCATTATATTTTAAATGGCGGTACGAGTGCATTTATTGTAGAAAG



TGATACACCGGGATTTTCAGTTGGGAAGAAGGAGAGCAAGCTAGGGATTC



GCTCTTCACCAACGACTGAAATTATGTTTGAAGATTGCCGTATTCCTGTA



GAGAATCTACTTGGAGAAGAGGGGCAAGGGTTTAAAGTTGCGATGCAAAC



ATTAGATGGAGGTCGTAACGGTATTGCGGCGCAAGCTGTTGGTATTGCAC



AAGGGGCTTTAGATGCTTCTGTAGAATATGCAAGGGAGCGCCATCAATTT



GGAAAACCAATTGCGGCGCAGCAAGGGATTGGCTTTAAACTTGCGGATAT



GGCAACAGATGTAGAAGCGGCACGCCTTTTAACATATCAAGCGGCTTGGC



TTGAATCAGAAGGGCTTCCGTATGGAAAAGAGTCAGCGATGTCAAAAGTA



TTTGCAGGAGATACAGCGATGAGGGTGACGACTGAAGCGGTGCAAGTATT



TGGTGGTTACGGTTATACGAAAGATTATCCAGTAGAGCGTTATATGCGAG



ATGCAAAAATTACACAAATATATGAAGGAACACAAGAGATTCAGAGGCTT



GTAATTTCTCGTATGTTAACGAAGTAGGCTAGCAAAGGAGGTAAAGATAA



TGTACGCAGCTAAGGACATCACCGTGGAGGAGCGCGCCGGCGGCGCGCTA



TGGATCACGATCGACCGGGCGCAGAAACACAATGCGCTGGCCCGCCACGT



GCTGGCGGGATTGGCGCAGGTGGTGAGCGCCGCGGCGGCGCAGCCCGGGG



TGCGCTGCATCGTGCTGACCGGCGCCGGCCAGCGCTTCTTTGCGGCAGGC



GGCGATCTGGTCGAGCTGTCCGGCGTGCGCGACCGGGAGGCTACGCTGGC



CATGAGCGAGCAGGCGCGCGGTGCCCTGGATGCGGTGCGCGACTGCCCGC



TGCCGGTGCTGGCCTACCTGAACGGCGATGCCATCGGCGGCGGCGCCGAG



CTGGCATTGGCCTGCGACATGCGGCTGCAGTCGGCGAGCGCGCGCATCGG



CTTTATCCAGGCGCGGCTGGCCATCACCTCGGCCTGGGGCGGCGGCCCCG



ACCTGTGCCGGATCGTCGGCGCGGCGCGGGCCATGCGCATGATGAGCCGT



TGCGAGCTTGTCGATGCGCAGCAGGCGCTGCAGTGGGGCTTGGCCGATGC



GGTGGTCACGGACGGACCCGCCAGCGAGTCAGTGAGCGAGGAAGCGGAAG



AGCGCCTGATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACAC



CGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAG



CCAGTATACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCG



ACACCCGCCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGG



CATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAG



AGGTTTTCACCGTCATCACCGAAACGCGCGAGGCAGCAGATCAATTCGCG



CGCGAAGGCGAAGCGGCATGCATTTACGTTGACACCATCGAATGGTGCAA



AACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGG



TGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGT



GTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTC



TGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACA



TTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATT



GGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGC



GGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGA



TGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTT



CTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCA



GGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTC



TTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAA



GACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCA



AATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTC



TGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCG



GAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCA



AATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATC



AGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTT



GGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATG



TTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGC



AAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAG



GGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGC



GCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGC



AGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGC



AATTAATGTGAGTTAGCGCGAATTGATCTG





SEQ ID
CGGTGTATGCAAGAGGGATAAAAAATGAAAACAAAATTGATGACATTACA


NO: 167
AGACGCCACCGGCTTCTTTCGTGACGGCATGACCATCATGGTGGGCGGAT


nucleic acid
TTATGGGGATTGGCACTCCATCCCGCCTGGTTGAAGCATTACTGGAATCT


sequence
GGTGTTCGCGACCTGACATTGATAGCCAATGATACCGCGTTTGTTGATAC


for the
CGGCATCGGTCCGCTCATCGTCAATGGTCGAGTCCGCAAAGTGATTGCTT


plasmid pK-
CACATATCGGCACCAACCCGGAAACAGGTCGGCGCATGATATCTGGTGAG


atoDAE:tesB
ATGGACGTCGTTCTGGTGCCGCAAGGTACGCTAATCGAGCAAATTCGCTG



TGGTGGAGCTGGACTTGGTGGTTTTCTCACCCCAACGGGTGTCGGCACCG



TCGTAGAGGAAGGCAAACAGACACTGACACTCGACGGTAAAACCTGGCTG



CTCGAACGCCCACTGCGCGCCGACCTGGCGCTAATTCGCGCTCATCGTTG



CGACACACTTGGCAACCTGACCTATCAACTTAGCGCCCGCAACTTTAACC



CCCTGATAGCCCTTGCGGCTGATATCACGCTGGTAGAGCCAGATGAACTG



GTCGAAACCGGCGAGCTGCAACCTGACCATATTGTCACCCCTGGTGCCGT



TATCGACCACATCATCGTTTCACAGGAGAGCAAATAATGGATGCGAAACA



ACGTATTGCGCGCCGTGTGGCGCAAGAGCTTCGTGATGGTGACATCGTTA



ACTTAGGGATCGGTTTACCCACAATGGTCGCCAATTATTTACCGGAGGGT



ATTCATATCACTCTGCAATCGGAAAACGGCTTCCTCGGTTTAGGCCCGGT



CACGACAGCGCATCCAGATCTGGTGAACGCTGGCGGGCAACCGTGCGGTG



TTTTACCCGGTGCAGCCATGTTTGATAGCGCCATGTCATTTGCGCTAATC



CGTGGCGGTCATATTGATGCCTGCGTGCTCGGCGGTTTGCAAGTAGACGA



AGAAGCAAACCTCGCGAACTGGGTAGTGCCTGGGAAAATGGTGCCCGGTA



TGGGTGGCGCGATGGATCTGGTGACCGGGTCGCGCAAAGTGATCATCGCC



ATGGAACATTGCGCCAAAGATGGTTCAGCAAAAATTTTGCGCCGCTGCAC



CATGCCACTCACTGCGCAACATGCGGTGCATATGCTGGTTACTGAACTGG



CTGTCTTTCGTTTTATTGACGGCAAAATGTGGCTCACCGAAATTGCCGAC



GGGTGTGATTTAGCCACCGTGCGTGCCAAAACAGAAGCTCGGTTTGAAGT



CGCCGCCGATCTGAATACGCAACGGGGTGATTTATGATTGGTCGCATATC



GCGTTTTATGACGCGTTTTGTCAGCCGGTGGCTTCCCGATCCACTGATCT



TTGCCATGTTGCTGACATTGCTAACATTCGTGATCGCGCTTTGGTTAACA



CCACAAACGCCGATCAGCATGGTGAAAATGTGGGGTGACGGTTTCTGGAA



CTTGCTGGCGTTTGGTATGCAGATGGCGCTTATCATCGTTACCGGTCATG



CCCTTGCCAGCTCTGCTCCGGTGAAAAGTTTGCTGCGTACTGCCGCCTCC



GCCGCAAAGACGCCCGTACAGGGCGTCATGCTGGTCACTTTCTTCGGTTC



AGTCGCTTGTGTCATCAACTGGGGATTTGGTTTGGTTGTCGGCGCAATGT



TTGCCCGTGAAGTCGCCCGGCGAGTCCCCGGTTCTGATTATCCGTTGCTC



ATTGCCTGCGCCTACATTGGTTTTCTCACCTGGGGTGGCGGCTTCTCTGG



ATCAATGCCTCTGTTGGCTGCAACACCGGGCAACCCGGTTGAGCATATCG



CCGGGCTGATCCCGGTGGGCGATACTCTGTTCAGTGGTTTTAACATTTTC



ATCACTGTGGCGTTGATTGTGGTGATGCCATTTATCACCCGCATGATGAT



GCCAAAACCGTCTGACGTGGTGAGTATCGATCCAAAACTACTCATGGAAG



AGGCTGATTTTCAAAAGCAGCTACCGAAAGATGCCCCACCATCCGAGCGA



CTGGAAGAAAGCCGCATTCTGACGTTGATCATCGGCGCACTCGGTATCGC



TTACCTTGCGATGTACTTCAGCGAACATGGCTTCAACATCACCATCAATA



CCGTCAACCTGATGTTTATGATTGCGGGTCTGCTGCTACATAAAACGCCA



ATGGCTTATATGCGTGCTATCAGCGCGGCAGCACGCAGTACTGCCGGTAT



TCTGGTGCAATTCCCCTTCTACGCTGGGATCCAACTGATGATGGAGCATT



CCGGTCTGGGCGGACTCATTACCGAATTCTTCATCAATGTTGCGAACAAA



GACACCTTCCCGGTAATGACCTTTTTTAGTTCTGCACTGATTAACTTCGC



CGTTCCGTCTGGCGGCGGTCACTGGGTTATTCAGGGACCTTTCGTGATAC



CCGCAGCCCAGGCGCTGGGCGCTGATCTCGGTAAATCGGTAATGGCGATC



GCCTACGGCGAGCAATGGATGAACATGGCACAACCATTCTGGGCGCTGCC



AGCACTGGCAATCGCCGGACTCGGTGTCCGCGACATCATGGGCTACTGCA



TCACTGCCCTGCTCTTCTCCGGTGTCATTTTCGTCATTGGTTTAACGCTG



TTCTGACTCGAGAAAGGAGGATAAGATAATGAGTCAGGCGCTAAAAAATT



TACTGACATTGTTAAATCTGGAAAAAATTGAGGAAGGACTCTTTCGCGGC



CAGAGTGAAGATTTAGGTTTACGCCAGGTGTTTGGCGGCCAGGTCGTGGG



TCAGGCCTTGTATGCTGCAAAAGAGACCGTCCCTGAAGAGCGGCTGGTAC



ATTCGTTTCACAGCTACTTTCTTCGCCCTGGCGATAGTAAGAAGCCGATT



ATTTATGATGTCGAAACGCTGCGTGACGGTAACAGCTTCAGCGCCCGCCG



GGTTGCTGCTATTCAAAACGGCAAACCGATTTTTTATATGACTGCCTCTT



TCCAGGCACCAGAAGCGGGTTTCGAACATCAAAAAACAATGCCGTCCGCG



CCAGCGCCTGATGGCCTCCCTTCGGAAACGCAAATCGCCCAATCGCTGGC



GCACCTGCTGCCGCCAGTGCTGAAAGATAAATTCATCTGCGATCGTCCGC



TGGAAGTCCGTCCGGTGGAGTTTCATAACCCACTGAAAGGTCACGTCGCA



GAACCACATCGTCAGGTGTGGATCCGCGCAAATGGTAGCGTGCCGGATGA



CCTGCGCGTTCATCAGTATCTGCTCGGTTACGCTTCTGATCTTAACTTCC



TGCCGGTAGCTCTACAGCCGCACGGCATCGGTTTTCTCGAACCGGGGATT



CAGATTGCCACCATTGACCATTCCATGTGGTTCCATCGCCCGTTTAATTT



GAATGAATGGCTGCTGTATAGCGTGGAGAGCACCTCGGCGTCCAGCGCAC



GTGGCTTTGTGCGCGGTGAGTTTTATACCCAAGACGGCGTACTGGTTGCC



TCGACCGTTCAGGAAGGGGTGATGCGTAATCACAATTAATGATTACGAAT



TCGAGCTCGGTACCCGGGGATCCTCTAGAGTCGACCTGCAGGCATGCAAG



CTTGGCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCG



TTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGT



AATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCT



GAATGGCGAATGGCGCGATAAGCTAGCTTCACGCTGCCGCAAGCACTCAG



GGCGCAAGGGCTGCTAAAGGAAGCGGAACACGTAGAAAGCCAGTCCGCAG



AAACGGTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATCTGGACAAG



GGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGGGCTTACAT



GGCGATAGCTAGACTGGGCGGTTTTATGGACAGCAAGCGAACCGGAATTG



CCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAAGTAAACTG



GATGGCTTTCTTGCCGCCAAGGATCTGATGGCGCAGGGGATCAAGATCTG



ATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTG



CACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTG



GGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAG



CGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTG



AATGAACTCCAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGG



CGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACT



GGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTT



GCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCA



TACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCA



TCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGAT



CTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCT



CAAGGCGCGGATGCCCGACGGCGAGGATCTCGTCGTGACCCATGGCGATG



CCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATC



GACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGC



TACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCC



TCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCGCCTTCTAT



CGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCGCGATGATA



AGCTGTCAAACATGAGAATTACAACTTATATCGTATGGGGCTGACTTCAG



GTGCTACATTTGAAGAGATAAATTGCACTGAAATCTAGAAATATTTTATC



TGATTAATAAGATGATCTTCTTGAGATCGTTTTGGTCTGCGCGTAATCTC



TTGCTCTGAAAACGAAAAAACCGCCTTGCAGGGCGGTTTTTCGAAGGTTC



TCTGAGCTACCAACTCTTTGAACCGAGGTAACTGGCTTGGAGGAGCGCAG



TCACCAAAACTTGTCCTTTCAGTTTAGCCTTAACCGGCGCATGACTTCAA



GACTAACTCCTCTAAATCAATTACCAGTGGCTGCTGCCAGTGGTGCTTTT



GCATGTCTTTCCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCA



GCGGTCGGACTGAACGGGGGGTTCGTGCATACAGTCCAGCTTGGAGCGAA



CTGCCTACCCGGAACTGAGTGTCAGGCGTGGAATGAGACAAACGCGGCCA



TAACAGCGGAATGACACCGGTAAACCGAAAGGCAGGAACAGGAGAGCGCA



CGAGGGAGCCGCCAGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGT



TTCGCCACCACTGATTTGAGCGTCAGATTTCGTGATGCTTGTCAGGGGGG



CGGAGCCTATGGAAAAACGGCTTTGCCTTCTTTCCTGCGTTATCCCCTGA



TTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCC



GCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAG



CGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATG



CAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACG



CAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTT



ATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTT





SEQ ID
GTTTGACAGCTTATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCA


NO: 168
GGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCA


nucleic
TAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCG


acid
CCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAAT


sequence
TAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTC


for the
ACACAGGAGGAATCAAAAATGCTGGTAAATGACGAGCAACAACAGATCGC


plasmid
CGACGCGGTACGTGCGTTCGCCCAGGAACGCCTGAAGCCGTTTGCCGAGC


pTrc-
AATGGGACAAGGACCATCGCTTCCCGAAAGAGGCCATCGACGAGATGGCC


PP_2216:
GAACTGGGCCTGTTCGGCATGCTGGTGCCGGAGCAGTGGGGCGGTAGCGA


phaJ
CACCGGTTATGTGGCCTATGCCATGGCCTTGGAGGAAATCGCTGCGGGCG



ATGGCGCCTGCTCGACCATCATGAGCGTGCACAACTCGGTGGGTTGCGTG



CCGATCCTGCGCTTCGGCAACGAGCAGCAGAAAGAGCAGTTCCTCACCCC



GCTGGCGACAGGTGCGATGCTCGGTGCTTTCGCCCTGACCGAGCCGCAGG



CTGGCTCCGATGCCAGCAGCCTGAAGACCCGCGCACGCCTGGAAGGCGAC



CATTACGTGCTCAATGGCAGCAAGCAGTTCATTACCTCGGGGCAGAACGC



CGGCGTAGTGATCGTGTTTGCGGTCACCGACCCGGAGGCCGGCAAGCGTG



GCATCAGCGCCTTCATCGTGCCGACCGATTCGCCGGGCTACCAGGTAGCG



CGGGTGGAGGACAAACTCGGCCAGCACGCCTCCGACACCTGCCAGATCGT



TTTCGACAATGTGCAAGTGCCAGTGGCCAACCGGCTGGGGGCGGAGGGTG



AAGGCTACAAGATCGCCCTGGCCAACCTTGAAGGCGGCCGTATCGGCATC



GCCTCGCAAGCGGTGGGTATGGCCCGCGCGGCGTTCGAAGTGGCGCGGGA



CTATGCCAACGAGCGCCAGAGCTTTGGCAAACCGCTGATCGAGCACCAGG



CCGTGGCGTTTCGCCTGGCCGACATGGCAACGAAAATTTCCGTTGCCCGG



CAGATGGTATTGCACGCCGCTGCCCTTCGTGATGCGGGGCGCCCGGCGCT



GGTGGAAGCGTCGATGGCCAAGCTGTTCGCCTCGGAAATGGCCGAAAAGG



TCTGTTCGGACGCCTTGCAGACCCTGGGCGGTTATGGCTATCTGAGTGAC



TTCCCGCTGGAGCGGATCTACCGCGACGTTCGGGTTTGCCAGATCTACGA



AGGCACCAGCGACATTCAGCGCATGGTCATTGCGCGCAATCTTTGAGCTA



GCAAAGGAGGTAAAGATAATGAGTACACAAACCCTTGCCGTGGGCCAGAA



GGCTCGCCTGACCAAGCGCTTCGGCCCGGCCGAGGTGGCGGCCTTCGCCG



GCCTCTCGGAGGATTTCAATCCCCTGCACCTGGACCCGGACTTCGCCGCC



ACGACGGTGTTCGAGCGCCCCATCGTCCACGGCATGCTGCTGGCGAGCCT



CTTCTCCGGGCTCCTCGGGCAGCAACTGCCCGGGAAAGGGAGCATCTATC



TGGGCCAGAGCCTCGGCTTCAAACTGCCGGTGTTCGTGGGGGACGAGGTG



ACGGCGGAGGTGGAGGTGATTGCCCTTCGAAGCGACAAGCCCATCGCCAC



CCTGGCCACCCGCATCTTCACCCAGGGCGGCGCCCTCGCCGTGACGGGGG



AAGCGGTGGTAAAACTCCCTTGAGGCTGTTTTGGCGGATGAGAGAAGATT



TTCAGCCTGATACAGATTAAATCAGAACGCAGAAGCGGTCTGATAAAACA



GAATTTGCCTGGCGGCAGTAGCGCGGTGGTCCCACCTGACCCCATGCCGA



ACTCAGAAGTGAAACGCCGTAGCGCCGATGGTAGTGTGGGGTCTCCCCAT



GCGAGAGTAGGGAACTGCCAGGCATCAAATAAAACGAAAGGCTCAGTCGA



AAGACTGGGCCTTTCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCCTG



AGTAGGACAAATCCGCCGGGAGCGGATTTGAACGTTGCGAAGCAACGGCC



CGGAGGGTGGCGGGCAGGACGCCCGCCATAAACTGCCAGGCATCAAATTA



AGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGTTTCTACAAACTCTT



TTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAA



TAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTAT



TCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTC



CTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGAT



CAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAA



GATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTT



TTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAA



GAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTA



CTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAAT



TATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTT



CTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACAT



GGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAG



CCATACCAAACGACGAGCGTGACACCACGATGCCTACAGCAATGGCAACA



ACGTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCA



ACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGC



GCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGT



GAGCGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC



CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATG



AACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGG



TAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACT



TCATTTTTAATTTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCA



TGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCC



GTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAAT



CTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGC



CGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGA



GCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCA



CTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGT



TACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGAC



TCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGG



TTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGAT



ACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAG



GCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAG



GGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTC



GCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGG



AGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTT



TTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTG



TGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGC



CGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCT



GATGCGGTATTTTCTCCTTACGCATCTGTGCGGTATTTCACACCGCATAT



GGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTAT



ACACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACACCCG



CCAACACCCGCTGACGCGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGC



TTACAGACAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTT



CACCGTCATCACCGAAACGCGCGAGGCAGCAGATCAATTCGCGCGCGAAG



GCGAAGCGGCATGCATTTACGTTGACACCATCGAATGGTGCAAAACCTTT



CGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAA



TGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTT



ATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAA



ACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAA



CCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTG



CCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATT



AAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGA



ACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGC



AACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCC



ATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGT



CTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTA



CGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCG



CTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGG



CTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGG



AAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTG



AATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGC



GCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGG



ATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATC



CCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAG



CGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATC



AGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAAT



ACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGC



ACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAAT



GTGAGTTAGCGCGAATTGATCTG





SEQ ID
ATGATGGTTCCAACCCTCGAACACGAGCTTGCTCCCAACGAAGCCAACCA


NO: 169
TGTCCCGCTGTCGCCGCTGTCGTTCCTCAAGCGTGCCGCGCAGGTGTACC


nucleic acid
CGCAGCGCGATGCGGTGATCTATGGCGCAAGGCGCTACAGCTACCGTCAG


sequence
TTGCACGAGCGCAGCCGCGCCCTGGCCAGTGCCTTGGAGCGGGTCGGTGT


for the
TCAGCCGGGCGAGCGGGTGGCGATATTGGCGCCGAACATCCCGGAAATGC


plasmid
TCGAGGCCCACTATGGCGTGCCCGGTGCCGGGGCGGTGCTGGTGTGCATC


pK-IvaE:
AACATCCGCCTGGAGGGGCGCAGCATTGCCTTCATCCTGCGTCACTGCGC


gadAe
GGCCAAGGTATTGATCTGCGATCGTGAGTTCGGTGCCGTGGCCAATCAGG



CGCTGGCCATGCTCGATGCGCCGCCCTTGCTGGTGGGCATCGACGATGAT



CAGGCCGAGCGCGCCGATTTGGCCCACGACCTGGACTACGAAGCGTTCTT



GGCCCAGGGCGACCCCGCGCGGCCGTTGAGTGCGCCACAGAACGAATGGC



AGTCGATCGCCATCAACTACACCTCCGGCACCACGGGGGACCCCAAGGGC



GTGGTGCTGCATCACCGCGGCGCCTACCTCAACGCCTGCGCCGGGGCGCT



GATCTTCCAGTTGGGGCCGCGCAGCGTCTACTTGTGGACCTTGCCGATGT



TCCACTGCAACGGCTGGAGCCATACCTGGGCGGTGACGTTGTCCGGTGGC



ACCCACGTGTGTCTGCGCAAGGTCCAGCCTGATGCGATCAACGCCGCCAT



CGCCGAGCATGCCGTGACTCACCTGAGCGCCGCCCCAGTGGTGATGTCGA



TGCTGATCCACGCCGAGCATGCCAGCGCCCCTCCGGTGCCGGTTTCGGTG



ATCACTGGCGGTGCCGCCCCGCCCAGTGCGGTCATCGCGGCGATGGAGGC



GCGTGGCTTCAACATCACCCATGCCTATGGCATGACCGAAAGCTACGGTC



CCAGCACATTGTGCCTGTGGCAGCCGGGTGTCGACGAGTTGCCGCTGGAG



GCCCGGGCCCAGTTCATGAGCCGCCAGGGCGTCGCCCACCCGCTGCTCGA



GGAGGCCACGGTGCTGGATACCGACACCGGCCGCCCGGTCCCGGCCGACG



GCCTTACCCTCGGCGAGCTGGTGGTGCGGGGCAACACTGTGATGAAAGGC



TACCTGCACAACCCAGAGGCTACCCGTGCCGCGTTGGCCAACGGCTGGCT



GCACACGGGCGACCTGGCCGTGCTGCACCTGGACGGCTATGTGGAAATCA



AGGACCGAGCCAAGGACATCATCATTTCTGGCGGCGAGAACATCAGTTCG



CTGGAGATAGAAGAAGTGCTCTACCAGCACCCCGAGGTGGTCGAGGCTGC



GGTGGTGGCGCGTCCGGATTCGCGCTGGGGCGAGACACCTCACGCTTTCG



TCACGCTGCGCGCTGATGCACTGGCCAGCGGGGACGACCTGGTCCGCTGG



TGCCGTGAGCGTCTGGCGCACTTCAAGGCGCCGCGCCATGTGTCGCTCGT



GGACCTGCCCAAGACCGCCACTGGAAAAATACAGAAGTTCGTCCTGCGTG



AGTGGGCCCGGCAACAGGAGGCGCAGATCGCCGACGCCGAGCATTGACTC



GAGAAAGGAGGATAAGATAATGGACCAGAAGCTGTTAACGGATTTCCGCT



CAGAACTACTCGATTCACGTTTTGGCGCAAAGGCCATTTCTACTATCGCG



