This application is a 371 application of International Application PCT/EP05/054806, filed on Sep. 26, 2005, which claims priority to, and benefit of, European Patent Application No. 04104696.2, filed on Sep. 27, 2004.
1. Field of the Invention
The present disclosure relates to pro-carboxypeptidase B and carboxypeptidase B and to a process for preparing them.
2. Discussion of the Background Art
Carboxypeptidase B (CPB) is a pancreatic exopeptidase which cleaves by the hydrolysis of peptide linkages at basic amino acids, such as lysine, arginine and ornithine. The cleavage is effected at the C-terminal end of the polypeptides. It is a zinc-containing peptidase (EC 3.4.17.2).
Carboxypeptidase B is formed from pre-pro-carboxypeptidase B, which is enzymatically inactive. From pre-pro-carboxypeptidase B, a signal peptide is cleaved off to obtain a pro-carboxypeptidase B, which is also enzymatically inactive. From the latter, another peptide is cleaved off to obtain the active carboxypeptidase.
The molecular weight of carboxypeptidase B is about 35 kD. It is employed for a wide variety of purposes, especially for the preparation of peptides, such as insulin, and in protein sequence analysis. Carboxypeptidase B is usually purified from porcine pancreas.
The cDNA sequences of human carboxypeptidase B are known.
WO 96/23064 describes a process for the preparation of recombinant rat carboxypeptidase B. Attempts to express the plasmid described were not successful.
Commercially available carboxypeptidase (purified from natural sources) typically has activities of about 50 to 170 U/mg. One unit (1 U) corresponds to the hydrolysis of 1 mmol of hippuryl-L-Arg per min at 25° C. and at a pH of 7.65.
Carboxypeptidase B purified from natural sources is always contaminated with small amounts of other proteases. Therefore, there is still a need for highly pure carboxypeptidases having an activity as high as possible.
A novel pro-carboxypeptidase B (pro-CPB) and a novel carboxypeptidase B (CPB), wherein the carboxypeptidases have an enzyme activity of at least 200 U per mg, preferably more than 250 U per mg, more preferably more than 270 U per mg.
The carboxypeptidases are more readily purified. Carboxypeptidase B obtained from porcine pancreas has a purity of 81.6% in reverse-phase HPLC, while the CPB according to the invention has a purity of 97.4%. In gel permeation chromatography, the carboxypeptidases according to the invention have a purity of 99.1% while a carboxypeptidase purified from porcine pancreas has a purity of 77.2%. Surprisingly, the altered structure achieves a higher temperature stability at 40° C. In addition, it shows a higher long-term stability when stored in a liquid form at pH 8.
Therefore, on the one hand, the present disclosure relates to a nucleic acid coding for pro-carboxypeptidase B (Pro-CPB) comprising three segments A, B and C, wherein at least one of the segments has one of the sequences according to SEQ ID No. 1, 2 or 3.
In a preferred embodiment, segment A has the sequence according to SEQ ID No. 1, segment B has the sequence of SEQ ID No. 2, and/or segment C has the sequence according to SEQ ID No. 3.
In a further preferred embodiment, at least two of segments A, B and C respectively correspond to one of the sequences having the SEQ ID No. 1, 2 or 3.
In one embodiment, the remaining segments that do not contain any of sequences 1, 2 or 3 are selected from sequences 4 to 6 or 9 to 11.
In one embodiment, at least one of the segments has one of the sequences according to SEQ ID No. 1, 2 or 3, and the sequences are selected from the sequences 1, 4 and 9 for segment A, from 2, 5 and 10 for segment B, and from 3, 6 and 11 for segment C.
Particularly preferred sequences for the nucleic acid coding for pro-carboxypeptidase B are sequences selected from the group consisting of:
The present disclosure further relates to the pro-carboxypeptidase obtainable by expressing a nucleic acid according to the invention, and to a carboxypeptidase B obtainable by cleaving off the pro sequence of pro-carboxypeptidase B according to the invention. Such a cleavage can be performed, for example, by trypsin.
The present disclosure further relates to an expression vector containing the nucleic acid according to the invention, and to a transformed organism containing the expression vector according to the invention.
The present disclosure further relates to a protein containing an amino acid sequence according to SEQ ID No. 8 with at least 5 mutations selected from the group of D22H, S24N, E25I, R33T, A63T, E69K, C94V, E115Q, K120E, D135E, D137R, N138T, Q168P, D177E, Y184R, A186I, F191L, N194K, N240D, T245S, V246I, V250R, N254D, 1295M, D309N, S314A, G318A, A319T, Y327H, S330K, S337A, N353D, F370Y, A381P, Q384E, V390I, N395S, T397V.
In one embodiment, a Y is appended as amino acid 402.
In a preferred embodiment, the protein according to the present disclosure includes at least seven, more preferably at least ten and most preferably at least fifteen of the above mentioned mutations. The protein may additionally have up to 30 other mutations, deletions or insertions.
