Recombinant microorganism for producing L-valine, construction method and application thereof

Abstract
Related are a recombinant microorganism for producing L-valine, a construction method and an application thereof. Through enhancing amino acid dehydrogenase activity of L-valine fermentation strain, and/or activating an Entner-Doudoroff (ED) metabolic pathway, a problem in L-valine fermentation process that reducing power is unbalanced is solved, thereby the titer and yield of L-valine produced by Escherichia coli are improved, and L-valine was produced by one-step anaerobic fermentation.
Description
SEQUENCE LISTING

The present application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy is named_Sequence_Listing.txt and is 19.6 kilobytes in size, and contains 90 sequences from SEQ ID NO:1 to SEQ ID NO:90, which are identical to the sequence listing filed in the corresponding international application No. PCT/CN2020/137779 filed on 18 Dec. 2020.


TECHNICAL FIELD

The disclosure relates to a construction method of a recombinant microorganism for producing L-valine, the recombinant microorganism obtained by the construction method, specifically recombinant Escherichia coli, and a method for producing L-valine through a fermentation method.


BACKGROUND

L-valine, as one of three branched-chain amino acids (BCAA), is an essential amino acid. It may not be synthesized in humans and animals, and can only be acquired by supplementation in vitro. Nowadays, L-valine has been widely used in the fields of food and medicine, mainly including food additive, nutritional supplement and flavoring agent and the like; and widely used in preparation of cosmetics, as precursors of antibiotics or herbicides and the like. Additionally, along with the increasing demands for feed quality and ratio, the role of L-valine in the feed additive industry will become more and more important in the future. And this will result the expand of its demand and great potential in the future market.


L-valine can be directly synthesized by microbial cells. However, the production capacity of wild-type cells is greatly limited by the intracellular regulatory network, such as feedback inhibition and so on. To obtain a strain capable of efficiently producing L-valine by fermentation process, these self-regulatory mechanisms of the microbial cells must be effectively eliminated. At present, L-valine is mainly produced through fermentation method in the world. Strains used for fermentative production of L-valine are mostly obtained by mutagenesis, and original strains mainly include Corynebacterium glutamicum, Brevibacterium flavum and the like. For example, starting from a Brevibacterium flavum, Ning Chen et al. produced mutant strains by using protoplast ultraviolet mutagenesis in combination with the DES chemical mutagenesis. Finally, an efficiently L-valine-producing strain TV2564 was screened and selected, and its L-valine titer was as high as 29.39 g/L. But, a notable fact is that strains obtained by traditional mutagenesis have many limits, such as strong randomness, unclear genetic background, producing by-products during fermentation, and not easy to modified for obtaining much more highly efficient strains.


With the rapid development of synthetic biology and metabolic engineering in recent years, recombinant engineered strains have been developed and achieved good results. These strains can efficiently produce L-valine, have clear genetic background, and are easy to be cultivated. Xixian Xie et al. significantly improved L-valine production level of a starting strain VHY03 in the flask fermentation by integrating alsS gene encoding acetolactate synthase of Bacillus substilis, relieving the feedback inhibition of L-valine to key enzymes involved in the synthetic pathway, and integrating the mutant spoTM gene encoding the ppGpp3′-pyrophosphohydrolase of Escherichia coli to enhance the supply of pyruvate. In 2007, Sang Yup Lee's group developed an L-valine-producing strain starting from the Escherichia coli w3110 by in combination of different strategies, such as the rational metabolic engineering, transcriptome analysis and genetic modification, and gene knockout. This strain can produce L-valine in batch culture under aerobic conditions. But it needs continuous oxygen supply during the culture process and L-isoleucine needs to be added to ensure the normal growth. Furthermore, this research group reconstructed a new L-valine producing strain using a similar modification strategies from Escherichia coli strain W which has higher tolerance to L-valine. This strain also needs to be cultured under aerobic condition for L-valine production.