GAGTCAAAACGATTTCCGCTGCACGAAATGCGCGATGATGTCGCATTTCA



GATTATCAATGATGAATTATATCTTGATGGCAACGCTCGTCAGAACCTGG



CCACTTTCTGCCAGACCTGGGACGACGAAAACGTCCATAAATTGATGGAT



TTGTCGATCAATAAAAACTGGATCGACAAAGAACAGTATCCGCAATCCGC



AGCCATCGACCTGCGTTGCGTAAATATGGTTGCCGATCTGTGGCATGCGC



CTGCGCCGAAAAATGGTCAGGCCGTTGGCACCAACACCATTGGTTCTTCC



GAGGCCTGTATGCTCGGCGGGATGGCGATGAAATGGCGTTGGCGCAAGCG



TATGGAAGCTGCAGGCAAACCAACGGATAAACCAAACCTGGTGTGCGGTC



CGGTACAAATCTGCTGGCATAAATTCGCCCGCTACTGGGATGTGGAGCTG



CGTGAGATCCCTATGCGCCCCGGTCAGTTGTTTATGGACCCGAAACGCAT



GATTGAAGCCTGTGACGAAAACACCATCGGCGTGGTGCCGACTTTCGGCG



TGACCTACACCGGTAACTATGAGTTCCCACAACCGCTGCACGATGCGCTG



GATAAATTCCAGGCCGACACCGGTATCGACATCGACATGCACATCGACGC



TGCCAGCGGTGGCTTCCTGGCACCGTTCGTCGCCCCGGATATCGTCTGGG



ACTTCCGCCTGCCGCGTGTGAAATCGATCAGTGCTTCAGGCCATAAATTC



GGTCTGGCTCCGCTGGGCTGCGGCTGGGTTATCTGGCGTGACGAAGAAGC



GCTGCCGCAGGAACTGGTGTTCAACGTTGACTACCTGGGTGGTCAAATTG



GTACTTTTGCCATCAACTTCTCCCGCCCGGCGGGTCAGGTAATTGCACAG



TACTATGAATTCCTGCGCCTCGGTCGTGAAGGCTATACCAAAGTACAGAA



CGCCTCTTACCAGGTTGCCGCTTATCTGGCGGATGAAATCGCCAAACTGG



GGCCGTATGAGTTCATCTGTACGGGTCGCCCGGACGAAGGCATCCCGGCG



GTTTGCTTCAAACTGAAAGATGGTGAAGATCCGGGATACACCCTGTACGA



CCTCTCTGAACGTCTGCGTCTGCGCGGCTGGCAGGTTCCGGCCTTCACTC



TCGGCGGTGAAGCCACCGACATCGTGGTGATGCGCATTATGTGTCGTCGC



GGCTTCGAAATGGACTTTGCTGAACTGTTGCTGGAAGACTACAAAGCCTC



CCTGAAATATCTCAGCGATCACTAAAGGAAGCGGAACACGTAGAAAGCCA



GTCCGCAGAAACGGTGCTGACCCCGGATGAATGTCAGCTACTGGGCTATC



TGGACAAGGGAAAACGCAAGCGCAAAGAGAAAGCAGGTAGCTTGCAGTGG



GCTTACATGGCGATAGCTAGACTGGGCGGTTTTATGGACAGCAAGCGAAC



CGGAATTGCCAGCTGGGGCGCCCTCTGGTAAGGTTGGGAAGCCCTGCAAA



GTAAACTGGATGGCTTTCTTGCCGCCAAGGATCTGATGGCGCAGGGGATC



AAGATCTGATCAAGAGACAGGATGAGGATCGTTTCGCATGATTGAACAAG



ATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGC



TATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCGCCGTGTTCCG



GCTGTCAGCGCAGGGGCGCCCGGTTCTTTTTGTCAAGACCGACCTGTCCG



GTGCCCTGAATGAACTCCAAGACGAGGCAGCGCGGCTATCGTGGCTGGCC



ACGACGGGCGTTCCTTGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGG



AAGGGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCAT



CTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGG



CGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAA



ACATCGCATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATC



AGGATGATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTC



GCCAGGCTCAAGGCGCGGATGCCCGACGGCGAGGATCTCGTCGTGACCCA



TGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTG



GATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATA



GCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGA



CCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAGCGCATCG



CCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTCTGGGGTTCG



CGATGATAAGCTGTCAAACATGAGAATTACAACTTATATCGTATGGGGCT



GACTTCAGGTGCTACATTTGAAGAGATAAATTGCACTGAAATCTAGAAAT



ATTTTATCTGATTAATAAGATGATCTTCTTGAGATCGTTTTGGTCTGCGC



GTAATCTCTTGCTCTGAAAACGAAAAAACCGCCTTGCAGGGCGGTTTTTC



GAAGGTTCTCTGAGCTACCAACTCTTTGAACCGAGGTAACTGGCTTGGAG



GAGCGCAGTCACCAAAACTTGTCCTTTCAGTTTAGCCTTAACCGGCGCAT



GACTTCAAGACTAACTCCTCTAAATCAATTACCAGTGGCTGCTGCCAGTG



GTGCTTTTGCATGTCTTTCCGGGTTGGACTCAAGACGATAGTTACCGGAT



AAGGCGCAGCGGTCGGACTGAACGGGGGGTTCGTGCATACAGTCCAGCTT



GGAGCGAACTGCCTACCCGGAACTGAGTGTCAGGCGTGGAATGAGACAAA



CGCGGCCATAACAGCGGAATGACACCGGTAAACCGAAAGGCAGGAACAGG



AGAGCGCACGAGGGAGCCGCCAGGGGAAACGCCTGGTATCTTTATAGTCC



TGTCGGGTTTCGCCACCACTGATTTGAGCGTCAGATTTCGTGATGCTTGT



CAGGGGGGCGGAGCCTATGGAAAAACGGCTTTGCCTTCTTTCCTGCGTTA



TCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATAC



CGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAG



CGGAAGAGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATT



CATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGA



GCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTT



TACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAA



CAATTTCACACAGGAGGAATCAAAA





SEQ ID
GTTTGACAGCTTATCATCGACTGCACGGTGCACCAATGCTTCTGGCGTCA


NO: 170
GGCAGCCATCGGAAGCTGTGGTATGGCTGTGCAGGTCGTAAATCACTGCA


nucleic acid
TAATTCGTGTCGCTCAAGGCGCACTCCCGTTCTGGATAATGTTTTTTGCG


sequence
CCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAAT


for the
TAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAATTTC


plasmid
ACACAGGAGGAATCAAAAATGAATCAACAGGTAAATGTGGCCCCCAGCGC


pTrc-T
GGCAGCAGACTTAAATCTGAAAGCGCATTGGATGCCTTTTAGCGCCAACC


FG99_15380:
GCAACTTCCACAAGGACCCCCGCATCATCGTAGCTGCCGAAGGATCGTGG


pduP(Se):
CTGGTAGACGATAAGGGACGCCGTATCTACGACTCATTGAGTGGCTTGTG


gabD
GACCTGCGGCGCGGGTCACTCTCGTAAGGAAATTGCCGACGCAGTGGCGA



AACAGATTGGGACCCTGGACTACTCGCCAGGGTTTCAATATGGCCACCCT



CTGTCGTTTCAGCTTGCAGAGAAGATTGCGCAAATGACGCCTGGCACGCT



GGATCATGTCTTCTTTACAGGAAGTGGGAGTGAATGCGCGGACACATCTA



TCAAAATGGCTCGCGCCTACTGGCGCATCAAGGGCCAAGCGCAGAAGACC



AAGTTGATCGGCCGTGCTCGCGGATATCACGGCGTCAACGTGGCCGGAAC



ATCGCTTGGAGGTATTGGGGGAAACCGTAAAATGTTCGGACCCCTGATGG



ATGTCGATCATTTGCCTCACACATTACAACCTGGAATGGCATTCACTAAG



GGCGCAGCAGAAACAGGTGGGGTGGAGCTTGCCAATGAATTGCTGAAGTT



AATTGAGTTACATGATGCTTCGAATATCGCCGCAGTGATTGTGGAGCCTA



TGTCTGGCAGTGCCGGTGTGATTGTGCCACCAAAAGGTTATCTTCAGCGT



TTACGTGAGATTTGCGACGCTAACGATATCCTGTTAATCTTCGACGAGGT



GATTACAGCTTTTGGCCGTATGGGCAAAGCAACGGGTGCCGAGTATTTTG



GAGTAACTCCCGATATCATGAACGTGGCTAAGCAAGTAACCAACGGGGCC



GTTCCGATGGGAGCCGTTATCGCCTCCTCTGAAATTTATGACACCTTCAT



GAACCAAAACTTGCCCGAATACGCCGTGGAATTTGGACATGGTTATACTT



ACAGCGCTCATCCAGTGGCATGTGCCGCCGGCATCGCGGCGCTGGATCTG



CTTCAAAAAGAGAATTTAATCCAGCAGTCGGCCGAGCTTGCACCTCACTT



CGAAAAGGCCTTACATGGCTTAAAGGGCACTAAAAACGTTATCGATATCC



GCAACTGTGGCCTTGCTGGAGCGATTCAAATCGCGGCGCGCGACGGAGAC



GCGATCGTGCGCCCCTTTGAGGCGAGCATGAAGTTGTGGAAGGAAGGCTT



CTACGTGCGTTTCGGCGGTGATACCCTGCAATTTGGCCCTACTTTCAACG



CCAAACCGGAAGACTTAGATCGCCTTTTCGATGCAGTTGGAGAGGCACTG



AACGGGGTCGCTTAAGCTAGCAAAGGAGGTAAAGATAATGAATACTTCTG



AACTCGAAACCCTGATTCGCACCATTCTTAGCGAGCAATTAACCACGCCG



GCGCAAACGCCGGTCCAGCCTCAGGGCAAAGGGATTTTCCAGTCCGTGAG



CGAGGCCATCGACGCCGCGCACCAGGCGTTCTTACGTTATCAGCAGTGCC



CGCTAAAAACCCGCAGCGCCATTATCAGCGCGATGCGTCAGGAGCTGACG



CCGCTGCTGGCGCCCCTGGCGGAAGAGAGCGCCAATGAAACGGGGATGGG



CAACAAAGAAGATAAATTTCTCAAAAACAAGGCTGCGCTGGACAACACGC



CGGGCGTAGAAGATCTCACCACCACCGCGCTGACCGGCGACGGCGGCATG



GTGCTGTTTGAATACTCACCGTTTGGCGTTATCGGTTCGGTCGCCCCAAG



CACCAACCCGACGGAAACCATCATCAACAACAGTATCAGCATGCTGGCGG



CGGGCAACAGTATCTACTTTAGCCCGCATCCGGGAGCGAAAAAGGTCTCT



CTGAAGCTGATTAGCCTGATTGAAGAGATTGCCTTCCGCTGCTGCGGCAT



CCGCAATCTGGTGGTGACCGTGGCGGAACCCACCTTCGAAGCGACCCAGC



AGATGATGGCCCACCCGCGAATCGCAGTACTGGCCATTACCGGCGGCCCG



GGCATTGTGGCAATGGGCATGAAGAGCGGTAAGAAGGTGATTGGCGCTGG



CGCGGGTAACCCGCCCTGCATCGTTGATGAAACGGCGGACCTGGTGAAAG



CGGCGGAAGATATCATCAACGGCGCGTCATTCGATTACAACCTGCCCTGC



ATTGCCGAGAAGAGCCTGATCGTAGTGGAGAGTGTCGCCGAACGTCTGGT



GCAGCAAATGCAAACCTTCGGCGCGCTGCTGTTAAGCCCTGCCGATACCG



ACAAACTCCGCGCCGTCTGCCTGCCTGAAGGCCAGGCGAATAAAAAACTG



GTCGGCAAGAGCCCATCGGCCATGCTGGAAGCCGCCGGGATCGCTGTCCC



TGCAAAAGCGCCGCGTCTGCTGATTGCGCTGGTTAACGCTGACGATCCGT



GGGTCACCAGCGAACAGTTGATGCCGATGCTGCCAGTGGTAAAAGTCAGC



GATTTCGATAGCGCGCTGGCGCTGGCCCTGAAGGTTGAAGAGGGGCTGCA



TCATACCGCCATTATGCACTCGCAGAACGTGTCACGCCTGAACCTCGCGG



CCCGCACGCTGCAAACCTCGATATTCGTCAAAAACGGCCCCTCTTATGCC



GGGATCGGCGTCGGCGGCGAAGGCTTTACCACCTTCACTATCGCCACACC



AACCGGTGAAGGGACCACGTCAGCGCGTACTTTTGCCCGTTCCCGGCGCT



GCGTACTGACCAACGGCTTTTCTATTCGCTAACTCGAGAAAGGAGGATAA



CTAAATGAAACTTAACGACAGTAACTTATTCCGCCAGCAGGCGTTGATTA



ACGGGGAATGGCTGGACGCCAACAATGGTGAAGCCATCGACGTCACCAAT



CCGGCGAACGGCGACAAGCTGGGTAGCGTGCCGAAAATGGGCGCGGATGA



AACCCGCGCCGCTATCGACGCCGCCAACCGCGCCCTGCCCGCCTGGCGCG



CGCTCACCGCCAAAGAACGCGCCACCATTCTGCGCAACTGGTTCAATTTG



ATGATGGAGCATCAGGACGATTTAGCGCGCCTGATGACCCTCGAACAGGG



TAAACCACTGGCCGAAGCGAAAGGCGAAATCAGCTACGCCGCCTCCTTTA



TTGAGTGGTTTGCCGAAGAAGGCAAACGCATTTATGGCGACACCATTCCT



GGTCATCAGGCCGATAAACGCCTGATTGTTATCAAGCAGCCGATTGGCGT



CACCGCGGCTATCACGCCGTGGAACTTCCCGGCGGCGATGATTACCCGCA



AAGCCGGTCCGGCGCTGGCAGCAGGCTGCACCATGGTGCTGAAGCCCGCC



AGTCAGACGCCGTTCTCTGCGCTGGCGCTGGCGGAGCTGGCGATCCGCGC



GGGCGTTCCGGCTGGGGTATTTAACGTGGTCACCGGTTCGGCGGGCGCGG



TCGGTAACGAACTGACCAGTAACCCGCTGGTGCGCAAACTGTCGTTTACC



GGTTCGACCGAAATTGGCCGCCAGTTAATGGAACAGTGCGCGAAAGACAT



CAAGAAAGTGTCGCTGGAGCTGGGCGGTAACGCGCCGTTTATCGTCTTTG



ACGATGCCGACCTCGACAAAGCCGTGGAAGGCGCGCTGGCCTCGAAATTC



CGCAACGCCGGGCAAACCTGCGTCTGCGCCAACCGCCTGTATGTGCAGGA



CGGCGTGTATGACCGTTTTGCCGAAAAATTGCAGCAGGCAGTGAGCAAAC



TGCACATCGGCGACGGGCTGGATAACGGCGTCACCATCGGGCCGCTGATC



GATGAAAAAGCGGTAGCAAAAGTGGAAGAGCATATTGCCGATGCGCTGGA



GAAAGGCGCGCGCGTGGTTTGCGGCGGTAAAGCGCACGAACGCGGCGGCA



ACTTCTTCCAGCCGACCATTCTGGTGGACGTTCCGGCCAACGCCAAAGTG



TCGAAAGAAGAGACGTTCGGCCCCCTCGCCCCGCTGTTCCGCTTTAAAGA



TGAAGCTGATGTGATTGCGCAAGCCAATGACACCGAGTTTGGCCTTGCCG



CCTATTTCTACGCCCGTGATTTAAGCCGCGTCTTCCGCGTGGGCGAAGCG



CTGGAGTACGGCATCGTCGGCATCAATACCGGCATTATTTCCAATGAAGT



GGCCCCGTTCGGCGGCATCAAAGCCTCGGGTCTGGGTCGTGAAGGTTCGA



AGTATGGCATCGAAGATTACTTAGAAATCAAATATATGTGCATCGGTCTT



TAAGGCTGTTTTGGCGGATGAGAGAAGATTTTCAGCCTGATACAGATTAA



ATCAGAACGCAGAAGCGGTCTGATAAAACAGAATTTGCCTGGCGGCAGTA



GCGCGGTGGTCCCACCTGACCCCATGCCGAACTCAGAAGTGAAACGCCGT



AGCGCCGATGGTAGTGTGGGGTCTCCCCATGCGAGAGTAGGGAACTGCCA



GGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGCCTTTCGTTTT



ATCTGTTGTTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGCCGGG



AGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGAC



GCCCGCCATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACG



GATGGCCTTTTTGCGTTTCTACAAACTCTTTTTGTTTATTTTTCTAAATA



CATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCA



ATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCC



TTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAA



ACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGG



TTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCC



CCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGC



GCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCGCAT



ACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGC



ATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACC



ATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACC



GAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCC



TTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGACGAGCGT



GACACCACGATGCCTACAGCAATGGCAACAACGTTGCGCAAACTATTAAC



TGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGG



AGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGC



TGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTAT



CATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCT



ACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCT



GAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTA



CTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGA



TCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGT



GAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATC



TTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGCAAACAAAAA



AACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACT



CTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGT



CCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCAC



CGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGT



GGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGA



TAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCT



TGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGTGAGCTATGA



GAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAG



CGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACG



CCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGT



CGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAG



CAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACA



TGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCC



TTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGA



GTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTA



CGCATCTGTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATC



TGCTCTGATGCCGCATAGTTAAGCCAGTATACACTCCGCTATCGCTACGT



GACTGGGTCATGGCTGCGCCCCGACACCCGCCAACACCCGCTGACGCGCC



CTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCG



TCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAACGC



GCGAGGCAGCAGATCAATTCGCGCGCGAAGGCGAAGCGGCATGCATTTAC



GTTGACACCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCG



CCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTAT



ACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTG



GTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGC



GGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGG



CGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTG



CACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACT



GGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCT



GTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATC



ATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTG



CACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCA



ACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCAT



CTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAG



TTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTC



GCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATG



TCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCAC



TGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCA



TTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATAC



GACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAA



ACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAAC



TCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTG



GTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCG



CGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGG



AAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCGCGAATTGAT



CTG









In embodiments, the recombinant bacterial cell for producing PHBV comprises at least one nucleic acid molecule having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to any one of SEQ ID NO: 60-118, 174-175, 185-193, 204-213, 218-220, 227-229, and 231, or a complementary sequence thereof, or a segment thereof. In embodiments, the at least one nucleic acid molecule described herein is optionally a heterologous nucleic acid molecule having a nucleic acid sequence encoding a recombinant polypeptide described herein. In embodiments, the acyl-CoA synthetase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 85 or 86, the acetate CoA-transferase polypeptides are encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 63 and 64 or 174 and 175, the propionate-CoA transferase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 89 or 90. In embodiments, the PutP polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 205. In embodiments, the AtoE polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 65. In embodiments, the first β-ketothiolase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 67. In embodiments, the NADPH-dependent acetoacetyl-CoA reductase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 94. In embodiments, the NADH-dependent acetoacetyl-CoA reductase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 228. In embodiments, the short-chain polyhydroxyalkanoate synthase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 95, 229, or 231. In embodiments, the CoA-dependent propanal dehydrogenase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 91 or 92, the β-alanine transaminase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 74 or 75, or the NADP+-dependent succinate semialdehyde dehydrogenase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 76. In embodiments, the short-chain acyl-CoA dehydrogenase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 97, 98, 66, 87, or 72, and the enoyl-CoA hydratase/isomerase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 81, 96, or 206. In embodiments, the propionyl-CoA synthetase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 102, 103, or 104. In embodiments, the glutamate decarboxylase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 78, 79, 204, 219, 220, or 227. In embodiments, the glutamate dehydrogenase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 218. In embodiments, the second β-ketothiolase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 93. In embodiments, the succinyl-CoA transferase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 69. In embodiments, the succinyl-CoA synthetase polypeptides are encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 109 and 110. In embodiments, the CoA-acylating aldehyde dehydrogenase polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 193. In embodiments, the bifunctional protein polypeptide is encoded by a nucleic acid molecule, optionally a heterologous nucleic acid molecule, having a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to SEQ ID NO: 88. In embodiments, the at least one heterologous nucleic acid molecule encoding a polypeptide is operably linked to a promoter capable of expressing a heterologous nucleic acid sequence encoding the recombinant polypeptide in a bacterial cell.


Also provided is a plasmid comprising nucleic acid sequence described herein. In embodiments, the plasmid comprises a nucleic acid sequence having at least 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8%, 99.9%, or 100% sequence identity to any one of SEQ ID NO: 162-171.


In an aspect, the heterologous nucleic acid molecule or plasmid is codon-optimized for expression in a bacterial cell described herein. In embodiments, the bacterial cell is selected from the group consisting of Escherichia coli, optionally strain K-12 or a derivative thereof, optionally CPC-Sbm or a derivative thereof, Bacillus subtilis, Bacillus megaterium, Corynebacterium glutamicum, Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Lactococcus lactis, Pseudomonas putida, Cupriavidus necator, Cupriavidus gilardii, Cupriavidus sp. S-6, and Lactobacillus reuteri.


In embodiments, the nucleic acid molecule comprises an isolated and/or purified nucleic acid molecule. In embodiments, a nucleic acid molecule, a plasmid, or an expression system comprising these isolated and/or purified nucleic acid molecules, may be used to create a recombinant bacterial cell that produces polypeptides which catalyze the synthesis of PHBV. Therefore, some embodiments relate to a recombinant bacterial cell comprising a nucleic acid molecule, a plasmid, or an expression system having at least one of SEQ ID NO: 60-118, 162-170, 185-193, 204-213, 218-220, 227-229, and 231, or having at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, at least about 99.1%, at least about 99.2%, at least about 99.3%, at least about 99.4%, at least about 99.5%, at least about 99.6%, at least about 99.7%, at least about 99.8%, at least about 99.9% sequence identity to at least one of SEQ ID NO: 60-118, 162-170, 185-193, 204-213, 218-220, 227-229, and 231.