Being a recombinant protein, the protein according to the present disclosure is free from contaminations by other natural proteases. In addition, it can be produced in particularly high purity, especially purities of more than 170 U per mg, preferably more than 200 U per mg, more preferably more than 250 U per mg, and most preferably more than 280 U per mg.
The present disclosure further relates to a process for expressing pro-CPB, comprising the steps of:
The present invention further relates to a carboxypeptidase having the sequence according to SEQ ID No. 7, preferably with a maximum of 30 mutations, deletions or insertions.
“Mutation” means an exchange of an amino acid for another, “insertion” means the additional introduction of a further amino acid, and “deletion” means the removal of an amino acid.
A particularly preferred expression system is Pichia pastoris. However, in principle, other usual expression systems, such as the Baculovirus system in insect cells, or expression in mammal cells may also be employed. The use of the Pichia expression system has been described, for example, in U.S. Pat. No. 5,102,789, which is included herein by reference.
The nucleic acids according to the present disclosure can be synthesized, for example, by chemical synthesis in fragments, and the fragments subsequently ligated. The proteins according to the present disclosure can then be obtained by expressing the corresponding nucleic acid. The nucleic acid may also be obtained by site-directed mutagenesis from the known cDNA sequence of CBP. Methods thereof are described, for example, in The Journal of Biological Chemistry, 174 (1999), 19925-19933, which is included herein by reference.
The present disclosure will be further illustrated by the following further Examples.
The genes were cloned into the following vectors:
Pichia pastoris:
E. coli:
Arxula adeninovirans:
The highest expression rates were achieved in Pichia pastoris: pKEXTEX-npproCPB.
Culturing Method
A fed-batch method and a continuous method were developed. In these methods, about 200 mg/l of npproCPB was secreted into the medium.
Fed-Batch Culture
Fermentation Medium (for 1 l):
Hexaphosphate Medium
PTM1 (trace elements) 1 ml/l
Culturing Conditions
Course of Culture
Continuous Culture
Medium components of continuous feed (1 l)
Course of Culture
Processing Method
1st step: Activation of npproCPB by trypsin cleavage
2nd step: anion-exchange chromatography—DEAE-Sephacel
3rd step: hydrophobic interaction chromatography—butyl-sepharose
This method yields a pure npCPB.
Activation of pronpCPB by Means of Trypsin Cleavage
Anion-Exchange Chromatography
Hydrophobic Interaction Chromatography (HIC)
Enzyme Activity
To determine the specific activity of the recombinant carboxypeptidase B (npCPB) and the carboxypeptidase B from porcine pancreas (pigCPB), the following procedure is employed. First, the volume activity of the CPB is determined. as the substrate solution, 0.015 mol of hippurylarginine (Sigma company) is dissolved in 0.05 M Tris/HCl buffer, pH 7.8. Further, a 50 mM Tris/HCl buffer, pH 7.8, is needed. The reaction solution consists of 0.5 ml of Tris buffer, 0.1 ml of the substrate solution and 0.385 ml of distilled water. The reaction is started with 17 μl of CPB enzyme solution. The photometric measurement (ΔE) is effected for 1 min in a silica glass cuvette at a layer thickness of 0.5 cm and at a temperature of 25° C. and at a wavelength of λ=254 nm. The CPB activity is calculated according to the following formula.
The related protein concentration of the enzyme solution is determined by photometry at a wavelength of 280 nm in a silica glass cuvette having a layer thickness of 1 cm and a temperature of between 20 and 25° C. At first, the blank is established by measuring only the absorption of the sample buffer (E(blank)). The sample buffer consists of 0.033 M Tris/HCl, pH 8.0. Then, 0.05 ml of CPB solution is diluted in 3 ml of sample buffer, and the absorption is also determined (E(sample)). The protein concentration is calculated from the following formula.
ΔE(sample)=E(sample)−E(blank)
Number | Date | Country | Kind |
---|---|---|---|
04104696 | Sep 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/054806 | 9/26/2005 | WO | 00 | 7/21/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/035008 | 4/6/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5206161 | Drayna et al. | Apr 1993 | A |
5364934 | Drayna et al. | Nov 1994 | A |
5672496 | Fayerman et al. | Sep 1997 | A |
5945329 | Breddam et al. | Aug 1999 | A |
5948668 | Hartman et al. | Sep 1999 | A |
5985627 | Mortensen et al. | Nov 1999 | A |
6140100 | Smith et al. | Oct 2000 | A |
6187579 | Breddam et al. | Feb 2001 | B1 |
6436691 | Slater et al. | Aug 2002 | B1 |
6455294 | Gan et al. | Sep 2002 | B1 |
6531294 | Habermann | Mar 2003 | B1 |
6656718 | Begent et al. | Dec 2003 | B2 |
7060266 | Matsumoto | Jun 2006 | B1 |
20020009734 | Halsted et al. | Jan 2002 | A1 |
20040136976 | Smolyar | Jul 2004 | A1 |
20080175834 | Cronet et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
1538203 | Jun 2005 | EP |
WO 9707769 | Mar 1997 | WO |
Number | Date | Country | |
---|---|---|---|
20080311619 A1 | Dec 2008 | US |