Although the titer of L-valine has been improved, the production process of L-valine all need to be carried out under aerobic or microaerobic conditions and unable by a one-step anaerobic fermentation process in above reports. The aerobic process requires air during the production process and consumes a lot of energy. More critically, a considerable part of carbon sources enters a tricarboxylic acid cycle (TCA) and is consumed by cell growth resulting that the yield of L-valine is always much lower than the theoretical maximum. Therefore, the aerobic process always has high cost, requirements for devices, and complicated operation steps. Compared with aerobic process, anaerobic process has the advantages of low energy consumption and high conversion rate. There is no need to pass air in the production process, which greatly saves energy consumption. The product conversion rate is usually close to the theoretical maximum. Anaerobic fermentation for the production of amino acids was first realized in the production of alanine. At present, there is no report on pure anaerobic fermentation technology for the production of other amino acids.


In addition, the overexpression of key genes involved in the metabolic engineering of L-valine strains are always plasmid-borne, so that antibiotics needs to be added in the fermentation process to maintain the existence of the plasmid. As a result, the production cost is greatly increased and a risk of plasmid loss exists in industrial production. Therefore, there is still a need in the field to provide high-yield, energy-saving, simple and stable recombinant microorganisms for producing L-valine and a corresponding production and preparation method for L-valine.


SUMMARY

The disclosure is capable of, through enhancing amino acid dehydrogenase activity of an L-valine fermentation strain and/or activating an Entner-Doudoroff (ED) pathway, solving a problem in L-valine fermentation process that reducing power is unbalanced, thereby improving the titer and yield of L-valine generated by Escherichia coli, and realizing fermentation-valine production by one-step anaerobic fermentation.


The first aspect of the disclosure is to provide a construction method for construction of a recombinant microorganism producing L-valine. The recombinant microorganism obtained by this method has stable genetic background and balanced L-valine reducing power, and is suitable for one-step anaerobic fermentation.


In the present disclosure, “enhancement” of enzyme activity refers to enhancement of intracellular activity of one or more enzymes which has corresponding gene in the microorganism. The enhancement of the activity may be achieved by any suitable methods known in the field, for example, by overexpression, it includes but not limited to increasing the copy number of the gene or allele, modifying a nucleotide sequence for guiding or controlling gene expression, using a strong promoter to increase protein activity or concentration by 10%-500% compared to an initial microbial level.


In the present disclosure, “activation” refers to generation or enhancement of a metabolic pathway to be activated by a mode known in the field, such as related genes on the metabolic pathway are transferred into a microorganism, so that the metabolic pathway is generated; or the related genes of the metabolic pathway to be activated are placed under the control of an appropriate regulatory element, for example, placed under an enhancer sequence, so that the expression intensity of these genes is improved.


In one embodiment, an amino acid dehydrogenase gene is transferred into the microorganism, so that the enzyme activity is enhanced.


In one preferred embodiment, through transferring the amino acid dehydrogenase gene into the microorganism, the enzyme activity is enhanced.


In one embodiment, a step of activating an ED pathway in the microorganisms is included.


In some preferred embodiments, steps of transferring the amino acid dehydrogenase gene into the microorganism and activating the ED pathway in the microorganism are included.


In one embodiment, the amino acid dehydrogenase gene transferred in the disclosure is exogenous to the microorganism transferred. The amino acid dehydrogenase gene may be a corresponding gene from any microorganisms such as Lactococcus, and Bacillus.


In one embodiment, the amino acid dehydrogenase gene is NADH-dependent.


During anaerobic fermentation, glucose metabolism is mainly through the glycolysis pathway (EMP pathway). While 1 mol of glucose is metabolized to generate 2 mol of pyruvate, 2 mol of ATP and 2 mol of NADH may be generated. Therefore, this causes a problem of unbalanced supply of redox power in metabolically engineered Escherichia coli under anaerobic conditions, namely, the NADH is excessive, and supply of NADPH is insufficient. Therefore, in order to efficiently produce L-valine under anaerobic conditions, the problem of cofactor imbalance must be solved. The selection of the NADH-dependent amino acid dehydrogenase gene in the disclosure may cause the excessive NADH to be consumed under anaerobic conditions and solve the problem of reducing power imbalance during the anaerobic fermentation.


In one embodiment, the amino acid dehydrogenase gene is a leucine dehydrogenase gene, and preferably, the leucine dehydrogenase gene is leuDH.