A person of ordinary skill in the art would readily understand that the disclosed polypeptide amino acid and nucleic acid sequences may be used interchangeably with any of their corresponding homologs. For example, In embodiments, the recombinant bacterial cell for producing PHBV comprises at least one nucleic acid molecule encoding a polypeptide corresponding to any of the homologs listed in Table 6. In embodiments, a homolog of AckA comprises a polypeptide having an accession no. WP_151250307.1, WP_025758333.1, WP_000095714.1, WP_094316684.1, WP_000095699.1, WP_059270696.1, WP_160523843.1, WP_108188758.1, WP_000095694.1, WP_079781741.1, WP_000095691.1, WP_162383091.1, WP_110248734.1, WP_016529145.1, or WP_064543869.1. In embodiments, a homolog of Acs comprises a polypeptide having an accession no. WP_094321046.1, WP_134796521.1, WP_000078234.1, WP_000078255.1, WP_160523940.1, WP_130258462.1, WP_135490640.1, WP_000078187.1, WP_000078188.1, WP_105283185.1, WP_079225661.1, WP_151218054.1, EAX3726079.1, WP_061075561.1, or WP_087051807.1. In embodiments, a homolog of Ald comprises a polypeptide having an accession no. WP_077830381.1, WP_065419149.1, WP_017211959.1, WP_077844109.1, AAD31841.1, WP_087702529.1, WP_077868466.1, WP_077366605.1, WP_026888070.1, WP_077860531.1, WP_022747467.1, WP_077863550.1, WP_009171375.1, WP_128214949.1, WP_160679606.1, WP_012059995.1, WP_041898834.1, or WP_015395720.1. In embodiments, a homolog of AcsA comprises a polypeptide having an accession no. WP_047183033.1, WP_144459203.1, WP_071577026.1, WP_061186774.1, WP_075747112.1, WP_010329597.1, WP_024714615.1, WP_162101126.1, WP_105990205.1, WP_061572550.1, WP_109567131.1, WP_061523123.1, or WP_103526694.1. In embodiments, a homolog of AtoA comprises a polypeptide having an accession no. WP_103053735.1, WP_137325583.1, WP_050899668.1, WP_000339071.1, WP_128880225.1, WP_047462387.1, WP_135321227.1, WP_090049661.1, WP_004184955.1, WP_151219893.1, WP_100682748.1, WP_013365500.1, WP_000339048.1, or WP_087857377.1. In embodiments, a homolog of AtoD comprises a polypeptide having an accession no. WP_053001645.1, QGU62017.1, WP_155555734.1, WP_038355059.1, MLY49728.1, WP_105269001.1, WP_105284960.1, WP_149476985.1, WP_108188772.1, WP_000850520.1, WP_138957179.1, WP_123267594.1, WP_114680602.1, WP_047500919.1, or WP_004184954.1. In embodiments, a homolog of BC_5341 comprises a polypeptide having an accession no. WP_088022147.1, WP_098448816.1, WP_149216716.1, WP_101167410.1, WP_143881711.1, WP_085450733.1, WP_144504985.1, BCA34359.1, WP_098299175.1, WP_071710801.1, CKE48212.1, WP_163095898.1, WP_071725959.1, WP_136445333.1, or WP_128975345.1. In embodiments, a homolog of BktB comprises a polypeptide having an accession no. WP_013956457.1, WP_035820088.1, WP_092317205.1, WP_115013782.1, WP_116382528.1, WP_018311404.1, WP_063238655.1, WP_116321050.1, AGW89814.1, WP_062798985.1, WP_133094381.1, AGW95651.1, WP_140952189.1, WP_144195740.1, or WP_011516125.1. In embodiments, a homolog of PhaC comprises a polypeptide having an accession no. ACZ57807.1, WP_010810133.1, WP_013956451.1, AAW65074.1, WP_018311399.1, AGW89808.1, WP_115678329.1, WP_062798976.1, WP_115013788.1, WP_115680054.1, or WP_112777370.1. In embodiments, a homolog of CKL_RS14680 comprises a polypeptide having an accession no. WP_073539834.1 or WP_010236491.1. In embodiments, a homolog of FadE comprises a polypeptide having an accession no. WP_094316844.1, WP_130224094.1, WP_135404353.1, WP_046076114.1, WP_011069257.1, WP_135489829.1, WP_085448671.1, WP_124782953.1, WP_153879457.1, EDR1571704.1, WP_103776898.1, WP_008783785.1, WP_087053141.1, WP_079225425.1, WP_137366593.1, or WP_000973041.1. In embodiments, a homolog of PhaJ(Aa) comprises a polypeptide having an accession no. WP_169200570.1, WP_053422493.1, WP_169118971.1, WP_169202263.1, AUL99438.1, WP_136349851.1, WP_136385326.1, WP_187719679.1, WP_107493682.1, or WP_169262136.1. In embodiments, a homolog of GabD comprises a polypeptide having an accession no. WP_105285925.1, WP_135494970.1, WP_094315749.1, WP_161983589.1, WP_000772895.1, WP_078167276.1, WP_016249103.1, WP_105267583.1, WP_149461599.1, WP_128880059.1, WP_149461599.1, WP_060773285.1, WP_153257801.1, WP_108418849.1, or WP_045446520.1. In embodiments, a homolog of Gad comprises a polypeptide having an accession no. XP_002871761.1, KFK41557.1, VVB14898.1, RID41892.1, XP_013661825.1, VDC86651.1, XP_006400267.1, XP_010420446.1, XP_010453919.1, CAA7061503.1, XP_006400266.1, ESQ41721.1, XP_013627326.1, or XP_0312730231 In embodiments, a homolog of GadAe comprises a polypeptide having an accession no. WP_134806912.1, WP_052942456.1, WP_128881419.1, WP_135383171.1, WP_054518524.1, WP_138158972.1, WP_103194808.1, WP_000358851.1, WP_107164449.1, WP_000358937.1, WP_135385956.1, WP_113623060.1, or EAB0955940.1. In embodiments, a homolog of GadBe(Ec) comprises a polypeptide having an accession no. WP_134806912.1, WP_052942456.1, WP_128881419.1, WP_135383171.1, WP_054518524.1, WP_138158972.1, WP_103194808.1, WP_000358851.1, WP_107164449.1, WP_000358937.1, WP_135385956.1, WP_113623060.1, or EAB0955940.1. In embodiments, a homolog of GadBe(Lb) polypeptide comprises a polypeptide having an accession no. STX19016.1, QBY21422.1, ANN49747.1, K1099344.1, ERK41051.1, KRN34776.1, KRL97822.1, WP_057717368.1, VDG20388.1, WP_165444417.1, or AHX56280.1. In embodiments, a homolog of GadB(Lp) polypeptide comprises a polypeptide having an accession no. BBA26472.1, SPD93437.1, KTF01778.1, RDF95564.1, AQY71158.1, KRL97822.1, AHX56280.1, TBX37968.1, AHX56282.1, AHX56281.1, AHX56283.1, or WP_048001054.1. In embodiments, a homolog of Gad(Ls) polypeptide comprises a polypeptide having an accession no. WP_125641322.1, WP_226457942.1, BAN05709.1, MBL3537851.1, WP_039105805.1, WP_052957185.1, KIR08754.1, WP_125574762.1, WP_063488771.1, or WP_017262688.1. In embodiments, a homolog of GdhA polypeptide comprises a polypeptide having an accession no. WP_077135411.1, EFY1585775.1, EFW0012466.1, WP_135489199.1, WP_105291250.1, EEW3328042.1, WP_105274563.1, AGB78530.1, WP_113858645.1, WP_181668454.1, or WP_203398179.1. In embodiments, a homolog of H16 RS27940 comprises a polypeptide having an accession no. WP_051591491.1, WP_114130480.1, WP_078200706.1, EON20731.1, PK064515.1, WP_092007571.1, WP_162566377.1, WP_137921632.1, or WP_162591754.1. In embodiments, a homolog of KES23458 comprises a polypeptide having an accession no. WP_116425784.1, WP_069862932.1, WP_043315988.1, WP_009614288.1, WP_089392503.1, WP_109934365.1, WP_090268322.1, WP_138519936.1, WP_138213347.1, WP_015474919.1, WP_043256620.1, WP_084311461.1, WP_053816481.1, WP_070656248.1, or WP_077524299.1. In embodiments, a homolog of LvaE comprises a polypeptide having an accession no. WP_051095536.1, AGA73676.1, WP_054905284.1, OFQ86312.1, OFQ81524.1, WP_102880076.1, WP_092297027.1, WP_160291004.1, WP_081520035.1, WP_104443972.1, WP_046855848.1, WP_134690622.1, WP_103303932.1, WP_042129240.1, or BAV75244.1. In embodiments, a homolog of MELS_RS10970 comprises a polypeptide having an accession no. WP_020723925.1, WP_048514244.1, WP_074501184.1, KXB91325.1, WP_154877386.1, WP_107195291.1, WP_087477538.1, WP_095630133.1, WP_091647756.1, WP_023053225.1, WP_101912630.1, WP_075572446.1, WP_006790232.1, or WP_006942404.1. In embodiments, a homolog of PaaZ comprises a polypeptide having an accession no. WP_160599600.1, WP_152066042.1, WP_094316530.1, WP_032252644.1, WP_001186464.1, WP_125401136.1, WP_001186494.1, WP_119163289.1, WP_095281943.1, WP_045888522.1, WP_058840681.1, WP_095440732.1, WP_162382197.1, WP_059385322.1, or WP_045286529.1. In embodiments, a homolog of Pct(Cp) comprises a polypeptide having an accession no. WP_066087637.1, NCC15629.1, WP_054329786.1, WP_072853413.1, CDC28613.1, WP_016408311.1, WP_088107724.1, WP_160302233.1, or WP_004038625.1. In embodiments, a homolog of Pct(Me) comprises a polypeptide having an accession no. WP_054336166.1, WP_036203125.1, WP_044502862.1, WP_065360594.1, KXA66894.1, WP_095629974.1, WP_087478516.1, WP_107195767.1, WP_048515067.1, WP_101912966.1, WP_156208970.1, KXB92430.1, WP_023053187.1, WP_039891686.1, or KXB92214.1. In embodiments, a homolog of PduP(Kp) comprises a polypeptide having an accession no. WP_109231734.1, WP_109848747.1, WP_136028274.1, WP_100680758.1, WP_100631313.1, WP_049157539.1, WP_029884370.1, MXH33721.1, WP_144232363.1, WP_153679752.1, WP_148849915.1, EBS2830838.1, WP_112213940.1, or WP_064370270.1.


In embodiments, a homolog of PduP(Se) comprises a polypeptide having an accession no. WP_001097684.1, WP_001528442.1, WP_080203692.1, WP_108450871.1, WP_009652778.1, WP_142983670.1, WP_105274032.1, WP_070556870.1, WP_142502560.1, WP_012131760.1, WP_012906342.1, WP_006683971.1, WP_103775053.1, WP_060570657.1, or WP_135321437.1. In embodiments, a homolog of PhaA comprises a polypeptide having an accession no. WP_013956452.1, SCU96900.1, WP_035820078.1, 409C A, WP_116382525.1, WP_092317196.1, WP_062798979.1, WP_116321054.1, AGW89809.1, WP_039016192.1, WP_063238652.1, WP_029049660.1, WP_011297518.1, WP_124684437.1, or WP_109580845.1. In embodiments, a homolog of PhaB comprises a polypeptide having an accession no. RWA53825.1, WP_042885115.1, WP_039016191.1, WP_116336746.1, WP_112777371.1, WP_006577377.1, WP_135705030.1, WP_133096842.1, WP_124684436.1, WP_116321053.1, WP_006155939.1, WP_045241722.1, WP_011297519.1, WP_144195744.1, or ODV43053.1. In embodiments, a homolog of PhaB(Hb) comprises a polypeptide having an accession no. WP_162219671.1, WP_126946472.1, WP_120385833.1, WP_030074446.1, WP_188637499.1, WP_058579713.1, WP_083023226.1, WP_039183428.1, WP_159340906.1, or WP_096653461.1. In embodiments, a homolog of PhaJ(Ac) comprises a polypeptide having an accession no. WP_103260220.1, WP_104454254.1, OJW67134.1, WP_041998622.1, WP_043760202.1, WP_043129860.1, WP_042076944.1, WP_100860962.1, WP_163157368.1, WP_042638062.1, WP_106886672.1, WP_033131291.1, WP_025327110.1, WP_040094291.1, or WP_139745378.1. In embodiments, a homolog of PP_2216 comprises a polypeptide having an accession no. WP_003250094.1, WP_104887321.1, WP_039614175.1, WP_023662689.1, WP_085706434.1, WP_070087269.1, WP_060512757.1, WP_144171976.1, WP_054884005.1, WP_051100719.1, WP_099814118.1, WP_125859423.1, WP_125464833.1, WP_090345830.1, or WP_110994568.1. In embodiments, a homolog of PrpE(Cn) comprises a polypeptide having an accession no. WP_081623799.1, WP_115213214.1, WP_082818978.1, WP_116324638.1, WP_092309442.1, AMR79067.1, WP_151072146.1, WP_029046365.1, AGW91162.1, WP_116321975.1, WP_039006728.1, WP_092134378.1, WP_109580644.1, WP_035882297.1, or WP_149135646.1. In embodiments, a homolog of PrpE(Ec) comprises a polypeptide having an accession no. WP_024249411.1, WP_130258507.1, WP_000010307.1, WP_138159881.1, WP_105281240.1, WP_000010239.1, WP_000010244.1, WP_160524152.1, WP_105270931.1, WP_160530253.1, WP_016235155.1, WP_061090735.1, WP_103014998.1, WP_094761423.1, or ATX90159.1. In embodiments, a homolog of PrpE(Se) comprises a polypeptide having an accession no. WP_127836169.1, WP_103776706.1, WP_044259075.1, WP_012904755.1, WP_043015332.1, WP_008783866.1, WP_153690685.1, WP_058587683.1, WP_101700584.1, WP_042324663.1, WP_123268908.1, WP_137351112.1, WP_048219548.1, WP_160955604.1, or WP_012133646.1. In embodiments, a homolog of Pta comprises a polypeptide having an accession no. WP_119174868.1, WP_114414934.1, WP_112484304.1, WP_000086724.1, WP_135520103.1, WP_113650156.1, WP_105273752.1, WP_079788930.1, WP_000086702.1, WP_135520103.1, WP_038354606.1, WP_025714133.1, WP_071260224.1, WP_046483030.1, or WP_080924257.1. In embodiments, a homolog of Sbm comprises a polypeptide having an accession no. CDW60403.1, WP_096098300.1, QGU68683.1, WP_000073215.1, WP_024250007.1, WP_105273911.1, EBT2497755.1, WP_064198903.1, WP_105271628.1, CDZ86651.1, WP_130258050.1, WP_038355443.1, WP_142462060.1, WP_103769047.1, or WP_137649991.1. In embodiments, a homolog of SucC comprises a polypeptide having an accession no. WP_111780024.1, WP_105268114.1, WP_149508492.1, EBH0782533.1, WP_079789068.1, EAA0703253.1, WP_001048612.1, WP_103776364.1, HAC6539881.1, WP_139538723.1, WP_040076526.1, WP_152308781.1, WP_061708388.1, WP_159152251.1, or WP_159754306.1


In embodiments, a homolog of SucD comprises a polypeptide having an accession no. WP_148048643.1, WP_161983406.1, WP_128882005.1, SEK68167.1, WP_064567804.1, WP_090133347.1, EDS6037479.1, WP_015965312.1, WP_154777294.1, WP_108473875.1, WP_162082208.1, or WP_154158334.1. In embodiments, a homolog of YgfD comprises a polypeptide having an accession no. HBV28035.1, WP_094338169.1, EBT2497754.1, WP_105273912.1, WP_105271629.1, MJD64661.1, MVY25917.1, WP_152060700.1, CDZ86650.1, CDK74861.1, WP_138183055.1, WP_138158389.1, WP_138158874.1, WP_137651359.1, or WP_038355444.1. In embodiments, a homolog of YgfG comprises a polypeptide having an accession no. WP_105273913.1, WP_011069498.1, WP_095785007.1, KAE9894204.1, WP_128881119.1, WP_105287397.1, EBT2497753.1, WP_112366200.1, CDZ86649.1, WP_137653935.1, WP_103750818.1, WP_135521100.1, EFE06586.1, WP_080626129.1, or WP_079226013.1. In embodiments, a homolog of YgfH comprises a polypeptide having an accession no. WP_094321963.1, WP_075331646.1, WP_105271630.1, WP_128881120.1, WP_075328602.1, WP_128861696.1, ECA1898152.1, WP_105273914.1, CDZ86648.1, WP_130221450.1, WP_135519865.1, WP_001027665.1, WP_135407775.1, WP_130221450.1, or WP_135492970.1.


Cultivation Medium


Strains were maintained as glycerol stocks at −80° C., and were revived on non-selective lysogeny broth (LB) agar containing 5 g/L NaCl, 5 g/L yeast extract, 10 g/L tryptone, 15 g/L agar, and antibiotics as required, and incubated overnight at 30-37° C. LB also served as the medium for starter and seed cultures and was supplemented with antibiotics as required. The performance of E. coli strains was evaluated in shake flask cultures in a base medium of the following composition: M9 salts (12.8 g/L Na2HPO4·H2O, 3 g/L KH2PO4, 0.5 g/L NaCl, and 1 g/L NH4Cl), yeast extract (5 g/L), NaHCO3 (10 mM), trace elements (2.86 g/L H3BO3, 1.81 g/L MnCl2·4H2O, 0.22 g/L ZnSO4·7H2O, 0.39 g/L Na2MoO4·2H2O, 79 μg/L CuSO4·5H2O, and 49.4 μg/L Co(NO3)2·6H2O) as a 1000×concentrate), MgSO4 (1 mM), and isopropyl beta-D-1-thiogalactopyranoside (IPTG), with antibiotics added as required. Cultures can be supplemented with sodium acetate, sodium propionate, and/or sodium butyrate at respective concentrations of up to 20 g/L, 10 g/L, and 8 g/L, or a VFA feedstock at up to 75% by volume to facilitate (R)-HB-CoA and (R)-HV-CoA production (to produce PHBV). Additional carbon sources, for example, but not limited to, glucose, glycerol, pretreated biomass, and cheese whey can be used to augment PHBV production and growth. Additionally, nitrogen sources, for example, but not limited to, ammonium salts and corn steep liquor can be used in place of yeast extract. Inducer (i.e. IPTG) concentration may vary between 0 mM and 1 mM to tune expression of pathway enzymes. Cyanocobalamin (vitamin B12) is added to the medium at a concentration of 0.1-2 μM to facilitate the functional expression of Sbm as required. Pyridoxal 5′-phosphate (PLP), the active form of vitamin B6, can be added to the medium at a concentration of 0.1-2 mM to facilitate the conversion of L-glutamate to 4-aminobutyrate via a glutamate decarboxylase polypeptide. The same range of medium compositions can be used for bioreactor cultures.


In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising at least one carbon source. In embodiments, the carbon source comprises at least one of VFA, optionally sodium acetate, sodium propionate, sodium butyrate, and glucose, glycerol, biomass, optionally pretreated biomass, and cheese whey. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising at least one of about 0.01 to 20 g/L sodium acetate, about 0.01 to 10 g/L sodium propionate, about 0.01 to 8 g/L sodium butyrate, about 1-10 g/L butyraldehyde, about 1-10 g/L L-glutamate, about 1-10 g/L 4-aminobutyrate, and about 1-10 g/L succinate. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising at least one of about 0.01 to 20 g/L sodium acetate, about 0.01 to 10 g/L sodium propionate, and about 0.01 to 8 g/L sodium butyrate. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium further comprising at least one of about 1-10 g/L butyraldehyde, about 1-10 g/L L-glutamate, about 1-10 g/L 4-aminobutyrate, and about 1-10 g/L succinate. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising between about 20 VFA mmol/L and about 5 VFA mol/L, optionally between about 20 VFA mmol/L and about 90 VFA mmol/L, optionally between about 90 VFA mmol/L land about 180 mmol/L, optionally about or at least 400, 450, 500, 550, 600, 650, 700, 750, or 800 VFA mmol/L, optionally about or up to 1 VFA mol/L. In embodiments, the VFA comprises at least one of about 10-70 mol % acetic acid, about 10-80 mol % propionic acid, and about 10-70 mol % butyric acid. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium containing VFA comprising of at least one of about 20-60 mol % acetic acid, about 5-30 mol % propionic acid, and about 20-60 mol % butyric acid. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising about at least one of about 0.1-20% (w/v) glucose, optionally about 0.1%-15% (w/v) glucose, optionally about 0.1%-10% glucose, about 0.1-20% (w/v) glycerol, optionally about 0.1%-10% (w/v) glycerol, optionally about 0.1%-5% glycerol, about 0.1-50% (w/v) biomass, optionally about 0.1%-25% (w/v) biomass, optionally about 0.1%-10% biomass, optionally about 50% (w/v) pretreated biomass, optionally about 0.1%-25% (w/v) pretreated biomass, optionally about 0.1%-10% pretreated biomass and about 0.1-50% (w/v) cheese whey, optionally about 0.1%-25% (w/v) cheese whey, optionally about 0.1%-10% cheese whey.


In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising at least one nitrogen source. In embodiments, the nitrogen source comprises at least one of yeast extract, an ammonium salt, and corn steep liquor. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture media comprising at least one of about 0.1-20% (w/v) yeast extract, about 0.1-20% (w/v) ammonium salt, about 0.1-20% (w/v) casamino acids, and about 0.1-20% (w/v) corn steep liquors.


In embodiments, the method comprises culturing a recombinant bacterial cell in a culture media comprising about 0-2 mM isopropyl beta-D-1-thiogalactopyranoside (IPTG), optionally about 0.3 mM IPTG. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture media comprising about 0.1-2 μM cyanocobalamin, optionally about 0.2 μM cyanocobalamin. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture media comprising about 0.1-2 mM pyridoxal 5′-phosphate (PLP), optionally about 0.5 mM PLP.


In a specific embodiment, the method comprises culturing a recombinant bacterial cell in a culture medium comprising about 30 g/L glycerol, about 10 g/L yeast extract, about 10 mM NaHCO3, about 0.4 μM vitamin B12, trace elements, about 0.1 mM IPTG, about 0.23 g/L K2HPO4, about 0.51 g/L NH4Cl, about 49.8 mg/L MgCl2, about 48.1 mg/L K2SO4, about 2.78 mg/L FeSO4·7H2O, about 0.055 mg/L CaCl2, about 2.93 g/L NaCl, and about 0.72 g/L tricine. In embodiments, the trace elements comprises H3BO3, MnCl2·4H2O, ZnSO4·7H2O, Na2MoO4·2H2O, CuSO4·5H2O, Co(NO3)2·6H2O. In embodiments, the culture medium comprises trace elements at about 2.86 mg/L H3BO3, about 1.81 mg/L MnCl2·4H2O, about 0.222 mg/L ZnSO4·7H2O, about 0.39 mg/L Na2MoO4·2H2O, about 79 ng/L CuSO4·5H2O, about 49.4 ng/L Co(NO3)2.6H2O). In embodiments, the volumetric mass transfer coefficient (kLa) is between 50 and 500


Cultivation Conditions


Shake flask and bioreactor cultures can be performed at temperatures between 25° C. and 42° C. The starting pH in shake flask cultures can be adjusted to pH 5-9, which is the same pH range that can be maintained in bioreactor cultures. The agitation rate in shake flask cultures may range between 50 and 400 revolutions per min (rpm) and can be adjusted between 100 and 1200 rpm in bioreactor cultures. The dissolved oxygen (DO) concentration will be maintained between 1% and 50% of saturation in bioreactor cultures. Various surfactants and perfluorocarbon- and hydrocarbon-based oxygen carriers can be used to improve PHBV production and growth via improved oxygen mass transfer and altered membrane fluidity.


Growth and PHBV production can be improved, for example, by repeated culturing to acclimate E. coli strains to higher concentrations of VFA. Such repeated culturing involves, for example, culturing the recombinant E. coli cells in a medium containing increasing concentrations of VFA. Culturing can begin in a medium such as a semi-defined medium containing VFA at 1-50 mmol/L, and one or more of, but not limited to, M9 salts, yeast extract, glycerol, MgSO4, MgCl2, K2SO4, tricine, thiamine, (NH4)2HPO4, sodium citrate, CaCl2, FeSO4, K2HPO4, and trace elements such as H3BO3, MnCl2·4H2O, ZnSO4·7H2O, Na2MoO4·2H2O, CuSO4·5H2O, and Co(NO3)2·6H2O (i.e. the starting medium). The strains can be cultured for 1-7 days in the starting medium, after which time 5-100% of the culture is centrifuged and the resulting cell pellet is resuspended into a fresh medium containing VFA at a concentration of 101-200% of the starting medium. For example, if the starting medium contains 40 mmol/L VFA, the subsequent (second) round of culturing can occur in a medium containing 40.4-80 mmol/L VFA. Similarly, the second round of culturing can occur for 1-7 days, after which time 5-100% of the culture is centrifuged and the resulting cell pellet is resuspended into a fresh medium containing VFA at a concentration of 101-200% of the medium from the second round of culturing. For example, if the second round of culturing occurred in a medium containing 60 mmol/L VFA, the fresh medium can contain 60.6-120 mmol/L VFA. This process can be repeated until the strains can consume all VFA in cultures supplemented with up to 300 mmol/L VFA, with PHBV yields reaching at least 30% of dry cell weight, assuming that VFA that has not been converted to PHBV can be converted to biomass at a concentration of up to 100 g dry cell weight/L.


In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising maintaining a temperature of about 20-42° C., optionally about 25-42° C., optionally about 25-37° C. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising maintaining a pH of about 4-10, optionally about 5-9, optionally about 6-8. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising maintaining an agitation rate of about 50-1200 rpm, optionally about 50-600 rpm, optionally about 100-1200 rpm, optionally about 100-600 rpm. In embodiments, the method comprises culturing a recombinant bacterial cell in a culture medium comprising maintaining dissolved oxygen of about 1-100% of saturation, optionally about 1-5% of saturation, optionally about 6-10% of saturation, optionally about 11-15% of saturation, optionally about 16-20% of saturation, optionally about 21-25% of saturation, optionally about 26-30% of saturation, optionally about 31-35% of saturation, optionally about 36-40% of saturation, optionally about 41-45% of saturation, optionally about 46-50% of saturation, optionally about 51-55% of saturation, optionally about 56-60% of saturation, optionally about 61-65% of saturation, optionally about 66-70% of saturation, optionally about 71-75% of saturation, optionally about 76-80% of saturation, optionally about 81-85% of saturation, optionally about 86-90% of saturation, optionally about 91-95% of saturation, optionally about 96-100% of saturation.


In embodiments, the method comprises culturing a recombinant bacterial cell in a culture media comprising at least one of a surfactant, optionally an anionic surfactant, a cationic surfactant, an amphoteric surfactants, or a non-ionic surfactant, a perfluorocarbon-based oxygen carrier, optionally n-perfluorooctane, perfluorodecalin, perfluoromethyldecalin, or perfluoro-1,3-dimethylcyclohexane) and a hydrocarbon-based oxygen carrier, optionally n-heptane, n-hexadecane, and n-dodecane.


In embodiments, the method described herein comprises producing PHBV in about 1-10 days, optionally about 1-9 days, optionally about 1-8 days, optionally about 1-7 days, optionally about 1-6 days, optionally about 1-5 days, optionally about 1-4 days, optionally about 1-3 days, optionally about 1-2 days, optionally less than 10, 9, 8, 7, 6, 5, 4, 3, or 2, optionally about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 days.


In embodiments, the feedstock comprises VFA composition of about: 20-60 mol % acetic acid, 5-30 mol % propionic acid, and 20-60 mol % butyric acid.


In embodiments, the culturing condition for producing intracellular PHBV granules by the recombinant bacterial cell is under pH conditions of 6-9, optionally 6-7 or 7-8, or 8-9, temperature conditions of 20-40° C., optionally 20-25° C., or 25-30° C., or 30-35° C., or 35-40° C. and incubation times of 1 hour to 2 weeks, optionally 1 h to 1 week, optionally 1 h to 5 days, optionally 1 h to 4 days, optionally 1 h to 3 days, optionally 1 h to 2 days, optionally 1-24 h, optionally 1-3 h, or 3-6 h, or 6-9 h, or 9-12 h, or 12-18 h, or 18-24 h. Culturing of the recombinant bacterial cell for producing PHBV may use bubble column reactors, stirred tank reactors, airlift reactors, preferably airlift reactors, flasks such as polycarbonate flasks. PHBV production is done under aerobic condition, for example, when a flask for incubation is vented, or under microaerobic condition, when a flask for incubation is capped.


In embodiments, the method of culturing a recombinant bacterial cell for producing PHBV comprises,

    • culturing the PHA producing bacteria in a culture medium comprising suitable nutrients, VFA at 30-60 mmol/L, 30-90 mmol/L, 30-240 mmol/L, or 30-720 mmol/L, a carbon source, and a nitrogen source
    • maintaining pH at 6-9, optionally 6-7, 7-8, or 8-9, and


      maintaining a temperature of between about 20 and 40° C., optionally between about 20 and 25° C., 25 and 30° C., 30 and 35° C., or 35 and 40° C., for between about 1-24 h, optionally 1-3 h, 3-6 h, 6-9 h, 9-12 h, 12-18 h, or 18-24 h.


In embodiments, the method comprises culturing a recombinant bacterial cell by repeated culturing in a medium containing increasing concentrations of VFA. In embodiments, the repeated culturing comprises i) culturing in a medium comprising VFA at 1-50 mmol/L, and one or more of M9 salts, yeast extract, glycerol, trace elements, and MgSO4, for 1-7 days; ii) centrifuging 5-100% of the culture and resuspending the resulting cell pellet into a fresh medium comprising VFA at a concentration of 101-200% of the medium of step i), and one or more of M9 salts, yeast extract, glycerol, trace elements, and MgSO4, for 1-7 days; and iii) repeating step ii) until the recombinant bacterial cell is capable of consuming all VFA up to 300 mmol/L VFA in the medium, and the recombinant bacterial cell produces PHBV at a minimum of 30% (w/w) of dry cell weight. In embodiments, the trace elements comprises H3BO3, MnCl2·4H2O, ZnSO4·7H2O, Na2MoO4·2H2O, CuSO4·5H2O, and Co(NO3)2·6H2O.


The PHBV accumulates in the form of granules. The PHBV polymers are stored inside of the cells as discrete granules that are water-insoluble. In embodiments, the accumulation of PHBV granules is monitored, optionally by fluorescence spectroscopy analysis of the PHBV producing culture. In embodiments, the cells are fixed by heating a smear of the PHBV producing culture, which is the liquid mixture that contains the PHBV producing bacteria, on a glass slide. The heat-fixed cells can then be stained with 1% (v/v) aqueous Nile Blue A solution, or another appropriate staining solution and washed with sequences of water, acetic acid and water again. Afterward, the fixed culture can be analyzed using fluorescence microscopy as PHBV granules will fluoresce under these conditions. Optionally, a high throughput Nile Red assay may be used to monitor and quantify the intracellular PHBV granules in a liquid culture using fluorescence spectroscopy.


In an aspect, PHBV polymers are extracted with sequential washes for up to 3 times and lyophilized with a lyophilizer. In embodiments, the PHBV polymers are extracted with sequential washes for up to 3 times and lyophilized with a lyophilizer for about 48 h at temperatures of −20 to −80° C., optionally −30 to −35° C., −35 to −40° C., −40 to −45° C., or −45 to −50° C. Centrifugation or microfiltration with an appropriate centrifuge and microfilter for purification, may also be used during PHBV granule extraction. The skilled person can readily recognize the appropriate centrifuge and microfilter.


In embodiments, the method for producing PHBV from a recombinant bacterial cell comprises:


transforming a bacterial cell to express a recombinant nucleic acid molecule encoding at least one of an acyl-CoA synthetase polypeptide, optionally a short chain acyl-CoA synthetase polypeptide, optionally LvaE polypeptide, an acetate-CoA transferase polypeptide, optionally a MELS_RS00170 polypeptide and MELS_RS00175 polypeptide, optionally an AtoD polypeptide and an AtoA polypeptide, and a propionate-CoA transferase polypeptide, optionally Pct polypeptide to obtain a recombinant bacterial cell; and


culturing the recombinant bacterial cell in a culture medium under conditions effective to produce PHBV.


In embodiments. the culture medium comprises cyanocobalamin, optionally at a concentration of 0.1-2 μM.


In embodiments, the conditions comprise maintaining a temperature of about 20-42° C., optionally about 25-42° C., optionally about 25-37° C. In embodiments, the conditions comprise maintaining a pH of about 4-10, optionally about 5-9, optionally about 6-8.


In embodiments, the culture medium comprises at least one carbon source. In embodiments, the carbon source comprises at least one of VFA, optionally sodium acetate, sodium propionate, sodium butyrate, and glucose, glycerol, biomass, optionally pretreated biomass, and cheese whey. In embodiments, the culture media comprises at least one of about 0.01 to 20 g/L sodium acetate, about 0.01 to 10 g/L sodium propionate, and about 0.01 to 8 g/L sodium butyrate. In embodiments, the VFA comprises at least one of about 10-70 mol % acetic acid, about 10-80 mol % propionic acid, and about 10-70 mol % butyric acid.


In embodiments, the culture medium comprises at least one nitrogen source. In embodiments, the at least one nitrogen source is at least one of an ammonium salt, corn steep liquor, casamino acids, and yeast extract.


In embodiments, PHBV has a hydroxyvaleric acid (HV) content of about 1-20 mol %, about 1-30 mol %, about 1-40 mol %, or about 1-50 mol %.


In embodiments, the method further comprising extracting the PHBV from the bacterial cell and/or isolating PHBV from the culture medium.


List of strains and corresponding labels used in FIGS. 2-4 is shown in Table 5.









TABLE 5







List of strains and corresponding labels used in FIGS. 2-4.








Label
Strain





A
CPC-Sbm


B
CPC-Sbm(ΔiclR)


C
CPC-Sbm(ΔiclR ΔsdhA)


D
CPC-Sbm(pK-bktB:hbd:tesB, Ptrc-phaAB:pct(Cp))


E
CPC-Sbm(pK-bktB:hbd:tesB, Ptrc-phaAB:pct(Me))


F
CPC-Sbm(pK-lvaE:tesB, pTrc-PP_2216:H16_RS27940)


G
CPC-Sbm(pK-lvaE:tesB, pTrc-BC_5341:H16_RS27940)


H
CPC-Sbm(pK-atoDAE:tesB, pTrc-PP_2216:H16_RS27940)


I
CPC-Sbm(pK-atoDAE:tesB, pTrc-BC5341:H16_RS27940)


J
CPC-Sbm(pK-lvaE:tesB, pTrc-PP_2216:phaJ)


K
CPC-Sbm(pK-lvaE:gadAe, Ptrc-FG99_15380:pduP(Se):gabD)


L
CPC-Sbm(pK-lvaE:gadAe, Ptrc-FG99_15380:pduP(Kp):gabD)


M
CPC-Sbm(pK-lvaE:gadAe)
















TABLE 6







Examples of polypeptide homologs.










Polypeptide
Homolog Accession Numbers







AckA (SEQ ID
WP_151250307.1, WP_025758333.1,



NO: 1)
WP_000095714.1, WP_094316684.1,




WP_000095699.1, WP_059270696.1,




WP_160523843.1, WP_108188758.1,




WP_000095694.1, WP_079781741.1,




WP_000095691.1, WP_162383091.1,




WP_110248734.1, WP_016529145.1,




WP_064543869.1



Acs (SEQ ID
WP_094321046.1, WP_134796521.1,



NO: 2)
WP_000078234.1, WP_000078255.1,




WP_160523940.1, WP_130258462.1,




WP_135490640.1, WP_000078187.1,




WP_000078188.1, WP_105283185.1,




WP_079225661.1, WP_151218054.1,




EAX3726079.1, WP_061075561.1,




WP_087051807.1



AcsA (SEQ ID
WP_047183033.1, WP_144459203.1,



NO: 3)
WP_071577026.1, WP_061186774.1,




WP_075747112.1, WP_010329597.1,




WP_024714615.1, WP_162101126.1,




WP_105990205.1, WP_061572550.1,




WP_109567131.1, WP_061523123.1,




WP_103526694.1



Ald (SEQ ID
WP_077830381.1, WP_065419149.1,



NO: 184)
WP_017211959.1, WP_077844109.1,




AAD31841.1, WP_087702529.1,




WP_077868466.1, WP_077366605.1,




WP_026888070.1, WP_077860531.1,




WP_022747467.1, WP_077863550.1,




WP_009171375.1, WP_128214949.1,




WP_160679606.1, WP_012059995.1,




WP_041898834.1, WP_015395720.1



AtoA ((SEQ ID
WP_103053735.1, WP_137325583.1,



NO: 4)
WP_050899668.1, WP_000339071.1,




WP_128880225.1, WP_047462387.1,




WP_135321227.1, WP_090049661.1,




WP_004184955.1, WP_151219893.1,




WP_100682748.1, WP_013365500.1,




WP_000339048.1, WP_087857377.1



AtoD (SEQ ID
WP_053001645.1, QGU62017.1,



NO: 5)
WP_155555734.1, WP_038355059.1,




MLY49728.1, WP_105269001.1,




WP_105284960.1, WP_149476985.1,




WP_108188772.1, WP_000850520.1,




WP_138957179.1, WP_123267594.1,




WP_114680602.1, WP_047500919.1,




WP_004184954.1



BC_5341 (SEQ
WP_088022147.1, WP_098448816.1,



ID NO: 7)
WP_149216716.1, WP_101167410.1,




WP_143881711.1, WP_085450733.1,




WP_144504985.1, BCA34359.1,




WP_098299175.1, WP_071710801.1,




CKE48212.1, WP_163095898.1,




WP_071725959.1, WP_136445333.1,




WP_128975345.1



BktB (SEQ ID
WP_013956457.1, WP_035820088.1,



NO: 8)
WP_092317205.1, WP_115013782.1,




WP_116382528.1, WP_018311404.1,




WP_063238655.1, WP_116321050.1,




AGW89814.1, WP_062798985.1,




WP_133094381.1, AGW95651.1,




WP_140952189.1, WP_144195740.1,




WP_011516125.1



CKL_RS14680
WP_073539834.1, WP_010236491.1



(SEQ ID NO:




10)




FadE (SEQ ID
WP_094316844.1, WP_130224094.1,



NO: 13)
WP_135404353.1, WP_046076114.1,




WP_011069257.1, WP_135489829.1,




WP_085448671.1, WP_124782953.1,




WP_153879457.1, EDR1571704.1,




WP_103776898.1, WP_008783785.1,




WP_087053141.1, WP_079225425.1,




WP_137366593.1, WP_000973041.1



GabD (SEQ ID
WP_105285925.1, WP_135494970.1,



NO: 17)
WP_094315749.1, WP_161983589.1,




WP_000772895.1, WP_078167276.1,




WP_016249103.1, WP_105267583.1,




WP_149461599.1, WP_128880059.1,




WP_149461599.1, WP_060773285.1,




WP_153257801.1, WP_108418849.1,




WP_045446520.1



Gad (SEQ ID
XP_002871761.1, KFK41557.1,



NO: 19)
VVB14898.1, RID41892.1,




XP_013661825.1, VDC86651.1,




XP_006400267.1, XP_010420446.1,




XP_010453919.1, CAA7061503.1,




XP_006400266.1, ESQ41721.1,




XP_013627326.1, XP_031273023.1



Gad(Ls) (SEQ
WP_125641322.1, WP_226457942.1,



ID NO: 224)
BAN05709.1, MBL3537851.1,




WP_039105805.1, WP_052957185.1,




KIR08754.1, WP_125574762.1,




WP_063488771.1, WP_017262688.1



GadAe (SEQ
WP_134806912.1, WP_052942456.1,



ID NO: 20)
WP_128881419.1, WP_135383171.1,




WP_054518524.1, WP_138158972.1,




WP_103194808.1, WP_000358851.1,




WP_107164449.1, WP_000358937.1,




WP_135385956.1, WP_113623060.1,




EAB0955940.1



GadBe(Ec)
WP_134806912.1, WP_052942456.1,



(SEQ ID NO:
WP_128881419.1, WP_135383171.1,



194)
WP_054518524.1, WP_138158972.1,




WP_103194808.1, WP_000358851.1,




WP_107164449.1, WP_000358937.1,




WP_135385956.1, WP_113623060.1,




EAB0955940.1



H16_RS27940
WP_051591491.1, WP_114130480.1,



(SEQ ID NO:
WP_078200706.1, EON20731.1,



22)
PKO64515.1, WP_092007571.1,




WP_162566377.1, WP_137921632.1,




WP_162591754.1



KES23458
WP_116425784.1, WP_069862932.1,



(SEQ ID NO:
WP_043315988.1, WP_009614288.1,



15)
WP_089392503.1, WP_109934365.1,




WP_090268322.1, WP_138519936.1,




WP_138213347.1, WP_015474919.1,




WP_043256620.1, WP_084311461.1,




WP_053816481.1, WP_070656248.1,




WP_077524299.1



LvaE (SEQ ID
WP_051095536.1, AGA73676.1,



NO: 26)
WP_054905284.1, OFQ86312.1,




OFQ81524.1, WP_102880076.1,




WP_092297027.1, WP_160291004.1,




WP_081520035.1, WP_104443972.1,




WP_046855848.1, WP_134690622.1,




WP_103303932.1, WP_042129240.1,




BAV75244.1



MELS_RS10970
WP_020723925.1, WP_048514244.1,



(SEQ ID NO:
WP_074501184.1, KXB91325.1,



28)
WP_154877386.1, WP_107195291.1,




WP_087477538.1, WP_095630133.1,




WP_091647756.1, WP_023053225.1,




WP_101912630.1, WP_075572446.1,




WP_006790232.1, WP_006942404.1



PaaZ ((SEQ ID
WP_160599600.1, WP_152066042.1,



NO: 29)
WP_094316530.1, WP_032252644.1,




WP_001186464.1, WP_125401136.1,




WP_001186494.1, WP_119163289.1,




WP_095281943.1, WP_045888522.1,




WP_058840681.1, WP_095440732.1,




WP_162382197.1, WP_059385322.1,




WP_045286529.1



Pct(Cp) ((SEQ
WP_066087637.1, NCC15629.1,



ID NO: 30)
WP_054329786.1, WP_072853413.1,




CDC28613.1, WP_016408311.1,




WP_088107724.1, WP_160302233.1,




WP_004038625.1



Pct(Me) ((SEQ
WP_054336166.1, WP_036203125.1,



ID NO: 31)
WP_044502862.1, WP_065360594.1,




KXA66894.1, WP_095629974.1,




WP_087478516.1, WP_107195767.1,




WP_048515067.1, WP_101912966.1,




WP_156208970.1, KXB92430.1,




WP_023053187.1, WP_039891686.1,




KXB92214.1



PduP(Kp) (SEQ
WP_109231734.1, WP_109848747.1,



ID NO: 32)
WP_136028274.1, WP_100680758.1,




WP_100631313.1, WP_049157539.1,




WP_029884370.1, MXH33721.1,




WP_144232363.1, WP_153679752.1,




WP_148849915.1, EBS2830838.1,




WP_112213940.1, WP_064370270.1



PduP(Se) (SEQ
WP_001097684.1, WP_001528442.1,



ID NO: 33)
WP_080203692.1, WP_108450871.1,




WP_009652778.1, WP_142983670.1,




WP_105274032.1, WP_070556870.1,




WP_142502560.1, WP_012131760.1,




WP_012906342.1, WP_006683971.1,




WP_103775053.1, WP_060570657.1,




WP_135321437.1



PhaA (SEQ ID
WP_013956452.1, SCU96900.1,



NO: 34)
WP_035820078.1, 409C_A,




WP_116382525.1, WP_092317196.1,




WP_062798979.1, WP_116321054.1,




AGW89809.1, WP_039016192.1,




WP_063238652.1, WP_029049660.1,




WP_011297518.1, WP_124684437.1,




WP_109580845.1



PhaB (SEQ ID
RWA53825.1, WP_042885115.1,



NO: 35)
WP_039016191.1, WP_116336746.1,




WP_112777371.1, WP_006577377.1,




WP_135705030.1, WP_133096842.1,




WP_124684436.1, WP_116321053.1,




WP_006155939.1, WP_045241722.1,




WP_011297519.1, WP_144195744.1,




ODV43053.1



PhaB(Hb) (SEQ
WP_162219671.1, WP_126946472.1,



ID NO: 225)
WP_120385833.1, WP_030074446.1,




WP_188637499.1, WP_058579713.1,




WP_083023226.1, WP_039183428.1,




WP_159340906.1, WP_096653461.1



PhaC (SEQ ID
ACZ57807.1, WP_010810133.1,



NO: 36)
WP_013956451.1, AAW65074.1,




WP_018311399.1, AGW89808.1,




WP_115678329.1, WP_062798976.1,




WP_115013788.1, WP_115680054.1,




WP_112777370.1



PhaJ(Aa) (SEQ
WP_169200570.1, WP_053422493.1,



ID NO: 196)
WP_169118971.1, WP_169202263.1,




AUL99438.1, WP_136349851.1,




WP_136385326.1, WP_187719679.1,




WP_107493682.1, WP_169262136.1



PhaJ(Ac) (SEQ
WP_103260220.1, WP_104454254.1,



ID NO: 37)
OJW67134.1, WP_041998622.1,




WP_043760202.1, WP_043129860.1,




WP_042076944.1, WP_100860962.1,




WP_163157368.1, WP_042638062.1,




WP_106886672.1, WP_033131291.1,




WP_025327110.1, WP_040094291.1,




WP_139745378.1



PP_2216 (SEQ
WP_003250094.1, WP_104887321.1,



ID NO: 38)
WP_039614175.1, WP_023662689.1,




WP_085706434.1, WP_070087269.1,




WP_060512757.1, WP_144171976.1,




WP_054884005.1, WP_051100719.1,




WP_099814118.1, WP_125859423.1,




WP_125464833.1, WP_090345830.1,




WP_110994568.1



PrpE(Cn) (SEQ
WP_081623799.1, WP_115213214.1,



ID NO: 43)
WP_082818978.1, WP_116324638.1,




WP_092309442.1, AMR79067.1,




WP_151072146.1, WP_029046365.1,




AGW91162.1, WP_116321975.1,




WP_039006728.1, WP_092134378.1,




WP_109580644.1, WP_035882297.1,




WP_149135646.1



PrpE(Ec) (SEQ
WP_024249411.1, WP_130258507.1,



ID NO: 44)
WP_000010307.1, WP_138159881.1,




WP_105281240.1, WP_000010239.1,




WP_000010244.1, WP_160524152.1,




WP_105270931.1, WP_160530253.1,




WP_016235155.1, WP_061090735.1,




WP_103014998.1, WP_094761423.1,




ATX90159.1



PrpE(Se) (SEQ
WP_127836169.1, WP_103776706.1,



ID NO: 45)
WP_044259075.1, WP_012904755.1,




WP_043015332.1, WP_008783866.1,




WP_153690685.1, WP_058587683.1,




WP_101700584.1, WP_042324663.1,




WP_123268908.1, WP_137351112.1,




WP_048219548.1, WP_160955604.1,




WP_012133646.1



Pta (SEQ ID
WP_119174868.1, WP_114414934.1,



NO: 46)
WP_112484304.1, WP_000086724.1,




WP_135520103.1, WP_113650156.1,




WP_105273752.1, WP_079788930.1,




WP_000086702.1, WP_135520103.1,




WP_038354606.1, WP_025714133.1,




WP_071260224.1, WP_046483030.1,




WP_080924257.1



Sbm (SEQ ID
CDW60403.1, WP_096098300.1,



NO: 48)
QGU68683.1, WP_000073215.1,




WP_024250007.1, WP_105273911.1,




EBT2497755.1, WP_064198903.1,




WP_105271628.1, CDZ86651.1,




WP_130258050.1, WP_038355443.1,




WP_142462060.1, WP_103769047.1,




WP_137649991.1



SucC (SEQ ID
WP_111780024.1, WP_105268114.1,



NO: 50)
WP_149508492.1, EBH0782533.1,




WP_079789068.1, EAA0703253.1,




WP_001048612.1, WP_103776364.1,




HAC6539881.1, WP_139538723.1,




WP_040076526.1, WP_152308781.1,




WP_061708388.1, WP_159152251.1,




WP_159754306.1



SucD (SEQ ID
WP_148048643.1, WP_161983406.1,



NO: 51)
WP_128882005.1, SEK68167.1,




WP_064567804.1, WP_090133347.1,




EDS6037479.1, WP_015965312.1,




WP_154777294.1, WP_108473875.1,




WP_162082208.1, WP_154158334.1



YgfD (SEQ ID
HBV28035.1, WP_094338169.1,



NO: 55)
EBT2497754.1, WP_105273912.1,




WP_105271629.1, MJD64661.1,




MVY25917.1, WP_152060700.1,




CDZ86650.1, CDK74861.1,




WP_138183055.1, WP_138158389.1,




WP_138158874.1, WP_137651359.1,




WP_038355444.1



YgfG (SEQ ID
WP_105273913.1, WP_011069498.1,



NO: 56)
WP_095785007.1, KAE9894204.1,




WP_128881119.1, WP_105287397.1,




EBT2497753.1, WP_112366200.1,




CDZ86649.1, WP_137653935.1,




WP_103750818.1, WP_135521100.1,




EFE06586.1, WP_080626129.1,




WP_079226013.1



YgfH (SEQ ID
WP_094321963.1, WP_075331646.1,



NO: 57)
WP_105271630.1, WP_128881120.1,




WP_075328602.1, WP_128861696.1,




ECA1898152.1, WP_105273914.1,




CDZ86648.1, WP_130221450.1,




WP_135519865.1, WP_001027665.1,




WP_135407775.1, WP_130221450.1,




WP_135492970.1











PHBV Recovery and Analysis


PHBV can be recovered by any methods known in the art. The method can be an extraction method recovering PHBV from within bacterial cells, or a method recovering PHBV from culture media. A range of parameters (i.e. temperature, treatment time, pH and concentrations) for surfactant (for example SDS or non-ionic surfactant Triton X-100) and hypochlorite can be used to extract PHBV. The purity of PHBV can be determined by methods known in the art, for example, by gas chromatography mass spectroscopy (GC-MS). The recombinant bacterial cells and methods described herein produce PHBV with a mass yield of 5-80% of dry cell weight. The HV content of PHBV can also be determined by methods known in the art, for example, PHBV can be treated in a reflux at 100° C. for 150 min in the presence of chloroform, methanol, and sulfuric acid, and the PHBV is then converted into methyl esters which facilitates the separation of different hydroxyalkanoates present in the copolymer structure for further analysis, for example, by GC-MS. The monomer composition of PHBV can also be determined via proton-nuclear magnetic resonance (1H-NMR). The polymer sample can be solubilized in an appropriate deuterated solvent such as deuterated methylene chloride (CDCl2) at a concentration of 1-10 mg/mL. The analysis can be conducted in a spectrometer operating at 300-600 MHz, and the molar ratio of HB and HV monomers can be taken as the ratio of integrals of the chemical shifts at 1.25 ppm (corresponding to the CH3— group of HB) and at 0.85 ppm (corresponding to the CH3-CH2- group of HV). Dry cell weight (DCW) can be determined by centrifuging culture samples at 2000-6000×g for 10-30 min, followed by at least one wash step using distilled water, and subsequent lyophilization of the cell paste overnight. In embodiments, PHBV composition is analyzed by GC-MS and/or 1H-NMR.


Applications of PHBV with Varying HV Content


The PHBV produced by the recombinant bacterial cell described herein has a defined HV content, which affects properties such as melting point, water permeability, glass transition temperature, and tensile strength of the biopolymer. PHBV with different HV contents thus has different applications.


For example, PHBV with 0-5 mol % HV has properties that are comparable to polylactic acid (PLA) or polystyrene (PS), and it is useful as, for example, 3D printing filament, golf tees, writing utensils, cutlery, and coffee cup lids, which can be manufactured by injection moulding or extrusion of the PHBV with this amount of HV content.


For example, PHBV with 5-10 mol % HV has properties that are comparable to acrylonitrile butadiene styrene (ABS), and it is useful as, for example, building blocks (in toys) and clamshells, which can be manufactured by injection moulding or extrusion of the PHBV with this amount of HV content.


For example, PHBV with 10-20 mol % HV has properties that are comparable to polypropylene (PP) or polyethylene terephthalate (PET), and it is useful as, for example, bioplastic bottles, clothing, straws, electrical insulation, baby wipes, bottle caps, sanitary applicators, yogurt containers, which can be manufactured by blow moulding, injection moulding, profile, extrusion, or textile spinning of the PHBV with this amount of HV content.


For example, PHBV with at least 20 mol % HV has properties that are comparable to polyethylene (PE), and it is useful as, for example, shopping bags, agricultural wrap, paper cup liners, plastic wrap, banners, labels, cigarette filters, which can be manufactured by blow moulding or spray coating of the PHBV with this amount of HV content.


Further, the PHBV produced by the recombinant bacterial cell described herein has applications in the field of biomaterials.


For example, PHBV with at least 20 mol % HV is useful as a flexible porous sheet, for example, for tissue separation to enable healing of pericardiac defect in sheep (see WO1990000067A1, herein incorporated by reference in its entirety).


For example, PHBV with at least 8.25 mol % HV is useful as a film, for example, to immobilize antimicrobial peptide tachyplesin I tagged with PHA-granule-associated protein (PhaP).


For example, PHBV with at least 5 mol % HV, optionally at least 8 mol % HV, is useful as a scaffold, for example, for tissue engineering, such as neural tissue engineering.


For example, PHBV is useful as nanoparticles, for example, PHBV with at least 12 wt % HV is useful to encapsulate photosensitizer 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H, 23H-porphine, for example, for photodynamic therapy for cancer treatment, and PHBV with at least 15% mol % is useful to encapsulate drug, for example, anticancer drug such as Ellipticine.


For example, PHBV with at least 11.3 mol % HV is useful as carrier rods for local antibiotic delivery.


Further details are provided in Xue Q et al., Biomaterials 2018, 178:351-362, Rathbone S, et al., Journal of biomedical materials research Part A 2010, 93:1391-1403, Chen W, et al., Acta biomaterialia 2012, 8:540-548, Pramual S, Journal of Materials Science: Materials in Medicine 2016, 27:40-40, Masood F, Materials science & engineering C, Materials for biological applications 2013, 33:1054-1060, and Türesin F, et al., Journal of Biomaterials Science, Polymer Edition 2001, 12:195-207, the contents of which are incorporated herein by reference in its entirety for all purposes.


For example, 10-30 wt % PHBV, where the PHBV has at least 5-25% wt % HV is useful as a PHBV/polylactic acid absorbable suture, for example, for nerve and vascular repair (see CN105063790A, herein incorporated by reference in its entirety).


The recombinant bacterial cells and methods described herein produce PHBV with a HV content of about 0-50 mol %, about 1-50 mol %, about 0-40 mol %, about 1-40 mol %, about 0-30 mol %, about 1-30 mol %, about 0-20 mol %, about 1-20 mol %, about 20-50 mol %, about 10-20 mol %, about 5-10 mol %, or about 0-5 mol %. In embodiments, the recombinant bacterial cells and methods described herein produce PHBV with a HV content of about 0-50 mol %, about 5-25 mol %, about 1-50 mol %, about 0-40 mol %, about 1-40 mol %, about 0-30 mol %, about 1-30 mol %, about 0-20 mol %, about 1-20 mol %, about 20-50 mol %, about 10-20 mol %, about 5-10 mol %, or about 0-5 mol %. In embodiments, the recombinant bacterial cells and methods described herein produce PHBV with a HV content of at least about 5 mol %, at least about 6 mol %, at least about 7 mol %, at least about 8 mol %, at least about 8.25 mol %, at least about 8.5 mol %, at least about 8.75 mol %, at least about 9 mol %, at least about 10 mol %, at least about 11 mol %, at least about 11 mol %, at least about 11.1 mol %, at least about 11.2 mol %, at least about 11.3 mol %, at least about 11.4 mol %, at least about 11.5 mol %, at least about 11.6 mol %, at least about 11.7 mol %, at least about 11.8 mol %, at least about 11.9 mol %, at least about 12 mol %, at least about 13 mol %, at least about 14 mol %, at least about 15 mol %, at least about 16 mol %, at least about 17 mol %, at least about 18 mol %, at least about 19 mol %, at least about 20 mol %, at least about 25 mol %, at least about 30 mol %, or at least about 35 mol %, and optionally at most about 40 mol %, at most about 45 mol %, or at most about 50 mol %. In embodiments, the recombinant bacterial cell comprises nucleic acid molecule having the sequence of SEQ ID NO: 239 and SEQ ID NO: 240, and the recombinant bacterial cell produces PHBV with a HV content of up to about 40 mol %. In embodiments, the recombinant bacterial cell comprising nucleic acid molecule having the sequence of SEQ ID NO: 239 and SEQ ID NO: 240 produces PHBV by culturing the bacterial cell in a culture medium comprising at least one carbon source. In embodiments, the carbon source comprises glycerol. In embodiments the carbon source comprises at least one VFA. In embodiments, the recombinant bacterial cell comprises nucleic acid molecule having the sequence of SEQ ID NO: 239 and SEQ ID NO: 240, and the recombinant bacterial cell produces PHBV with a HV content from about 15 mol % to about 40 mol %. In embodiments, the recombinant bacterial strain is CPC-Sbm(bcsA::(Pgracmax2::(T7.RBS)bktB:(RBS1)phaB), intF::(Pgracmax2::(T7.RB S)phaC:(RBS1)phaA) and the bacterial strain produces PHBV with a HV content of up to about 40 mol %. In embodiments, the recombinant bacterial strain is CPC-Sbm(bcsA:(Pgracmax2::(T7.RB S)bktB:(RBS1)phaB), intF::(Pgracmax2::(T7.RBS)phaC:(RBS1)phaA) and the bacterial strain produces PHBV with a HV content from about 15 mol % to about 40 mol %. In embodiments, the recombinant bacterial cell produces PHBV at a mass yield of up to about 80% of dry cell weight. In embodiments, the HV content of PHBV is adjustable by expression, overexpression, underexpression, attenuation, silencing and/or inactivation of genes or enzymes described herein, optionally the gene is a nonessential gene.


Embodiments of the disclosure will be described in a non-limiting manner by reference to the examples below.


EXAMPLES
Example 1: Production of HV and HB—Case A

A two-plasmid system was employed to assess the potential of E. coli to co-produce the monomers of PHBV, i.e. HV and HB, respectively derived from (R)-HV-CoA and (R)-HB-CoA, from propionate and acetate as HV and HB can be readily measured via high performance liquid chromatography (HPLC). The first plasmid contained bktB, hbd (encoding hydroxybutyryl-CoA dehydrogenase Hbd polypeptide that converts 3-ketovaleryl-CoA to (S)-HV-CoA and acetoacetyl-CoA to (S)-HB-CoA), and tesB (encoding acyl-CoA thioesterase II TesB polypeptide that converts (S)-HV-CoA and (R)-HV-CoA to HV, and (S)-HB-CoA and (R)-HB-CoA to HB), i.e. plasmid pK-bktB-hbd-tesB. The second plasmid contained phaA, phaB (PhaB polypeptide converts 3-ketovaleryl-CoA to (R)-HV-CoA and acetoacetyl-CoA to (R)-HB-CoA), and pct(Cp) (from C. propionicum), i.e. plasmid pTrc-phaAB:pct(Cp), which was constructed by amplifying the Ptrc::phaAB fragment (including the plasmid backbone) from plasmid pTrc-phaAB-crt-ter with primers P01 and P02 (SEQ ID NO: 119 and 120), and pct(Cp) from C. propionicum DSM 1682 genomic DNA (gDNA) with primer P03 and P04 (SEQ ID NO: 121 and 122), followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs; USA) as per the manufacturers' instructions and readily undertaken by the skilled person. The host cell is E. coli strain CPC-Sbm, which is derived from strain K-12. It is understood that any K-12 derived strain may be useful and the skilled person can readily identify the relevant derivatives of K-12 strain. Plasmids pK-bktB-hbd-tesB and pTrc-phaAB:pct(Cp) (SEQ ID NO: 162) were co-transformed into the host E. coli strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Cp)), and its ability to produce HV and HB was evaluated in shake flask cultures (see FIG. 3)


Example 2: Production of HV and HB— Case B

A two-plasmid system was employed to assess the potential of E. coli to co-produce the monomers of PHBV, i.e. HV and HB, respectively derived from (R)-HV-CoA and (R)-HB-CoA, from propionate and acetate as HV and HB can be readily measured via HPLC. Plasmid pK-bktB-hbd-tesB was the same as in Example 1, and the second plasmid contained phaA, phaB, and pct(Me) (from M elsdenii), i.e. plasmid pTrc-phaAB:pct(Me) (SEQ ID NO: 163), which was constructed by amplifying the Ptrc::phaAB fragment (including the plasmid backbone) from plasmid pTrc-phaAB-crt-ter with primers P05 and P02 (SEQ ID NO: 123 and 120), and pct(Me) from M elsdenii DSM 20460 gDNA with primer P06 and P07 (SEQ ID NO: 124 and 125), followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. Plasmids pK-bktB-hbd-tesB and pTrc-phaAB:pct(Me) (SEQ ID NO: 163) were co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Me)), and its ability to produce HV and HB was evaluated in shake flask cultures (see FIG. 3)


Example 3: Production of HV and HB— Case C

A two-plasmid system is employed to assess the potential of E. coli to co-produce the monomers of PHBV, i.e. HV and HB, respectively derived from (R)-HV-CoA and (R)-HB-CoA, from propionate and acetate as HV and HB can be readily measured via HPLC. Plasmid pK-bktB-hbd-tesB was the same as in Example 1, and the second plasmid contains phaA, phaB, and prpE(Ec) (from E. coli), i.e. plasmid pTrc-phaAB:prpE(Ec), which is constructed by amplifying the Ptrc::phaAB fragment (including the plasmid backbone) from plasmid pTrc-phaAB-crt-ter, and prpE(Ec) from E coli MG1655 gDNA, followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. Plasmids pK-bktB-hbd-tesB and pTrc-phaAB:prpE(Ec) were co-transformed into strain CPC-Sbm, resulting in strain CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:prpE(Ec)). This strain produces HV and HB in comparable quantities as strains described in Examples 1 and 2 (FIG. 3). Further details are provided at Miscevic D et al., Applied microbiology and biotechnology 2019, 103:5215-5230, and Srirangan K et al., Applied Microbiology and Biotechnology 2014, 98:9499-9515, the contents of which are incorporated herein by reference in its entirety for all purposes.


Example 4: Production of HV and HB— Case D

A two-plasmid system is employed to assess the potential of E. coli to co-produce the monomers of PHBV, i.e. HV and HB, respectively derived from (R)-HV-CoA and (R)-HB-CoA, from propionate and acetate as HV and HB can be readily measured via HPLC. Plasmid pK-bktB-hbd-tesB was previously disclosed [13], and the second plasmid contains phaA, phaB, and prpE(Se) (from S. enterica), i.e. plasmid pTrc-phaAB:prpE(Se), which is constructed by amplifying the Ptrc::phaAB fragment (including the plasmid backbone) from plasmid pTrc-phaAB-crt-ter [13], and prpE(Se) from S. enterica DSM 18522 gDNA, followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. Plasmids pK-bktB-hbd-iesB and pTrc-phaAB:prpE(Se) were co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:prpE(Se)). This strain produces HV and HB in comparable quantities as strains described in Examples 1 and 2 (FIG. 3).


Example 5: Production of HB— Case A

A two-plasmid system was employed to assess the potential of E. coli to produce the monomer of PHBV, i.e. HB, derived from (R)-HB-CoA, from butyrate as HB can be readily measured via HPLC. The first plasmid contained lvaE and tesB, i.e. plasmid pK-lvaE:tesB, and was constructed by amplifying lvaE from P. putida KT2440 gDNA with primers P08 and P09 (SEQ ID NO: 116 and 117), and the Plac-tesB fragment (including plasmid backbone) from pK-bktB-hbd-tesB with primers P10 and P11 (SEQ ID NO: 128 and 129), followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. The second plasmid contained PP_2216 (gene encoding a short-chain acyl-CoA dehydrogenase polypeptide) and H16 RS27940, i.e. plasmid pTrc-PP_2216:H16 RS27940, and was constructed by amplifying PP_2216 from P. putida KT2440 gDNA with primers P12 and P13 (SEQ ID NO: 130 and 131), H16 RS27940 from C. necator H16 gDNA with primers P14 and P15 (SEQ ID NO: 122 and 123), and Ptrc (including plasmid backbone) from Ptrc99a (as detailed in Amann E et al., Gene 1988, 69:301-315, the contents of which are incorporated herein by reference in its entirety for all purposes) with primers P16 and P17 (SEQ ID NO: 124 and 125), followed by subsequent assembly of the three fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. lvaE and PP_2216 that have been codon optimized for expression in E. coli can also be used. Plasmids pK-lvaE:tesB and pTrc-PP_2216:H16 RS27940 (SEQ ID NO: 165) were co-transformed into strain CPC-Sbm, resulting in strain CPC-Sbm(pK-lvaK:tesB, pTrc-PP_2216:H16 RS27940), and its ability to produce HB was evaluated in shake flask cultures (FIG. 4).


Example 6: Production of HB— Case B

A two-plasmid system was employed to assess the potential of E. coli to produce the monomer of PHBV, i.e. HB, derived from (R)-HB-CoA, from butyrate as HB can be readily measured via HPLC. The first plasmid contained lvaE and tesB, i.e. plasmid pK-lvaE:tesB, and its construction was described in Example 5. The second plasmid contained BC_5341 (gene encoding a short-chain acyl-CoA dehydrogenase polypeptide) and H16 RS27940, i.e. plasmid pTrc-BC_5341:H16 RS27940, and was constructed by amplifying BC_5341 from B. cereus DSM 31 gDNA with primers P18 and P19 (SEQ ID NO: 136 and 137), and the Ptrc-H16 RS27940 fragment (including plasmid backbone) from plasmid pTrc-PP_2216:H16 RS27940 with primers P20 and P21 (SEQ ID NO: 138 and 139), followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. Plasmids pK-lvaE:tesB and pTrc-BC_5341:H16 RS27940 were co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-lvaE:tesB, pTrc-BC_5341:H16 RS27940), and its ability to produce HB was evaluated in shake flask cultures (FIG. 4).


Example 7: Production of HB— Case C

A two-plasmid system was employed to assess the potential of E. coli to produce the monomer of PHBV, i.e. HB, derived from (R)-HB-CoA, from butyrate as HB can be readily measured via HPLC. The first plasmid contained atoDAE (atoE encodes putative short-chain fatty acid transporter AtoE) and tesB, i.e. plasmid pK-atoDAE:tesB, and was constructed by amplifying atoDAE from E. coli MG1655 gDNA with primers P22 and P23 (SEQ ID NO: 140 and 141), and the Plac-tesB fragment (including plasmid backbone) from pK-bktB-hbd-tesB with primers P10 and P24 (SEQ ID NO: 128 and 142), followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. The second plasmid contained PP_2216 and H16 RS27940, i.e. plasmid pTrc-PP_2216:H16 RS27940, and its construction was described in Example 5. Plasmids pK-atoDAE:tesB and pTrc-PP_2216:H16 RS27940 were co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-atoDAE:tesB, pTrc-PP_2216:H16 RS27940), and its ability to produce HB was evaluated in shake flask cultures (FIG. 4).


Example 8: Production of HB— Case D

A two-plasmid system was employed to assess the potential of E. coli to produce the monomer of PHBV, i.e. HB, derived from (R)-HB-CoA, from butyrate as HB can be readily measured via HPLC. The first plasmid contained atoDAE (atoE encodes putative short-chain fatty acid transporter AtoE) and tesB, i.e. plasmid pK-atoDAE:tesB, and was described in Example 7. The second plasmid contained BC_5341 and H16 RS27940, i.e. plasmid pTrc-BC_5341:H16 RS27940, and its construction was described in Example 6. Plasmids pK-atoDAE:tesB and pTrc-BC_5341:H16 RS27940 were co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-atoDAE:tesB, pTrc-BC_5341:H16 RS27940), and its ability to produce HB was evaluated in shake flask cultures (FIG. 4).


Example 9: Production of HB— Case E

A two-plasmid system was employed to assess the potential of E. coli to produce the monomer of PHBV, i.e. HB, derived from (R)-HB-CoA, from butyrate as HB can be readily measured via HPLC. The first plasmid contained lvaE and tesB, i.e. plasmid pK-lvaE:tesB, and its construction was described in Example 5. The second plasmid contained PP_2216 and phaJ(Ac), i.e. plasmid pTrc-PP_2216:phaJ(Ac), and was constructed by amplifying the Ptrc::PP_2216 fragment (including plasmid backbone) from plasmid pTrc-PP_2216:H16 RS27940 with primers P25 and P26 (SEQ ID NO: 143 and 144), and phaJ(Ac) from A. caviae DSM 7323 gDNA with primers P27 and P28 (SEQ ID NO: 145 and 146), followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. Plasmids pK-lvaE:tesB and pTrc-PP_2216:phaJ(Ac) were co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-lvaE:tesB, pTrc-PP_2216:phaJ(Ac)), and its ability to produce HB was evaluated in shake flask cultures (FIG. 4).


Example 10: Production of HB— Case F

A two-plasmid system is employed to assess the potential of E. coli to produce the monomer of PHBV, i.e. HB, derived from (R)-HB-CoA, from butyrate as HB can be readily measured via HPLC. The first plasmid contains lvaE and tesB, i.e. plasmid pK-lvaE:tesB, and its construction was described in Example 5. The second plasmid contains fadE and phaJ(Ac), i.e. plasmid pTrc-fadE:phaJ(Ac), and is constructed by amplifying fadE from E. coli MG1655 gDNA and the Ptrc-phaJ(Ac) fragment (including plasmid backbone) from plasmid pTrc-PP_2216:phaJ(Ac), followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. Plasmids pK-lvaE:tesB and pTrc-fadE:phaJ(Ac) are co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-lvaK:tesB, pTrc-fadE:phaJ(Ac)). This strain produces HB in comparable quantities as strains listed in Examples 5-8 (FIG. 4).


Example 11: Production of Succinate—Case A

A two-plasmid system was employed to assess the potential of E. coli to produce succinate, i.e. an intermediate in the biosynthesis of (R)-HV-CoA from butyrate. The first plasmid contained lvaE and gadAe, i.e. plasmid pK-lvaE:gadAe, and was constructed by amplifying lvaE from P. putida KT2440 gDNA with primers P08 and P09 (SEQ ID NO: 116 and 117), gadAe from a gBlock® gene fragment synthesized by Integrated DNA Technologies (USA) with primers P29 and P30 (SEQ ID NO: 147 and 148), and the Plac fragment (including plasmid backbone) from pK184 (further details in Jobling M G et al., Nucleic Acids Research 1990, 18:5315, the contents of which are incorporated herein by reference in its entirety for all purposes) with primers P31 and P11 (SEQ ID NO: 149 and 129), followed by subsequent assembly of the three fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. The second plasmid contained FG99_15380, pduP(Se), and gabD, i.e. plasmid pTrc-FG99_15380:pduP(Se):gabD, and was constructed by amplifying FG99_15380 from a gBlock® gene fragment synthesized by Integrated DNA Technologies (FG99_15380 was codon optimized for expression in E. coli) with primers P32 and P33 (SEQ ID NO: 150 and 151), pduP(Se) from S. enterica DSM 18522 gDNA with primers P34 and P35 (SEQ ID NO: 152 and 153), gabD from E. coli MG1655 gDNA with primers P36 and P37 (SEQ ID NO: 154 and 155), and Ptrc (including plasmid backbone) from Ptrc99a [15] with primers P38 and P39 (SEQ ID NO: 156 and 157), followed by subsequent assembly of the four fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. Plasmids pK-lvaE:gadAe and pTrc-FG 99_15380:pduP(Se):gabD were co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-lvaE:gadAe, pTrc-FG99_15380:pduP(Se):gabD), and its ability to produce succinate was evaluated in shake flask cultures (FIG. 4).


Example 12: Production of Succinate—Case B

A two-plasmid system was employed to assess the potential of E. coli to produce succinate, i.e. an intermediate in the biosynthesis of (R)-HV-CoA from butyrate. The first plasmid contained lvaE and gadAe, i.e. plasmid pK-lvaE:gadAe (SEQ ID NO: 169), and its construction was described in Example 11. The second plasmid contained FG99_15380, pduP(Kp), and gabD, i.e. plasmid pTrc-FG99_15380:pduP(Kp):gabD, and was constructed by amplifying the Ptrc::FG99_15380-gabD fragment (including plasmid backbone) from pTrc-FG 99_15380:pduP(Se):gabD with primers P40 and P41 (SEQ ID NO: 158 and 159), and pduP(Kp) from K. pneumoniae DSM 2026 gDNA with primers P42 and P43 (SEQ ID NO: 160 and 161), followed by subsequent assembly of the two fragments via the NEBuilder HiFi DNA Assembly Master Mix as per the manufacturers' instructions. Plasmids pK-lvaE:gadAe (SEQ ID NO: 169) and pTrc-FG99_15380:pduP(Kp):gabD (SEQ ID NO:171) were co-transformed into strain CPC-Sbm [14], resulting in strain CPC-Sbm(pK-lvaE:gadAe, pTrc-FG 99_15380:pduP(Kp):gabD), and its ability to produce succinate was evaluated in shake flask cultures (FIG. 4).


Example 13: Production of PHBV—Case A

Genes that encode enzymes that convert propionate to propionyl-CoA, or comprise a pathway for the conversion of butyrate to (R)-HB-CoA are stably integrated into the genome of E. coli to avoid the use of antibiotics for plasmid maintenance and chemical inducers of protein expression, and plasmid instability (i.e. plasmid loss from the engineered cell). The expression of pct(Cp), is controlled by any one of a plethora of synthetic promoters that have been previously disclosed, for example but not limited to those described in Puigbo et al (2007), Nakamura et al (2000), and Jobling et al (1990), herein incorporated by reference. For instance, synthetic promoters can be derived by altering the upstream, −35 or −10, or spacer (i.e. the sequence between the −35 and −10) (further details in Hwang H J et al., Biotechnology for Biofuels 2018, 11:103, the contents of which are incorporated herein by reference in its entirety for all purposes) sequences of promoters recognized by σ70 (a protein that initiates the transcription of most genes in E. coli). Constitutive promoters with activities spanning at least one order of magnitude are also tested to determine the required promoter activity for each genomically integrated expression cassette to achieve the desired HV content and/or PHBV yield. The Design of Experiment (DoE) approach can be used to reduce the number promoters that must be tested for each genomically integrated expression cassette, and the number of experiments to be conducted, while identifying important interactions that may be observed upon altering the promoter activities of multiple expression cassettes simultaneously. Inducible promoters, for example, but not limited to, IPTG-inducible promoter Ptrc, arabinose-inducible promoter PBAD, and tetracycline-inducible promoter PtetA can also be employed to tune the expression of genomically integrated operons, but without wishing to be bound by theory, are considered a less favorable option due to the cost associated with inducer chemicals.


To facilitate the conversion of propionate to propionyl-CoA, the constitutive expression cassette consisting of pct(Cp) and synthetic promoter is integrated into the genome of strain CPC-Sbm, or any strain derived from it, at a locus corresponding to a nonessential gene, i.e. genes that can be silenced or inactivated, or its activity attenuated, without significantly affecting cell viability. Examples of nonessential genes include but are not limited to, cadA (encoding lysine decarboxylase 1 polypeptide), yjcS (encoding linear primary-alkylsulfatase polypeptide), endA (encoding DNA-specific endonuclease I polypeptide), intF (encoding putative phage integrase), bcsA (encoding cellulose synthase catalytic subunit), bcsC (encoding cellulose synthase outer membrane channel), and lacI (encoding the transcriptional repressor of the lac operon). In addition, nonessential genes that encode enzymes that inhibit or reduce the dissimilation of VFAs and/or PHBV production can be used as genomic integration sites, or can be silenced or inactivated for the purpose of improving VFA dissimilation and/or PHBV production. Examples of such nonessential genes can include but are not limited to ghrB (encoding glyoxylate reductase polypeptide that consumes both glyoxylate needed for growth on acetate and NADPH, a cofactor required by PhaB); gcl (encoding glyoxylate carboligase polypeptide that consumes glyoxylate); gabT and puuE (encoding 4-aminobutyrate aminotransferase polypeptides that consume 4-aminobutyrate needed to produce succinate semialdehyde by KES23458); gadC (encoding L-glutamate:4-aminobutyrate antiporter that exports 4-aminobutyrate out of the cell); sad (encoding NAD(+)-dependent succinate semialdehyde dehydrogenase polypeptide); atoB and yqeF (encoding acetyl-CoA acetyltransferase polypeptides that consume acetyl-CoA); fadA (encoding 3-ketoacyl-CoA thiolase polypeptide that may consume butyryl-CoA and acetyl-CoA); fadB, fadJ, and paaZ (encoding enzymes with significant 3-hydroxyacyl-CoA dehydrogenase activity that can consume crotonyl-CoA and/or (R)-HB-CoA); fadE (encoding acyl-CoA dehydrogenase polypeptide that can consume butyryl-CoA and/or crotonyl-CoA); fadR (encoding DNA-binding transcriptional dual regulator that represses transcription of fadA, fadB, fadE, etc.), ybgC, yigI, tesA, tesB, and yciA (encoding thioesterase polypeptides that can consume HB-CoA and HV-CoA); arcA and fnr (encoding global regulatory protein polypeptides that can regulate carbon flux through the TCA cycle); prpBCD (encoding enzymes that comprise the 2-methylcitrate cycle that converts propionyl-CoA to succinate); and yqhD (encoding NADPH-dependent aldehyde reductase that can convert butyraldehyde to butanol). Subsequently, one or more constitutive expression cassettes consisting of lvaE and phaJ(Ac) and one or more synthetic promoters are integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated pct(Cp) expression cassette at one or more loci corresponding to one or more nonessential genes to facilitate the conversion of butyrate to (R)-HB-CoA as previously outlined. In this case, however, fadR is inactivated by inventor through fadR gene knockout to derepress expression of fadE to facilitate the conversion of butyryl-CoA to crotonyl-CoA. In addition, atoC (encoding DNA-binding transcriptional activator/ornithine decarboxylase inhibitor that activates transcription of the atoDAEB operon for enhanced VFA uptake and conversion to acyl-CoAs) is mutated to confer constitutive expression of the atoDAEB operon by introducing the amino acid substitution I129S, yielding atoC(Con). The resulting strain containing genomically-integrated pct(Cp), lvaE, and phaJ(Ac) expression cassettes, and constitutively expressed fadE and atoDAEB are subsequently co-transformed with plasmids pPhaCAB (encoding phaA, phaB, and phaC) and pKBktB (encoding bktB) [18], and the resulting strain is evaluated for PHBV production in shake flask and/or bioreactor cultures. The strain produces PHBV with a HV content of 1-30 mol % at a mass yield of 5-80% of dry cell weight.


Example 14: Production of PHBV— Case B

Genes that encode enzymes that 1) convert propionate to propionyl-CoA, 2) comprise a pathway for the conversion of butyrate to (R)-HB-CoA, or 3) comprise a pathway for the conversion of butyrate to succinate are stably integrated into the genome of E. coli. The expression of pct(Cp) is controlled by a synthetic promoter and the corresponding constitutive expression cassette is integrated into the genome of strain CPC-Sbm, or any strain derived from it, at a locus corresponding to a nonessential gene to facilitate the conversion of propionate to propionyl-CoA as outlined in Example 13. Subsequently, one or more constitutive expression cassettes consisting of lvaE, PP_2216, and phaJ(Ac) and one or more synthetic promoters are integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated pct(Cp) expression cassette at one or more loci corresponding to one or more nonessential genes to facilitate the conversion of butyrate to (R)-HB-CoA. Subsequently, one or more constitutive expression cassettes consisting of gadAe, FG99_15380, pduP(Se), and gabD and one or more synthetic promoters are integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated pct(Cp), lvaE, PP_2216, and phaJ(Ac) expression cassettes at one or more loci corresponding to one or more nonessential genes to facilitate the conversion of butyryl-CoA to succinate. Finally, the resulting strain containing genomically-integrated pct(Cp), lvaE, PP_2216, phaJ(Ac), gadAe, FG99_15380, pduP(Se), and gabD expression cassettes are subsequently co-transformed with plasmids pPhaCAB (encoding phaA, phaB, and phaC) and pKBktB (encoding bktB) [18], and the resulting strain is evaluated for PHBV production in shake flask and/or bioreactor cultures in which cyanocobalamin has been added to activate the Sbm pathway for the conversion of succinyl-CoA to propionyl-CoA. The strain produces PHBV with a HV content of 1-30 mol % at a mass yield of 5-80% of dry cell weight.


Example 15: Production of PHBV— Case C

Genes that encode enzymes that 1) convert propionate to propionyl-CoA, 2) comprise a pathway for the conversion of butyrate to succinate, 3) comprise a pathway for the conversion of butyrate to acetyl-CoA, and 4) facilitate the conversion of succinate to succinyl-CoA are stably integrated into the genome of E. coli. The expression of lvaE and pct(Cp) is controlled by a synthetic promoter and the corresponding constitutive expression cassette is integrated into the genome of strain CPC-Sbm, or any strain derived from it, at a locus corresponding to a nonessential gene to facilitate the conversion of butyrate to butyryl-CoA and propionate to propionyl-CoA, respectively. Subsequently, a constitutive expression cassette consisting of fadE, fadB, and atoB and a synthetic promoter is integrated into a locus corresponding to a nonessential gene in the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated lvaE:pct(Cp) expression cassette to facilitate the conversion of butyryl-CoA to acetyl-CoA. One or more constitutive expression cassettes consisting of gadAe, FG99_15380, pduP(Se), and gabD and one or more synthetic promoters are then integrated into the genome of a derivative of strain CPC-Sbm containing genomically-integrated lvaE:pct(Cp) and fadE:fadB:atoB expression cassettes at one or more loci corresponding to one or more nonessential genes to facilitate the conversion of butyryl-CoA to succinate. Subsequently, a constitutive expression cassette consisting of CKL_RS14680 and a synthetic promoter is integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated lvaE:pct(Cp), fadE:fadB:atoB, gadAe, FG99_15380, pduP(Se), and gabD expression cassettes at a locus corresponding to a nonessential gene to facilitate the conversion of succinate to succinyl-CoA. Finally, the resulting strain containing genomically-integrated lvaE:pct(Cp), fadE:fadB:atoB, gadAe, FG99_15380, pduP(Se), gabD, and CKL_RS14680 expression cassettes are subsequently co-transformed with plasmids pPhaCAB (encoding phaA, phaB, and phaC) and pKBktB (encoding bktB) [18], and the resulting strain is evaluated for PHBV production in shake flask and/or bioreactor cultures in which cyanocobalamin has been added to activate the Sbm pathway for the conversion of succinyl-CoA to propionyl-CoA. The strain produces PHBV with a HV content of 1-40 mol % at a mass yield of 5-80% of dry cell weight.


Example 16: Production of PHBV— Case D

Genes that encode enzymes that 1) convert propionate to propionyl-CoA, 2) comprise a pathway for the conversion of butyrate to (R)-HB-CoA, 3) comprise a pathway for the conversion of butyrate to succinate, or 4) facilitate the conversion of succinate to succinyl-CoA are stably integrated into the genome of E. coli. Inventor has determined that inactivation of iclR, encoding a transcriptional repressor that regulates the glyoxylate shunt in E. coli, can stimulate propionyl-CoA production from acetate when the Sbm pathway is activated (FIG. 2). Moreover, over-transcription of small noncoding RNAs DsrA, RprA and ArcZ (encoded by dsrA, rprA, and arcZ, respectively; coding sequences shown in Table 3B; RNA sequences shown in Table 3C) significantly increased the tolerance of E. coli to acetate and butyrate. The expression of pct(Cp) is controlled by a synthetic promoter and the corresponding constitutive expression cassette is integrated into the genome of strain CPC-Sbm(ΔiclR), or any strain derived from it, at a locus corresponding to a nonessential gene to facilitate the conversion of propionate to propionyl-CoA as outlined in Example 13. Subsequently, one or more constitutive expression cassettes consisting of lvaE, PP_2216, and phaJ(Ac) and one or more synthetic promoters are integrated into the genome of a derivative of strain CPC-Sbm(ΔiclR) that contains the genomically-integrated pct(Cp) expression cassette at one or more loci corresponding to one or more nonessential genes to facilitate the conversion of butyrate to (R)-HB-CoA. Subsequently, one or more constitutive expression cassettes consisting of gadBe(Ec), FG99_15380, pduP(Se), and gabD and one or more synthetic promoters are integrated into the genome of a derivative of strain CPC-Sbm(ΔiclR) that contains the genomically-integrated pct(Cp), lvaE, PP_2216, and phaJ(Ac) expression cassettes at one or more loci corresponding to one or more nonessential genes to facilitate the conversion of butyryl-CoA to succinate. Subsequently, sdhA is inactivated and an expression cassette containing sdhA under control of the rhamnose-inducible promoter Prha from the rhaBAD operon of E. coli is integrated into the genome of a derivative of strain CPC-Sbm(ΔiclR) that contains the genomically-integrated pct(Cp), lvaE, PP_2216, phaJ(Ac), gadBe(Ec), FG99_15380, pduP(Se), and gabD expression cassettes at a locus corresponding to a nonessential gene. The purpose of making sdhA expression inducible is to reduce the conversion of succinate to fumarate in a tunable manner to enhance the conversion of succinate to succinyl-CoA as succinate levels increase due to reduced sdhA expression (compared to wild-type levels). Finally, the resulting ΔsdhA mutant containing genomically-integrated pct(Cp), lvaE, PP_2216, phaJ(Ac), gadBe(Ec), FG99_15380, pduP(Se), gabD, and Prha::sdhA expression cassettes are subsequently co-transformed with plasmids pPhaCAB (encoding phaA, phaB, and phaC) and pK-bktB-dsrA-rprA-arcZ (a derivative of plasmid pKBktB encoding bktB [18], and dsrA. rprA, and arcZ transcribed from their respective native promoters), and the resulting strain is evaluated for PHBV production in shake flask and/or bioreactor cultures in which cyanocobalamin has been added to activate the Sbm pathway for the conversion of succinyl-CoA to propionyl-CoA. The strain produces PHBV with a HV content of 1-50 mol % at a mass yield of 5-80% of dry cell weight.


Example 17: Production of PHBV— Case E

Genes that encode enzymes that 1) convert propionate to propionyl-CoA, 2) comprise a pathway for the conversion of butyrate to succinate, or 3) facilitate the conversion of succinate to succinyl-CoA are stably integrated into the genome of E. coli. The expression of pct(Cp) is controlled by a synthetic promoter and the corresponding constitutive expression cassette is integrated into the genome of strain CPC-Sbm, or any strain derived from it, at a locus corresponding to a nonessential gene to facilitate the conversion of propionate to propionyl-CoA as outlined in Example 13. Subsequently, a constitutive expression cassette consisting of lvaE and a synthetic promoter is integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated pct(Cp) expression cassette at a locus corresponding to a nonessential gene to facilitate the conversion of butyrate to butyryl-CoA. Subsequently, the native fadR promoter is replaced with the rhamnose-inducible promoter Prha from the rhaBAD operon of E. coli in the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated pct(Cp) and lvaE expression cassettes to facilitate inducible derepression of fadE, which will restrict the conversion of butyryl-CoA to crotonyl-CoA to reduce butyrate dissimilation for biomass accumulation in a tunable manner. In addition, an atoS:atoC(I129S) expression cassette containing the native promoter is integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated pct(Cp), lvaE, and Prha::fadR expression cassettes to confer constitutive expression of the atoDAEB operon. Subsequently, one or more constitutive expression cassettes consisting of gad(Ls), FG99_15380, pduP(Se), and gabD and one or more synthetic promoters are integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated pct(Cp), lvaE, Prha::fadR, and atoS:atoC(I129S) expression cassettes at a locus corresponding to one or more nonessential genes to facilitate the conversion of butyryl-CoA to succinate. Subsequently, a constitutive expression cassette consisting of CKL_RS14680 and a synthetic promoter is integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated pct(Cp), lvaE, Prha::fadR, atoS:atoC(I129S), gad(Ls), FG99_15380, pduP(Se), and gabD expression cassettes at a locus corresponding to a nonessential gene to facilitate the conversion of succinate to succinyl-CoA. Finally, the resulting strain containing genomically-integrated pct(Cp), lvaE, Prha::fadR, atoS:atoC(I129S), gad(Ls), FG99_15380, pduP(Se), gabD, and CKL_RS14680 expression cassettes are subsequently co-transformed with plasmids pPhaCAB (encoding phaA, phaB, and phaC) and pKBktB (encoding bktB) [18], and the resulting strain is evaluated for PHBV production in shake flask and/or bioreactor cultures in which cyanocobalamin has been added to activate the Sbm pathway for the conversion of succinyl-CoA to propionyl-CoA. The strain produces PHBV with a HV content of 1-50 mol % at a mass yield of 5-80% of dry cell weight.


Example 18: Production of PHBV— Case F

Genes that encode enzymes that 1) convert propionate to propionyl-CoA, 2) comprise a pathway for the conversion of butyrate to (R)-HB-CoA, 3) comprise a pathway for the conversion of butyrate to succinate, 4) facilitate the conversion of succinate to succinyl-CoA, 5) comprise the pathways for the conversion of acetyl-CoA to (R)-HB-CoA, and acetyl-CoA and propionyl-CoA to (R)-HV-CoA, or 6) facilitate the polymerization of (R)-HB-CoA and (R)-HV-CoA to PHBV are stably integrated into the genome of E. coli. The construction of a strain containing genomically-integrated lvaE:pct(Cp), fadE:fadB:atoB, gadAe, FG99_15380, pduP(Se), gabD, and CKL_RS14680 expression cassettes was described in Example 15. A constitutive expression cassette consisting of phaC, phaB, bktB, phaA and one or more synthetic promoters is integrated into the genome of a derivative of strain CPC-Sbm that contains the genomically-integrated lvaE:pct(Cp), fadE:fadB:atoB, gadAe, FG99_15380, pduP(Se), gabD, and CKL_RS14680 expression cassettes at loci corresponding to nonessential genes to facilitate the conversion of acetyl-CoA to (R)-HB-CoA, acetyl-CoA and propionyl-CoA to (R)-HV-CoA, and the polymerization of (R)-HB-CoA and (R)-HV-CoA to PHBV. Finally, the resulting strain containing genomically-integrated lvaE:pct(Cp), fadE:fadB:atoB, gadAe, FG99_15380, pduP(Se), gabD, CKL_RS14680, phaC, phaB, bktB, and phaA expression cassettes is evaluated for PHBV production in shake flask and/or bioreactor cultures in which cyanocobalamin has been added to activate the Sbm pathway for the conversion of succinyl-CoA to propionyl-CoA. The strain produces PHBV with a HV content of 1-40 mol % at a mass yield of 5-80% of dry cell weight.


Example 19: Acetate Consumption in Strains Engineered for High Sbm Pathway Carbon Flux

Carbon flux through the Sbm pathway primarily occurs through the reductive TCA cycle under low oxygenic conditions. However, high carbon flux through the Sbm pathway was achieved under aerobic conditions by simultaneously blocking the oxidative TCA cycle and deregulating the glyoxylate shunt through respective inactivation of sdhA and iclR. Accordingly, strains CPC-Sbm, CPC-Sbm(ΔiclR), and CPC-Sbm(ΔiclR ΔsdhA) were tested for their ability to consume acetate under aerobic and microaerobic conditions. These strains were cultivated in the base medium supplemented with 20 g/L sodium acetate, 0.3 mM IPTG, and 0.6 μM vitamin B12 in capped (microaerobic) and vented (aerobic) 125 mL polycarbonate flasks (FIG. 2). The strains and corresponding labels are shown in Table 5. Cultivations were performed at 30° C. and 280 rpm over 48 hours. Strain CPC-Sbm achieved slightly lower cell densities than strain CPC-Sbm(ΔiclR) under aerobic (OD600 11.1 and 11.7, respectively) and microaerobic (OD600 11.2 and 12.1, respectively) conditions. Moreover, acetate consumption was similar between these strains under aerobic (100% of acetate consumed) and microaerobic (˜70% acetate consumed) conditions, although strain CPC-Sbm(ΔiclR) produced 1.5 g/L propionate under microaerobic conditions indicating significant flux through the Sbm pathway. On the other hand, strain CPC-Sbm(ΔiclR ΔsdhA) exhibited significantly lower growth (cell density OD600 5.4) and acetate consumption (32% of acetate consumed) under aerobic conditions, although this strain produced propionate under both microaerobic (2.6 g/L) and aerobic (1.1 g/L) conditions. The relatively poor acetate consumption of strains CPC-Sbm and CPC-Sbm(ΔiclR) under microaerobic, compared to aerobic conditions, and the inability of strain CPC-Sbm(ΔiclR ΔsdhA) to effectively consume acetate under aerobic conditions indicates that the oxidative TCA cycle (which is highly active under aerobic conditions and inactive in strain CPC-Sbm(ΔiclR ΔsdhA)) is critical for effective dissimilation of acetate. In addition, inactivation of iclR can partially divert the flux of acetate from the oxidative TCA cycle into the Sbm pathway under low oxygenic conditions, such that altering dissolved oxygen (DO) levels can be useful for tuning the HV content of PHBV produced in cultures of iclR mutants. Similarly, reducing the expression of sdhA, or increasing the conversion of succinate to succinyl-CoA, can be useful for increasing HV content. Further details are provided in Miscevic D et al., Biotechnology and Bioengineering 2020, and Miscevic D, et al., Metabolic Engineering 2019, the contents of each of which are incorporated herein by reference in its entirety for all purposes.


Example 20: Acetate and Propionate Co-Utilization for HB and HV Co-Production

Strains CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Cp)) and CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Me)) were evaluated for their ability to co-produce HB and HV from acetate and propionate, with or without glycerol. These strains were cultivated in the base medium supplemented with 5 g/L sodium acetate, 4 g/L sodium propionate, 0.3 mM IPTG, 30 mg/L kanamycin, and 60 mg/L ampicillin, with or without 5 g/L glycerol in 125 mL Erlenmeyer flasks with foam stoppers (i.e. under aerobic conditions; FIG. 3). The strains and corresponding labels are shown in Table 5. Cultivations were performed at 30° C. and 280 rpm over 48 hours. The skilled person readily recognizes that the molar ratio of acetate to propionate can deviate from 1.46:1, for example, 4:3, or from 0.125:1 to 7:1. The Sbm pathway was not activated to accurately assess the ability of the strains to incorporate exogenous propionate into HV. Strains CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Cp)) and CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Me)) achieved similar cell densities in the medium with (OD600 9.8 and 9.3, respectively) or without (OD600 7.2 and 8.3, respectively) glycerol. Moreover, HV titers were higher in cultures of strain CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Cp)) with (0.56 g/L compared to 0.42 g/L) or without (0.28 g/L compared to 0.22 g/L) glycerol. Surprisingly, HB titers were significantly higher in cultures of strain CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Cp)), particularly when glycerol was present in the medium (0.94 g/L compared to 0.51 g/L). These results indicate that expression of pct(Cp) can result in greater incorporation of exogenous propionate into PHBV and improved HB production, compared to expression of pct(Me). On the other hand, expression of pct(Me) can result in the production of PHBV of higher HV content given the lower HB production observed in cultures of strain CPC-Sbm(pK-bktB-hbd-tesB, pTrc-phaAB:pct(Me)).


Example 21: Conversion of butyrate to HB

Strains CPC-Sbm(pK-lvaE:tesB, Ptrc-PP_2216:H16 RS27940), CPC-Sbm(pK-lvaE:tesB, Ptrc-BC_5341:H16 RS27940), CPC-Sbm(pK-atoDAE:tesB, Ptrc-PP_2216:H16 RS27940), CPC-Sbm(pK-atoDAE:tesB, Ptrc-BC_5341:H16 RS27940), and CPC-Sbm(pK-lvaE:tesB, Ptrc-PP_2216:phaJ(Ac)) were evaluated for their ability to produce HB from butyrate. These strains were cultivated in the base medium supplemented with 3 g/L sodium butyrate, 10 g/L glucose (as carbon source for growth), 0.3 mM IPTG, 30 mg/L kanamycin, and 60 mg/L ampicillin in 125 mL Erlenmeyer flasks with foam stoppers (FIG. 4). The strains and corresponding labels are shown in Table 5. Cultivations were performed at 30° C. and 280 rpm over 48 hours. Strains CPC-Sbm(pK-lvaE:tesB, Ptrc-PP_2216:H16 RS27940), CPC-Sbm(pK-lvaE:tesB, Ptrc-BC_5341:H16 RS27940), and CPC-Sbm(pK-lvaE:tesB, Ptrc-PP_2216:phaJ(Ac)) achieved similar cell densities (OD600 11.3, 10.9, and 11.3, respectively) and HB titers (1.03, 0.93, and 1.17 g/L, respectively), and respectively consumed 90, 79, and 100% of the sodium butyrate. On the other hand, strains CPC-Sbm(pK-atoDAE:tesB, Ptrc-PP_2216:H16 RS27940) and CPC-Sbm(pK-atoDAE:tesB, Ptrc-BC_5341:H16 RS27940) achieved significantly lower cell densities (OD600 8.8 and 9.6, respectively) and HB titers (0.40 and 0.53 g/L, respectively), and consumed significantly less sodium butyrate (51 and 65% of sodium butyrate consumed, respectively) compared to the other three strains. These results indicate that AtoD polypeptide and AtoA polypeptide, which are, without wishing to be bound by theory, thought to facilitate the conversion of butyrate to butyryl-CoA in atoC (Con) ΔfadR double mutants that can grow on butyrate as the sole carbon source [21, 22], is less effective at converting butyrate to butyryl-CoA, compared to LvaE. In addition, PP_2216 and BC_5341, and H16_RS27940 and PhaJ(Ac) were similarly effective at respectively converting butyryl-CoA to crotonyl-CoA, and crotonyl-CoA to (R)-HB-CoA.


Example 22: Conversion of Butyrate to Succinate

Strains CPC-Sbm(pK-lvaE:gadAe, PTrc-FG99_15380:pduP(Se):gabD) and CPC-Sbm(pK-lvaE:gadAe, PTrc-FG99_15380:pduP(Kp):gabD) were evaluated for their ability to produce succinate from butyrate. These strains were cultivated in the base medium supplemented with 3 g/L sodium butyrate, 10 g/L glucose, 0.3 mM IPTG, 30 mg/L kanamycin, and 60 mg/L ampicillin in 125 mL Erlenmeyer flasks with foam stoppers (FIG. 4). These strains achieved similar respective cell densities of OD600 15.2 and 14.9, and no succinate was detected in cultures of either strain. However, cell densities were approximately 35% higher compared to strains CPC-Sbm(pK-lvaE:tesB, Ptrc-PP_2216:H16_RS27940), CPC-Sbm(pK-lvaE:tesB, Ptrc-BC_5341:H16_RS27940), and CPC-Sbm(pK-lvaE:tesB, Ptrc-PP_2216:phaJ(Ac)) (i.e. strains engineered to convert butyrate to HB; FIG. 4), and both strains consumed all sodium butyrate, indicating that, without wishing to be bound by theory, sodium butyrate has been converted to succinate which, in turn, was metabolized through the TCA cycle. Succinate semialdehyde is another intermediate in the pathway for conversion of butyryl-CoA to succinate. Succinate semialdehyde can be converted to 4-hydroxybutyrate, a metabolite that is not naturally consumed by E. coli, via heterologous 4-hydroxybutyrate dehydrogenase polypeptide, without wishing to be bound by theory, as a means of evaluating the functionality of the pathway for the conversion of butyryl-CoA to succinate. Similar amounts of HB were detected in cultures of strains CPC-Sbm(pK-lvaE:gadAe, PTrc-FG99_15380:pduP(Se):gabD) and CPC-Sbm(pK-lvaE:gadAe, PTrc-FG 99_15380:pduP(Kp):gabD) showing that E. coli can naturally convert butyrate and/or glucose to HB. Accordingly, two control strains were tested, i.e. CPC-Sbm and CPC-Sbm(pK-lvaE:gadAe) for their ability to produce HB under the same experimental conditions (See FIG. 4). While CPC-Sbm could not produce HB from butyrate or glucose, CPC-Sbm(pK-lvaE:gadAe) converted butyrate to HB, suggesting that E. coli can naturally convert butyryl-CoA to HB (i.e. LvaE was required to convert butyrate to butyryl-CoA)).


Example 23: Conversion of Glycerol to PHBV

An expression cassette containing 1) promoter Pgracmax2, a stronger derivative of promoter Pgrac, 2) the strong RBS from gene 10 of Phage T7 (T7.RBS) that can significantly enhance translation efficiency relative to the consensus RBS of E. coli, 3) bktB, 4) a strong Gram-positive RBS coupled with a nine bp sequence derived from T7.RBS (i.e. TTAACTTTA) that facilitates base-pairing with the 16S rRNA of E. coli to enhance translation efficiency (RBS1), 5)phaB, and 6) a strong transcriptional terminator was genomically integrated into the bcsA locus of CPC-Sbm, resulting in strain CPC-Sbm(bcsA::(Pgracmax2::(T7.RBS)bktB:(RBS1)phaB). An expression cassette containing the same elements as previously described, except that bktB and phaB were respectively replaced with phaC and phaA, was subsequently genomically integrated into the intF locus of CPC-Sbm(bcsA::(Pgracmax2::(T7.RBS)bktB:(RBS1)phaB), resulting in strain CPC-Sbm(bcsA::(Pgracmax2::(T7.RB S)bktB:(RBS1)phaB), intF::(Pgracmax2::(T7.RBS)phaC:(RBS1)phaA). This strain was fermented in a medium containing 30 g/L glycerol, 10 g/L yeast extract, 10 mM NaHCO3, 0.4 μM vitamin B12, and 1000th dilution (i.e. 1 mL/L) trace elements (2.86 g/L H3BO3, 1.81 g/L MnCl2·4H2O, 0.222 g/L ZnSO4·7H2O, 0.39 g/L Na2MoO4·2H2O, 79 μg/L CuSO4·5H2O, 49.4 μg/L Co(NO3)2·6H2O), 0.1 mM IPTG, 0.23 g/L K2HPO4, 0.51 g/L NH4Cl, 49.8 mg/L MgCl2, 48.1 mg/L K2SO4, 2.78 mg/L FeSO4·7H2O, 0.055 mg/L CaCl2, 2.93 g/L NaCl, and 0.72 g/L tricine under different aeration conditions, resulting in the production of PHBV with a HV content of 15-40 mol % at a mass yield of up to 80% of dry cell weight. Further details are provided in Phan TTP et al., Protein expression and purification 2006, 46:189-195, the contents of which are incorporated herein by reference in its entirety for all purposes.


Example 24: Production of PHBV with a Weight Average Molecular Weight (Mw) of 1-1.5 MDa

To analyze the factors that possibly contribute to the production of PHBV with a Mw of 1-1.5 MDa, the following experiments were performed to test the effect of different variables, such as, the use of thermostable enzymes, the order of the genes in an operon, ribosomal binding sites and genome integration sites.


Strains listed in Table 7 below were analyzed for their ability to produce PHBV using the methods described herein. While GEN-EC-GLY-01 strain was engineered to comprise nucleic acid molecules encoding the Cupriavidus necator PhaA protein, the Cupriavidus necator PhaB protein, the Cupriavidus necator PhaC protein and the Cupriavidus necator BtkB protein, the GEN-EC-GLY-17 strain was engineered to comprise nucleic acid molecules encoding the Cupriavidus sp. S-6 PhaA protein, the Cupriavidus sp. S-6 PhaB protein, the Cupriavidus sp. S-6 PhaC protein and the Cupriavidus gilardii QJ1 BtkB protein.










TABLE 7





Strain



Name
Strain Genotype







GEN-EC-
CPC-Sbm(endA::λ-Red, yjcS::(PtetA::spc.P279T-cas9),


GLY-01
bcsA::(Pgracmax2::(RBS-T7)bktB(Cn):phaB(Cn)),



intF::(Pgracmax2::(RBS-T7)phaC(Cn):phaA(Cn)))


GEN-EC-
CPC-Sbm(yjcS::(Pgracmax2::phaCAB(S-6))),


GLY-17
bcsA::(Pgracmax2::(RBS-T7)bktB(QJ1):phaB(S-6)))









Without being bound by a theory, it is thought that, because Cupriavidus necator is a mesophile, the Cupriavidus necator PhaA, PhaB, PhaC and BtkB proteins would be thermostable at a temperature of about 28° C. to about 30° C., and thereby be capable of promoting the production of PHBV in the bacterial host cell at this temperature range. On the other hand, it is thought that since Cupriavidus sp. S-6 and Cupriavidus gilardii QJ1 are moderate thermophiles, the PhaA, PhaB, PhaC and BtkB proteins of these organisms would be thermostable at temperature higher than 30° C. (such as, at a temperature in the range of about 37° C. to about 50° C.), and thereby be capable of promoting the production of PHBV in the bacterial host cell at this higher temperature range.


Analysis of PHBV produced by the strains listed in Table 7 shows that GEN-EC-GLY-17 is indeed capable of producing PHBV at 37° C. However, surprisingly, it was seen that the molecular weight of PHBV produced varied based on the strain (FIG. 5). While GEN-EC-GLY-17 produced PHBV having a weight average molecular weight of about 1-1.5 MDa at 37° C., GEN-EC-GLY-1 produced PHBV having a weight average molecular weight of about 1.5-2 MDa at 30° C.


Next, the strains listed in Table 8 below, which differ in the order and combination of phaA, phaB and phaC genes in the operons, were analyzed for their ability to produce PHBV using the methods described herein.












TABLE 8







Strain ID
Strain Genotype









Strain A (GEN-
CPC-Sbm(bcsA::(Pgracmax2::(RBS-



EC-GLY-19)
T7)bktB(QJ1):phaB(S-6)),




yjcS::(Pgracmax2::phaA(S-6):(RBS-




T7)phaC(S-6)))



Strain B (GEN-
CPC-Sbm(yjcS::(Pgracmax2::phaCAB(S-



EC-GLY-17)
6))), bcsA::(Pgracmax2::(RBS-




T7)bktB(QJ1):phaB(S-6)))










As shown in FIG. 6, the production of PHBV from Strain B (GEN-EC-GLY-17) was significantly higher than from Strain A (GEN-EC-GLY-19) upon growth and fermentation under comparable conditions. Additionally, not only did Strain B produce more PHBV than Strain A, Strain B also produced PHBV of a different molecular weight than Strain A. While Strain B produced PHBV with a molecular weight of about 1-1.5 MDa, Strain A produced PHBV with a molecular weight of over 2 MDa. Since Strains A and B express the same heterologous genes (that is, phaA, phaB, phaC and BktB), a difference in the amount of PHBV produced and the molecular weight of PHBV was unexpected.


Next, the strains listed in Table 9 below, which differ in the ribosomal binding site (RBS) used in the phaCAB expression cassette, were analyzed for their ability to produce PHBV using the methods described herein.












TABLE 9







Strain ID
Strain









Strain A (GEN-
CPC-Sbm(yjcS::(Pgracmax2::(RBS-



EC-GLY-13)
5)phaCAB(S-6)))



Strain B (GEN-
CPC-Sbm(intF::(PtetA::spc.P279T-cas9),



EC-GLY-11)
yjcS::(Pgracmax2::(RBS-T7)phaCAB(S-6)))










While GEN-EC-GLY-13 comprises a nucleic acid molecule encoding PhaA, PhaB and PhaC proteins operably linked to a Pgracmax2 promoter and a RBS-5 ribosomal binding site, the GEN-EC-GLY-11 strain comprises a similar nucleic acid molecule encoding PhaA, PhaB and PhaC proteins operably linked to a Pgracmax2 promoter and a RBS-T7 ribosomal binding site. When the production of PHBV from glycerol by either of these strains was evaluated, the molecular weight of the PHBV produced was seen to differ. As shown in FIG. 7, the use of the RBS-T7 (SEQ ID NO: 256), a stronger ribosomal binding site than RBS-5 (SEQ ID NO: 255), resulted in the production of PHBV with lower molecular weight.


While the present disclosure has been described with reference to examples, it is to be understood that the scope of the claims should not be limited by the embodiments set forth in the examples but should be given the broadest interpretation consistent with the description as a whole.


All publications, patents and patent applications are herein incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.


Numbered Embodiments—I

The following list of embodiments is included herein for illustration purposes only and is not intended to be comprehensive or limiting. The subject matter to be claimed is expressly not limited to the following embodiments.

    • Embodiment 1. A bacterial host cell, comprising one or more of the following nucleic acid molecules integrated into the bacterial host cell genome:
      • (a) a first operon, comprising:
      • (i) a nucleic acid molecule encoding a PhaC protein, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein,
      • (ii) a nucleic acid molecule encoding a PhaA protein, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein,
      • (iii) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein,
        • wherein the first operon comprises a first promoter; and
        • (b) a second operon, comprising:
      • (iv) a nucleic acid molecule encoding a BktB protein, wherein the BktB protein is a Cupriavidus sp. QJ1 BktB protein and
      • (v) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein
        • wherein the second operon comprises a second promoter,
      • wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway.
    • Embodiment 2. The bacterial host cell of embodiment 1, wherein the first promoter and the second promoter are the same, and wherein each of the first promoter and the second promoter comprises the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2).
    • Embodiment 3. The bacterial host cell of embodiment 1, wherein the PhaA protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 241.
    • Embodiment 4. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a PhaA protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 248.
    • Embodiment 5. The bacterial host cell of embodiment 1, wherein the PhaB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 242.
    • Embodiment 6. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a PhaB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 249.
    • Embodiment 7. The bacterial host cell of embodiment 1, wherein the PhaC protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 243.
    • Embodiment 8. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a PhaC protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 250.
    • Embodiment 9. The bacterial host cell of embodiment 1, wherein the BtkB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 245.
    • Embodiment 10. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a BtkB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 251.
    • Embodiment 11. The bacterial host cell of embodiment 1, wherein the bacterial host cell converts glycerol to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV.
    • Embodiment 12. The bacterial host cell of embodiment 1, wherein the bacterial host cell converts glycerol into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV at a temperature in the range of about 37° C. to about 50° C.
    • Embodiment 13. The bacterial host cell embodiment 1, wherein the bacterial host cell comprises a sleeping beauty mutase (Sbm) operon comprising a Ptrc promoter.
    • Embodiment 14. The bacterial host cell of embodiment 1, wherein the bacterial host cell is Escherichia coli.
    • Embodiment 15. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:
    • growing the bacterial host cell of embodiment 1 in a liquid medium containing glycerol, wherein the method results in the conversion of glycerol to PHBV by the bacterial host cell.
    • Embodiment 16. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:
    • (a) growing the bacterial host cell of embodiment 1 in a liquid medium containing glycerol at a first temperature in a range of about 30° C. to about 37° C. for a first period to form a bacterial culture, and
    • (b) incubating the bacterial culture at a second temperature in a range of about 37° C. to about 50° C. for a second period,
    • wherein the method results in the conversion of glycerol to PHBV by the bacterial host cell.
    • Embodiment 17. The method of embodiment 16, wherein the first temperature is about 37° C.
    • Embodiment 18. The method of embodiment 16, wherein the second temperature is in a range of about 37° C. to about 45° C.
    • Embodiment 19. The method of embodiment 16, wherein the method comprises producing PHBV with a molecular weight of about 1 mDa to about 1.5 mDa.
    • Embodiment 20. The method of embodiment 16, wherein the first period is in the range of about 1 hour to about 24 hours.
    • Embodiment 21. The method of embodiment 16, wherein the second period is in the range of about 24 hours to about 44 hours.
    • Embodiment 22. A method of metabolizing glycerol using a bacterial host cell, the method comprising:
    • growing the bacterial host cell of embodiment 1 in a liquid medium containing glycerol, wherein the method results in the conversion of glycerol to one or more metabolic products by the bacterial host cell.
    • Embodiment 23. A bacterial host cell, comprising:
      • a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 250, (b) a nucleic acid molecule encoding a PhaA protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 248, (c) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249;
      • a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 251, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249; and
      • a sleeping beauty mutase (Sbm) operon comprises a Ptrc promoter,
      • wherein each of the first and the second operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2).
    • Embodiment 24. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:
    • growing the bacterial host cell of embodiment 23 in a liquid medium containing glycerol, wherein the method results in the conversion of glycerol to PHBV by the bacterial host cell.
    • Embodiment 25. The method of embodiment 24, wherein the method comprises producing PHBV with a molecular weight of about 1 mDa to about 1.5 mDa.
    • Embodiment 26. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:
    • (a) growing the bacterial host cell of embodiment 23 in a liquid medium containing glycerol at a first temperature in a range of about 30° C. to about 37° C. for a first period to form a bacterial culture, and
    • (b) incubating the bacterial culture at a second temperature in a range of about 37° C. to about 50° C. for a second period, wherein the method results in the conversion of glycerol to PHBV by the bacterial host cell.
    • Embodiment 27. The method of embodiment 26, wherein the method comprises producing PHBV with a molecular weight of about 1 mDa to about 1.5 mDa.
    • Embodiment 28. The bacterial host cell of embodiment 1, wherein the first operon comprises the following nucleic acid molecules in the order (i) through (iii): (i) the nucleic acid molecule encoding a PhaC protein, (ii) the nucleic acid molecule encoding a PhaA protein, and (iii) a nucleic acid molecule encoding a PhaB protein.


Numbered Embodiments—II

The following list of embodiments is included herein for illustration purposes only and is not intended to be comprehensive or limiting. The subject matter to be claimed is expressly not limited to the following embodiments.

    • Embodiment 1. A bacterial host cell, comprising one or more of the following nucleic acid molecules integrated into the bacterial host cell genome:
      • a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, and (c) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein, wherein the first operon comprises a first promoter;
      • a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the BktB protein is a Cupriavidus gilardii QJ1 BktB protein, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein, wherein the second operon comprises a second promoter;
      • a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, and (b) a nucleic acid molecule encoding a FadB protein, wherein the third operon comprises a third promoter;
      • a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, wherein the LvaE protein is a Pseudomonas putida LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase, wherein the propionate-CoA transferase is a Clostridium propionicum propionate-CoA transferase (Pct(Cp)), wherein the fourth operon comprises a fourth promoter, and
      • wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway.
    • Embodiment 2. The bacterial host cell of embodiment 1, wherein each of the first, second and fourth operons comprises a promoter comprising the nucleic acid sequence of
    • SEQ ID NO: 233 (Pgracmax2), and the third operon comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).
    • Embodiment 3. The bacterial host cell of embodiment 1, wherein the PhaA protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 241.
    • Embodiment 4. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a PhaA protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 248.
    • Embodiment 5. The bacterial host cell of embodiment 1, wherein the PhaB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 242.
    • Embodiment 6. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a PhaB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 249.
    • Embodiment 7. The bacterial host cell of embodiment 1, wherein the PhaC protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 243.
    • Embodiment 8. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a PhaC protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 250.
    • Embodiment 9. The bacterial host cell of embodiment 1, wherein the BtkB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 245.
    • Embodiment 10. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a BtkB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 251.
    • Embodiment 11. The bacterial host cell of embodiment 1, wherein the LvaE protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 247.
    • Embodiment 12. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a LvaE protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 253.
    • Embodiment 13. The bacterial host cell of embodiment 1, wherein the FadE protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 13.
    • Embodiment 14. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a FadE protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 72.
    • Embodiment 15. The bacterial host cell of embodiment 1, wherein the FadB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 12.
    • Embodiment 16. The bacterial host cell of embodiment 1, wherein the nucleic acid molecule encoding a FadB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 71.
    • Embodiment 17. The bacterial host cell of embodiment 1, wherein the third operon comprises a nucleic acid molecule encoding a AtoB protein, and wherein the AtoB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 182.
    • Embodiment 18. The bacterial host cell of embodiment 17, wherein the nucleic acid molecule encoding a AtoB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 191.
    • Embodiment 19. The bacterial host cell of embodiment 1, wherein the bacterial host cell comprises a deletion of the nucleic acid sequence encoding a endogenous lacI repressor.
    • Embodiment 20. The bacterial host cell of embodiment 1, wherein the bacterial host cell converts one or more volatile fatty acids (VFAs) to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV.
    • Embodiment 21. The bacterial host cell of embodiment 1, wherein the bacterial host cell is capable of growing in a medium containing more than 100 mM VFAs.
    • Embodiment 22. The bacterial host cell embodiment 1, wherein the bacterial host cell comprises a sleeping beauty mutase (Sbm) operon comprising a Ptrc promoter.
    • Embodiment 23. The bacterial host cell of embodiment 1, wherein the bacterial host cell is Escherichia coli.
    • Embodiment 24. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:
    • growing the bacterial host cell of embodiment 1 in a medium containing one or more volatile fatty acids (VFAs),
    • wherein the method results in the conversion of VFAs to PHBV by the bacterial host cell.
    • Embodiment 25. A method of metabolizing volatile fatty acids (VFAs) in a bacterial medium, the method comprising:
    • growing the bacterial host cell of embodiment 1 in a medium containing one or more volatile fatty acids (VFAs),
    • wherein the method results in the conversion of VFAs to one or more metabolic products by the bacterial host cell.
    • Embodiment 26. The method of embodiment 24, wherein the one or more volatile fatty acids comprises a mixture of acetate, propionate, and butyrate.
    • Embodiment 27. The method of embodiment 26, wherein the mixture of acetate, propionate, and butyrate comprises about 50 mol % acetate, about 20 mol % propionate, and about 30 mol % butyrate.
    • Embodiment 28. A bacterial host cell, comprising:
      • a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 250, (b) a nucleic acid molecule encoding a PhaA protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 248, (c) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 249;
      • a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 251, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 249;
      • a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 72, and (b) a nucleic acid molecule encoding a FadB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 71;
      • a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 253 and (b) a nucleic acid molecule encoding a propionate CoA-transferase, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 89, and
      • a sleeping beauty mutase (Sbm) operon comprises a Ptrc promoter,
      • wherein each of the first, second and fourth operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2), and the third operon comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).
    • Embodiment 29. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:
    • growing the bacterial host cell of embodiment 28 in a medium containing one or more volatile fatty acids (VFAs), wherein the method results in the conversion of VFAs to PHBV by the bacterial host cell.
    • Embodiment 30. A method of metabolizing volatile fatty acids (VFAs) in a bacterial medium, the method comprising:
    • growing the bacterial host cell of embodiment 28 in a medium containing one or more volatile fatty acids (VFAs),
    • wherein the method results in the conversion of VFAs to one or more metabolic products by the bacterial host cell.


Numbered Embodiments—III

Embodiment 1. A bacterial host cell, comprising one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway.


Embodiment 2. The bacterial host cell of embodiment 1, comprising the following nucleic acid molecules: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, and (d) a nucleic acid molecule encoding a BktB protein, wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway.


Embodiment 3. The bacterial host cell of embodiment 1 or 2, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, a Cupriavidus gilardii QJ1 PhaA protein, or a Cupriavidus necator PhaA protein.


Embodiment 4. The bacterial host cell of any one of embodiments 1-3, wherein the PhaA protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 241.


Embodiment 5. The bacterial host cell of any one of embodiments 1-4, wherein the nucleic acid molecule encoding a PhaA protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 248.


Embodiment 6. The bacterial host cell of any one of embodiments 1-5, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein, a Cupriavidus gilardii QJ1 PhaB protein, or a Cupriavidus necator PhaB protein.


Embodiment 7. The bacterial host cell of any one of embodiments 1-6, wherein the PhaB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 242.


Embodiment 8. The bacterial host cell of any one of embodiments 1-7, wherein the nucleic acid molecule encoding a PhaB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 249.


Embodiment 9. The bacterial host cell of any one of embodiments 1-8, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, a Cupriavidus gilardii QJ1 PhaC protein, or a Cupriavidus necator PhaC protein.


Embodiment 10. The bacterial host cell of any one of embodiments 1-9, wherein the PhaC protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 243.


Embodiment 11. The bacterial host cell of any one of embodiments 1-10, wherein the nucleic acid molecule encoding a PhaC protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 250.


Embodiment 12. The bacterial host cell of any one of embodiments 1-11, wherein the BtkB protein is a Cupriavidus sp. S-6 BtkB protein, a Cupriavidus gilardii QJ1 BtkB protein, or a Cupriavidus necator BtkB protein.


Embodiment 13. The bacterial host cell of any one of embodiments 1-12, wherein the BtkB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 245.


Embodiment 14. The bacterial host cell of any one of embodiments 1-13, wherein the nucleic acid molecule encoding a BtkB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 251.


Embodiment 15. The bacterial host cell of any one of embodiments 1-14, wherein the bacterial host cell comprises a sleeping beauty mutase (Sbm) operon comprising a Ptrc promoter.


Embodiment 16. The bacterial host cell of any one of embodiments 1-15, wherein the bacterial host cell comprises: a first operon, comprising: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, and (c) a nucleic acid molecule encoding a PhaB protein.


Embodiment 17. The bacterial host cell of any one of embodiments 1-16, wherein the bacterial host cell comprises: a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein and (ii) a nucleic acid molecule encoding a PhaB protein.


Embodiment 18. The bacterial host cell of any one of embodiments 1-17, wherein the bacterial host cell comprises: a first operon, comprising: (a) a nucleic acid molecule encoding a PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein; and a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein and (ii) a nucleic acid molecule encoding a PhaB protein.


Embodiment 19. The bacterial host cell of embodiment 18, wherein the first and/or second operons comprise a promoter.


Embodiment 20. The bacterial host cell of embodiment 19, wherein the promoter comprises the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2) or the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).


Embodiment 21. A bacterial host cell, comprising:

    • a first operon comprising: (a) a nucleic acid molecule encoding a PhaC protein, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, and (c) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein;
    • a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the BktB protein is a Cupriavidus gilardii QJ1 BktB protein, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein; and
    • a sleeping beauty mutase (Sbm) operon comprising a promoter,
    • wherein each of the first and the second operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2).


Embodiment 22. A bacterial host cell, comprising:

    • a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 250, (b) a nucleic acid molecule encoding a PhaA protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 248, (c) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249;
    • a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 251, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249; and
    • a sleeping beauty mutase (Sbm) operon comprises a promoter,
    • wherein each of the first and the second operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2).


Embodiment 23. The bacterial host cell of any one of embodiments 1-22, wherein the bacterial host cell converts glycerol to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV.


Embodiment 24. The bacterial host cell of any one of embodiments 1-23, wherein the bacterial host cell converts glycerol into poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV at a temperature in the range of about 37° C. to about 50° C.


Embodiment 25. The bacterial host cell of any one of embodiments 1-24, wherein the bacterial host cell exhibits reduced or eliminated succinate dehydrogenase (sdhA) function.


Embodiment 26. The bacterial host cell of embodiment 25, wherein the bacterial host cell comprises a nucleic acid molecule encoding a fusion protein, comprising sdhA and a protease degradation tag, wherein the expression of the fusion protein is regulated by a EsaR quorum sensing system.


Embodiment 27. The bacterial host cell of any one of embodiments 1-26, wherein the bacterial host cell comprises a nucleic acid molecule encoding sulA, wherein the nucleic acid molecule is operably linked to an inducible promoter.


Embodiment 28. The bacterial host cell of embodiment 27, wherein the inducible promoter is a temperature-inducible promoter.


Embodiment 29. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:

    • growing the bacterial host cell of any one of embodiments 1-28 in a medium containing glycerol, wherein the method results in the conversion of glycerol to PHBV by the bacterial host cell.


Embodiment 30. A method of metabolizing glycerol using a bacterial host cell, the method comprising:

    • growing the bacterial host cell of any one of embodiments 1-28 in a medium containing glycerol, wherein the method results in the conversion of glycerol to one or more metabolic products by the bacterial host cell.


Embodiment 31. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:

    • (a) growing the bacterial host cell of any one of embodiments 1-28 in a medium containing glycerol at a first temperature in a range of about 30° C. to about 37° C. for a first period to form a bacterial culture, and
    • (b) incubating the bacterial culture at a second temperature in a range of about 37° C. to about 50° C. for a second period, wherein the method results in the conversion of glycerol to PHBV by the bacterial host cell.


Embodiment 32. The method of embodiment 31, wherein the first temperature is about 37° C.


Embodiment 33. The method of embodiment 31 or embodiment 32, wherein the second temperature is in a range of about 37° C. to about 45° C.


Embodiment 34. The method of any one of embodiments 29-33, wherein the method comprises producing PHBV with a weight average molecular weight (Mw) of about 1 MDa to about 1.5 MDa.


Embodiment 35. The method of any one of embodiments 29-34, wherein the medium contains more than about 0.7 g/g glycerol.


Embodiment 36. The method of any one of embodiments 29-35, wherein the first period is in the range of about 1 hour to about 24 hours.


Embodiment 37. The method of any one of embodiments 29-36, wherein the second period is in the range of about 24 hours to about 44 hours.


Embodiment 38. The bacterial host cell of any one of embodiments 1-28, wherein the bacterial host cell comprises one or more of the following: (a) a nucleic acid molecule encoding a LvaE protein, (b) a nucleic acid molecule encoding a propionate-CoA transferase, (c) a nucleic acid molecule encoding a FadE protein, (d) a nucleic acid molecule encoding a FadB protein, and (e) a nucleic acid molecule encoding a AtoB protein.


Embodiment 39. The bacterial host cell of embodiment 38, wherein the bacterial host cell comprises: a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, and (b) a nucleic acid molecule encoding a FadB protein.


Embodiment 40. The bacterial host cell of embodiment 38 or embodiment 39, wherein the bacterial host cell comprises: a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, (b) a nucleic acid molecule encoding a FadB protein, and (c) a nucleic acid molecule encoding a AtoB protein.


Embodiment 41. The bacterial host cell of any one of embodiments 38-40, wherein the bacterial host cell comprises: a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase.


Embodiment 42. The bacterial host cell of any one of embodiments 38-41, wherein the bacterial host cell comprises: a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, and (b) a nucleic acid molecule encoding a FadB protein; and a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase.


Embodiment 43. The bacterial host cell of any one of embodiments 38-42, wherein the bacterial host cell comprises: a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, (b) a nucleic acid molecule encoding a FadB protein, and (c) a nucleic acid molecule encoding a AtoB protein; and a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase.


Embodiment 44. The bacterial host cell of any one of embodiments 38-43, wherein the propionate CoA-transferase is a Clostridium propionicum propionate CoA-transferase (Pct(Cp)) or a Megasphaera elsdenii propionate CoA-transferase (Pct(Me)).


Embodiment 45. The bacterial host cell of embodiment 44, wherein the propionate CoA-transferase is a Clostridium propionicum (Pct(Cp)).


Embodiment 46. The bacterial host cell of embodiment 45, wherein the Pct(Cp) protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 30.


Embodiment 47. The bacterial host cell of embodiment 45 or 46, wherein the nucleic acid molecule encoding a Pct(Cp) protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 89.


Embodiment 48. The bacterial host cell of any one of embodiments 38-47, wherein LvaE protein is a Pseudomonas putida LvaE protein.


Embodiment 49. The bacterial host cell of embodiment 48, wherein the LvaE protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 247.


Embodiment 50. The bacterial host cell of embodiment 48 or embodiment 49, wherein the nucleic acid molecule encoding a LvaE protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 253.


Embodiment 51. The bacterial host cell of any one of embodiments 38-50, wherein the FadE protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 13.


Embodiment 52. The bacterial host cell of embodiment 51, wherein the nucleic acid molecule encoding a FadE protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 72.


Embodiment 53. The bacterial host cell of any one of embodiments 38-52, wherein the FadB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 12.


Embodiment 54. The bacterial host cell of embodiment 53, wherein the nucleic acid molecule encoding a FadB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 71.


Embodiment 55. The bacterial host cell of any one of embodiments 38-54, wherein the AtoB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 182.


Embodiment 56. The bacterial host cell of embodiment 55, wherein the nucleic acid molecule encoding a AtoB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 191.


Embodiment 57. The bacterial host cell of any one of embodiments 40-56, wherein each of the first, second, third and fourth operons comprises a promoter.


Embodiment 58. The bacterial host cell of embodiment 57, wherein the promoter comprises the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2) or the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).


Embodiment 59. The bacterial host cell of any one of embodiments 40-58, wherein each of the first, second, third and fourth operons comprises an inducible promoter or a constitutive promoter.


Embodiment 60. A bacterial host cell, comprising:

    • a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, (c) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein;
    • a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the BktB protein is a Cupriavidus gilardii QJ1 BktB protein, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein;
    • a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, (b) a nucleic acid molecule encoding a FadB protein, and (c) a nucleic acid molecule encoding a AtoB protein;
    • a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, wherein the LvaE protein is a Pseudomonas putida LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase, wherein the propionate CoA-transferase is a Clostridium propionicum propionate CoA-transferase (Pct(Cp)), and
    • a sleeping beauty mutase (Sbm) operon comprises a (Ptrc) promoter,
    • wherein each of the first, second and fourth operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2), and the third operon comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).


Embodiment 61. A bacterial host cell, comprising:

    • a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 250, (b) a nucleic acid molecule encoding a PhaA protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 248, (c) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249;
    • a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 251, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 90% identity to SEQ ID NO: 249;
    • a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 72, (b) a nucleic acid molecule encoding a FadB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 71, and (c) a nucleic acid molecule encoding a AtoB protein, and wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 191;
    • a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 253 and (b) a nucleic acid molecule encoding a propionate CoA-transferase, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 89, and
    • a sleeping beauty mutase (Sbm) operon comprising a promoter,
    • wherein each of the first, second and fourth operons comprise a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2), and the third operon comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).


Embodiment 62. The bacterial host cell of any one of embodiments 38-61, wherein the bacterial host cell exhibits reduced or eliminated function of an endogenous lacI repressor.


Embodiment 63. The bacterial host cell of embodiment 62, wherein the bacterial host cell comprises a deletion of the nucleic acid sequence encoding an endogenous lacI repressor.


Embodiment 64. The bacterial host cell of any one of embodiments 38-63, wherein the bacterial host cell comprises a nucleic acid molecule encoding an enoyl-CoA hydratase/isomerase PhaJ.


Embodiment 65. The bacterial host cell of embodiment 64, wherein the enoyl-CoA hydratase/isomerase PhaJ is a Aeromonas caviae PhaJ, or a homolog thereof.


Embodiment 66. The bacterial host cell of any one of embodiments 38-65, wherein the bacterial host cell comprises one or more of the following nucleic acid molecules: (a) a nucleic acid molecule encoding an CoA-acylating aldehyde dehydrogenase (Ald); (b) a nucleic acid molecule encoding an glutamate decarboxylase GadB; and (c) β-alanine transaminase KES23458.


Embodiment 67. The bacterial host cell of embodiment 66, wherein the CoA-acylating aldehyde dehydrogenase (Ald) is a Clostridium beijerinckii Ald, or a homolog thereof.


Embodiment 68. The bacterial host cell of embodiment 66 or embodiment 67, wherein the glutamate decarboxylase GadB is a E. coli GadB or a Lactobacillus senmaizukei GadB.


Embodiment 69. The bacterial host cell of any one of embodiments 66-68, wherein the β-alanine transaminase KES23458 is a Pseudomonas sp. strain AAC β-alanine transaminase KES23458.


Embodiment 70. The bacterial host cell of any one of embodiments 38-69, wherein the bacterial host cell converts one or more volatile fatty acids (VFAs) to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or PHBV.


Embodiment 71. The bacterial host cell of any one of embodiments 38-70, wherein the bacterial host cell is capable of growing in a medium containing more than 100 mM VFAs.


Embodiment 72. The bacterial host cell of embodiment 38-71, wherein the bacterial host cell is capable of growing in a medium containing more than 225 mM VFAs.


Embodiment 73. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising:

    • growing the bacterial host cell of any one of embodiments 38-72 in a medium containing one or more volatile fatty acids (VFAs),
    • wherein the method results in the conversion of VFAs to PHBV by the bacterial host cell.


Embodiment 74. A method of metabolizing volatile fatty acids (VFAs) in a bacterial medium, the method comprising:

    • growing the bacterial host cell of any one of embodiments 38-72 in a medium containing one or more volatile fatty acids (VFAs),
    • wherein the method results in the conversion of VFAs to one or more metabolic products by the bacterial host cell.


Embodiment 75. The bacterial host cell of any one of embodiments 70-72, or the method of embodiment 73 or 74, wherein the one or more volatile fatty acids comprises a mixture of acetate, propionate, and butyrate.


Embodiment 76. The bacterial host cell of embodiment 75, wherein the mixture of acetate, propionate, and butyrate comprises about 50 mol % acetate, about 20 mol % propionate, and about 30 mol % butyrate.


Embodiment 77. The bacterial host cell of any one of embodiments 1-28, 38-72, and 75-76, or the method of any one of embodiments 29-37, 73 and 74, wherein the bacterial host cell is Escherichia coli.


Embodiment 78. The bacterial host cell of any one of embodiments 1-28, 38-72, and 75-77, or the method of any one of embodiments 29-37, 73 and 74, wherein at least one of the one or more nucleic acid molecules is integrated into the bacterial host cell genome.


Embodiment 79. The bacterial host cell of any one of embodiments 1-28, 38-72, and 75-77, or the method of any one of embodiments 29-37, 73 and 74, wherein all of the one or more nucleic acid molecules are integrated into the bacterial host cell genome.


Embodiment 80. The bacterial host cell of any one of embodiments 1-28, 38-72, and 75-77, or the method of any one of embodiments 29-37, 73 and 74, wherein the bacterial host cell comprises at least one plasmid, wherein the at least one plasmid comprises at least one of the one or more nucleic acid molecules.


Embodiment 81. The method of any one of embodiments 29-37, 73 and 74, wherein the medium is a liquid medium.

Claims
  • 1. A bacterial host cell, comprising the following nucleic acid molecules integrated into the bacterial host cell genome: a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the PhaC protein is a Cupriavidus sp. S-6 PhaC protein, (b) a nucleic acid molecule encoding a PhaA protein, wherein the PhaA protein is a Cupriavidus sp. S-6 PhaA protein, and (c) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein, wherein the first operon comprises a first promoter;a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the BktB protein is a Cupriavidus gilardii QJ1 BktB protein, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the PhaB protein is a Cupriavidus sp. S-6 PhaB protein, wherein the second operon comprises a second promoter;a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, and (b) a nucleic acid molecule encoding a FadB protein, wherein the third operon comprises a third promoter; anda fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, wherein the LvaE protein is a Pseudomonas putida LvaE protein, and (b) a nucleic acid molecule encoding a propionate-CoA transferase, wherein the propionate-CoA transferase is a Clostridium propionicum propionate-CoA transferase (Pct(Cp)), wherein the fourth operon comprises a fourth promoter;wherein the bacterial host cell comprises an activated sleeping beauty mutase (Sbm) pathway.
  • 2. The bacterial host cell of claim 1, wherein each of the first, second and fourth promoters comprise the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2), and the third promoter comprises the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).
  • 3. The bacterial host cell of claim 1, wherein the PhaA protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 241.
  • 4. The bacterial host cell of claim 1, wherein the nucleic acid molecule encoding the PhaA protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 248.
  • 5. The bacterial host cell of claim 1, wherein one of the PhaB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 242.
  • 6. The bacterial host cell of claim 1, wherein one of the nucleic acid molecule encoding the PhaB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 249.
  • 7. The bacterial host cell of claim 1, wherein the PhaC protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 243.
  • 8. The bacterial host cell of claim 1, wherein the nucleic acid molecule encoding the PhaC protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 250.
  • 9. The bacterial host cell of claim 1, wherein the BtkB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 245.
  • 10. The bacterial host cell of claim 1, wherein the nucleic acid molecule encoding the BtkB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 251.
  • 11. The bacterial host cell of claim 1, wherein the LvaE protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 247.
  • 12. The bacterial host cell of claim 1, wherein the nucleic acid molecule encoding the LvaE protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 253.
  • 13. The bacterial host cell of claim 1, wherein the FadE protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 13.
  • 14. The bacterial host cell of claim 1, wherein the nucleic acid molecule encoding the FadE protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 72.
  • 15. The bacterial host cell of claim 1, wherein the FadB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 12.
  • 16. The bacterial host cell of claim 1, wherein the nucleic acid molecule encoding the FadB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 71.
  • 17. The bacterial host cell of claim 1, wherein the third operon comprises a nucleic acid molecule encoding a AtoB protein, and wherein the AtoB protein comprises an amino acid sequence having at least 90% identity to SEQ ID NO: 182.
  • 18. The bacterial host cell of claim 17, wherein the nucleic acid molecule encoding the AtoB protein comprises a nucleic acid sequence having at least 80% identity to SEQ ID NO: 191.
  • 19. The bacterial host cell of claim 1, wherein the bacterial host cell comprises a deletion of a nucleic acid sequence encoding a endogenous lacI repressor.
  • 20. The bacterial host cell of claim 1, wherein the bacterial host cell converts one or more volatile fatty acids (VFAs) to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
  • 21. The bacterial host cell of claim 1, wherein the bacterial host cell is capable of growing in a medium containing more than 100 mM VFAs.
  • 22. The bacterial host cell claim 1, wherein the bacterial host cell comprises a sleeping beauty mutase (Sbm) operon comprising a Ptrc promoter.
  • 23. The bacterial host cell of claim 1, wherein the bacterial host cell is Escherichia coli.
  • 24. The bacterial host cell of claim 1, wherein both of the PhaB proteins comprise an amino acid sequence having at least 90% identity to SEQ ID NO: 242.
  • 25. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising: growing the bacterial host cell of claim 1 in a medium containing one or more volatile fatty acids (VFAs),wherein the method results in the conversion of VFAs to PHBV by the bacterial host cell.
  • 26. A method of metabolizing volatile fatty acids (VFAs) in a bacterial medium, the method comprising: growing the bacterial host cell of claim 1 in a medium containing one or more volatile fatty acids (VFAs),wherein the method results in the conversion of VFAs to one or more metabolic products by the bacterial host cell.
  • 27. The bacterial host cell of claim 1, wherein both of the nucleic acid molecules encoding the PhaB proteins comprise a nucleic acid sequence having at least 80% identity to SEQ ID NO: 249.
  • 28. The method of claim 25, wherein the one or more volatile fatty acids comprises a mixture of acetate, propionate, and butyrate.
  • 29. The method of claim 28, wherein the mixture of acetate, propionate, and butyrate comprises about 50 mol % acetate, about 20 mol % propionate, and about 30 mol % butyrate.
  • 30. A bacterial host cell, comprising: a first operon comprising (a) a nucleic acid molecule encoding a PhaC protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 250, (b) a nucleic acid molecule encoding a PhaA protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 248, (c) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 249;a second operon comprising: (i) a nucleic acid molecule encoding a BktB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 251, and (ii) a nucleic acid molecule encoding a PhaB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 249;a third operon, comprising: (a) a nucleic acid molecule encoding a FadE protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 72, and (b) a nucleic acid molecule encoding a FadB protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 71;a fourth operon, comprising: (a) a nucleic acid molecule encoding a LvaE protein, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 253 and (b) a nucleic acid molecule encoding a propionate CoA-transferase, wherein the nucleic acid molecule comprises a sequence having at least 80% identity to SEQ ID NO: 89, anda sleeping beauty mutase (Sbm) operon comprises a Ptrc promoter,wherein each of the first, second and fourth operons comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 233 (Pgracmax2), and the third operon comprises a promoter comprising the nucleic acid sequence of SEQ ID NO: 254 (Ptrc).
  • 31. A method of producing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the method comprising: growing the bacterial host cell of claim 30 in a medium containing one or more volatile fatty acids (VFAs),wherein the method results in the conversion of VFAs to PHBV by the bacterial host cell.
  • 32. A method of metabolizing volatile fatty acids (VFAs) in a bacterial medium, the method comprising: growing the bacterial host cell of claim 30 in a medium containing one or more volatile fatty acids (VFAs),wherein the method results in the conversion of VFAs to one or more metabolic products by the bacterial host cell.
CROSS REFERENCE TO RELATED APPLICATIONS

The present Application claims the benefit of priority to U.S. Provisional Application No. 63/342,707, filed on May 17, 2022, and U.S. Provisional Application No. 63/426,558, filed on Nov. 18, 2022, the contents of each of which are hereby incorporated by reference in their entireties.

US Referenced Citations (2)
Number Name Date Kind
20140073022 Pfleger Mar 2014 A1
20230374445 Westbrook Nov 2023 A1
Foreign Referenced Citations (4)
Number Date Country
105063790 Nov 2015 CN
107022556 Aug 2017 CN
WO-9000067 Jan 1990 WO
WO-2022103799 May 2022 WO
Non-Patent Literature Citations (54)
Entry
Shue, Mutations Derived from the Thermophilic Polyhydroxyalkanoate Synthase PhaC Enhance the Thermostability and Activity of PhaC from Cupriavidus necator H16, J. Bacteriol. 194, 2012, 2620-29. (Year: 2012).
Miscevic, Integrated strain engineering and bioprocessing strategies for high-level bio-based production of 3-hydroxyvalerate in Escherichia coli, Applied Microbiol. Biotechnol. 104, 2020, 5259-72. (Year: 2020).
Bhatia et al., Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids, Int. J. Biol. Macromol. 133, 2019, 1-10 (Year: 2019).
Jeon et al., Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha, Appl. Microb. Biotechnol. 98, 2014, 5461-69. (Year: 2014).
Sjoberg et al., Characterization of volatile fatty-acid utilization in Escherichia coli AMB Expr. 10, 2020, 184. (Year: 2020).
Park et al., Enrichment of specific monomer in medium-chain-length poly(3-hydroxyalkanoates) by amplification of fadD and fadE genes in recombinant Escherichia coli, Enz. Microb. Technol. 33, 2003, 62-70. (Year: 2003).
Agus et al., “Molecular weight characterization of poly[(R)-3-hydroxybutyrate] synthesized by genetically engineered strains of Escherichia coli”, Polymer degradation and stability 2006, 91: 1138-1146.
Amann et al., “Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene”, Sep. 30, 1988; 69(2): 301-15.
Arab, et al., “A Toolkit for Effective and Successive Genome Engineering of Escherichia coli”, Fermentation. 2023; 9(1): 14, 17 pages.
Chen et al., “PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon-dendrite polarization”, Acta Biomater. Feb. 2012; 8(2): 540-8. Epub Sep. 28, 2011.
Gupta et al., “Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit”, Nat Biotechnol. Mar. 2017; 35(3):273-279. Epub Feb. 13, 2017.
Herring et al., “Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale”, Nat Genet. Dec. 2006; 38(12): 1406-12 Epub Nov. 5, 2006.
Ho et al., “Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness”, J Biosci Bioeng. Feb. 2013; 115(2): 154-8. Epub Sep. 29, 2012.
Hwang et al., “Engineering and application of synthetic nar promoter for fine-tuning the expression of metabolic pathway genes in Escherichia coli”, Biotechnol Biofuels. Apr. 7, 2018; 11: 103, 13 pages.
Jechlinger et al., “Modulation of gene expression by promoter mutants of the lambdacl857/pRM/pR system”, J Biotechnol. Mar. 2, 2005; 116(1): 11-20. Epub Nov. 18, 2004.
Jenkins et al., “Genetic and molecular characterization of the genes involved in short-chain fatty acid degradation in Escherichia coli: the ato system”,. J Bacteriol. Jan. 1987; 169(1): 42-52.
Jobling et al., “Construction of vectors with the p15a replicon, kanamycin resistance, inducible lacZ alpha and pUC18 or pUC19 multiple cloning sites” Nucleic Acids Res. Sep. 11, 1990; 18(17): 5315-6.
Kang et al., “Inactivation of a Mismatch-Repair System Diversifies Genotypic Landscape of Escherichia coli During Adaptive Laboratory Evolution”, Front Microbiol. Aug. 16, 2019; 10: 1845, 13 pages.
Kim et al., “Adaptive laboratory evolution of Escherichia coli W enhances gamma-aminobutyric acid production using glycerol as the carbon source”, Metab Eng. Jan. 2022; 69: 59-72.
Masood et al., “Encapsulation of Ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application”, Mater Sci Eng C Mater Biol Appl. Apr. 1, 2013; 33(3): 1054-60. Epub Nov. 28, 2012.
Miscevic et al., “Bio-based production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with modulated monomeric fraction in Escherichia coli”, Appl Microbiol Biotechnol. Feb. 2021; 105(4): 1435-1446. Epub Jan. 23, 2021.
Miscevic et al., “Heterologous production of 3-hydroxyvalerate in engineered Escherichia coli”, Metab Eng. Sep. 2020; 61: 141-151. Epub Nov. 12, 2019.
Miscevic et al., “High-level heterologous production of propionate in engineered Escherichia coli”, Biotechnol Bioeng. May 2020; 117(5): 1304-1315. Epub Feb. 3, 2020.
Miscevic et al., “Production of cellulosic butyrate and 3-hydroxybutyrate in engineered Escherichia coli”, Appl Microbiol Biotechnol. Jul. 2019; 103(13): 5215-5230. Epub May 2, 2019.
Nakamura et al., “Codon usage tabulated from international DNA sequence databases: status for the year 200”, Nucleic Acids Res. Jan. 1, 2000; 28(1): 292.
Normi et al., “Characterization and properties of G4X mutants of Ralstonia eutropha PHA synthase for poly(3-hydroxybutyrate) biosynthesis in Escherichia coli”, Macromol Biosci. Mar. 15, 2005; 5(3): 197-206.
Olins et al., “A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli”, J Biol Chem. Oct. 15, 1989; 264(29): 16973-6.
Pauli et al., “ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli”, Eur J Biochem. Sep. 25, 1972; 29(3): 553-62.
Phan et al., “Development of a strong intracellular expression system for Bacillus subtilis by optimizing promoter elements”, J Biotechnol. Jan. 2012; 157(1): 167-72. Epub Nov. 10, 2011.
Pramual et al., “Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents”, J Mater Sci Mater Med. Feb. 2016; 27(2): 40. Epub Dec. 28, 2015, 11 pages.
Puigbo et al., “HEG-DB: a database of predicted highly expressed genes in prokaryotic complete genomes under translational selection”, Nucleic Acids Res. Jan. 2008; 36(Database issue): D524-7. Epub Oct. 11, 2007.
Puigbo et al., “Optimizer: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. Jul. 2007; 35(Web Server issue): W126-31”, Epub Apr. 16, 2007.
Rand et al., “A metabolic pathway for catabolizing levulinic acid in bacteria”, Nat Microbiol. Dec. 2017; 2(12): 1624-1634. Epub Sep. 25, 2017.
Rathbone et al., “Biocompatibility of polyhydroxyalkanoate as a potential material for ligament and tendon scaffold material”, J Biomed Mater Res A. Jun. 15, 2010; 93(4): 1391-403.
Sheu et al., “Mutations derived from the thermophilic polyhydroxyalkanoate synthase PhaC enhance the thermostability and activity of PhaC from Cupriavidus necator H16”, J Bacteriol. May 2012; 194(10): 2620-9. Epub Mar. 9, 2012.
Shi et al., “Directed evolution and mutagenesis of glutamate decarboxylase from Lactobacillus brevis Lb85 to broaden the range of its activity toward a near-neutral pH”, Enzyme Microb Technol. Jul.-Aug. 2014; 61-62: 35-43. Epub May 1, 2014.
Shong et al., “Directed evolution of the quorum-sensing regulator EsaR for increased signal sensitivity”, ACS Chem Biol. Apr. 19, 2013; 8(4): 789-95. Epub Feb. 6, 2013.
Sievers et al., “Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega”, Mol Syst Biol. Oct. 11, 2011; 7:539, 6 pages.
Soma et al., “Reconstruction of a metabolic regulatory network in Escherichia coli for purposeful switching from cell growth mode to production mode in direct GABA fermentation from glucose”, Metab Eng. Sep. 2017; 43(Pt A): 54-63.
Srirangan et al., “Biochemical, genetic, and metabolic engineering strategies to enhance coproduction of 1-propanol and ethanol in engineered Escherichia coli”, Appl Microbiol Biotechnol. Nov. 2014; 98(22): 9499-515. Epub Oct. 10, 2014.
Srirangan et al., “Engineering of Escherichia coli for direct and modulated biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer using unrelated carbon sources”, Sci Rep. Nov. 7, 2016; 6: 36470, 11 pages.
Tang et al., “Efficient expression of novel glutamate decarboxylases and high level production of γ-aminobutyric acid catalyzed by engineered Escherichia coli”, Int J Biol Macromol. Oct. 1, 2020; 160: 372-379.
Turesin et al., “Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release”, J Biomater Sci Polym Ed. 2001; 12(2): 195-207.
Wang et al., “Metabolic modeling of the substrate competition among multiple VFAs for PHA production by mixed microbial cultures”, J Biotechnol. Aug. 20, 2018; 280: 62-69. Epub Jun. 19, 2018.
Xue et al., “Anti-infective biomaterials with surface-decorated tachyplesin I”, Biomaterials. Sep. 2018; 178:351-362. Epub May 9, 2018.
Yin et al., “Effects of chromosomal gene copy number and locations on polyhydroxyalkanoate synthesis by Escherichia coli and Halomonas sp”, Appl Microbiol Biotechnol. Jul. 2015; 99(13): 5523-34. Epub Mar. 12, 2015.
Zhang et al., “Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli”, Metab Eng. Jan. 2018; 45: 32-42. Epub Nov. 24, 2017.
Zhuang et al., “Engineering the pathway in Escherichia coli for the synthesis of medium-chain-length polyhydroxyalkanoates consisting of both even- and odd-chain monomers” Microb Cell Fact. Aug. 13, 2019; 18(1): 135, 13 pages.
Genbank, Accession No. CP054626.1, www.ncbi.nlm.nih.gov., Jun. 16, 2020, 2 pages.
Genbank, Accession No. HE610111, 2012, ncbi.nlm.nih.gov., May 3, 2012, 4 pages.
Genbank, Accession No. WP_174781755.1, May 2021, www.ncbi.nlm.nih.gov., May 21, 2021, 1 page.
Kweon et al., “Isolation of a novel species in the genus Cupriavidus from a patient with sepsis using whole genome sequencing”, PLoS One. May 13, 2020; 15(5): e0232850, 11 pages.
Uniprot, Accession No. A0A6N1BR68, 2020, www.uniprot.org. (Year: 2020), 1 page.
International Search Report and Written Opinion for International Application No. PCT/US2023/067152, mailed Nov. 14, 2023, 13 pages.
Related Publications (1)
Number Date Country
20230374557 A1 Nov 2023 US
Provisional Applications (2)
Number Date Country
63426558 Nov 2022 US
63342707 May 2022 US