In one embodiment, the activation of the ED pathway includes steps of improving the expression intensity of a 6-phosphate glucose dehydrogenase (zwf) gene, a lactonase encoding gene (pgl), a 6-phosphogluconate dehydratase gene (edd), and a 2-ketone-3-deoxy-6-phosphogluconate aldolase gene (eda).


It may be understood by those skilled in the art that the expression intensity of the genes may be improved by increasing copy numbers of the zwf, pgl, edd and eda genes, or by placing these genes under the control of the appropriate regulatory elements.


In one embodiment, a step of transferring an acetohydroxy acid reductoisomerase encoding gene into the microorganism is further included, so that the enzyme activity is enhanced; and preferably, the acetohydroxy acid reductoisomerase encoding gene is selected from ilvC.


The “transfer” may exist in the microorganism in any suitable forms known in the field, for example, in the form of a plasmid or the form of being integrated into a genome. In one embodiment, the enzyme encoding gene integrated into the genome is placed under the control of a suitable regulatory element.


The regulatory element is selected from an M1-93 artificial regulatory element, an MRS1 artificial regulatory element, a RBS artificial regulatory element or an M1-46 artificial regulatory element.


In one embodiment, the M1-93 artificial regulatory element regulates a leuDH gene, a zwf gene and a pgl gene.


In one embodiment, the MRS1 artificial regulatory element regulates an edd gene.


In one embodiment, the RBS artificial regulatory element regulates a gene eda.


In one embodiment, the M1-46 artificial regulatory element regulates an ilvC gene.


In one embodiment, the disclosure further includes a step of knocking out a 6-phosphoglucokinase gene (pfkA) of the above recombinant microorganism.


In one embodiment, the disclosure further includes the following modifications to one or more of the following enzyme genes of the above recombinant microorganism, so that the activity of these enzymes is reduced or inactivated.


(1) Knocking out a methylglyoxal synthase (mgsA) gene;


(2) knocking out a lactate dehydrogenase (IdhA) gene;


(3) knocking out phosphoacetyl transferase (pta) and/or acetate kinase (ackA) genes;


(4) knocking out propionate kinase (tdcD) and/or formate acetyltransferase (tdcE) genes;


(5) knocking out an alcohol dehydrogenase (adhE) gene; and


(6) knocking out fumarate reductase (frd) and/or pyruvate formate lyase (pflB) genes.


The “knockout” mentioned in the present disclosure refers to gene knockout using modes known in the field, so that the activity of the enzyme is reduced or inactivated. The knockout operation is aimed at an endogenous enzyme gene of the original microorganism, so that the above endogenous enzyme activity of the microorganism is reduced or inactivated.


An encoding sequence of the enzyme gene in the above (1)-(6) may also be substituted with an encoding sequence of another gene by means of genetic engineering such as homologous recombination, thereby the above endogenous enzyme activity of the microorganism is reduced or inactivated. The gene to replace these endogenous enzymes may be a gene to be enhanced for expression, such as the above ilvC gene or leuDH gene.


In one embodiment, it further includes:


(7) enhancing activity of acetolactate synthase (AHAS) and/or dihydroxy acid dehydratase (ilvD) in the recombinant microorganism of the disclosure.


In one preferred embodiment, the AHAS is selected from ilvBN, ilvGM or ilvIH, and the activity of at least one of them is enhanced.


In one preferred embodiment, the ilvBN and ilvGM genes may be placed under the control of the appropriate regulatory element, so that the expressions of the genes are enhanced. The regulatory element is preferably the M1-93 artificial regulatory element.


In one preferred embodiment, the activity of ilvIH is enhanced by releasing the feedback inhibition of valine to the ilvIH, for example, the feedback inhibition of valine to the ilvIH is released by mutating the ilvH gene.


For the involved acetolactate synthase used in biologically synthesizing L-valine, in addition to an isozyme II (herein also referred to as AHAS II), an isozyme III (herein also referred to as AHAS III) is also known. The AHASIII is encoded by an ilvIH operon, and the operon is formed by ilvI encoding a large subunit (catalytic subunit) and ilvH encoding a small subunit (control subunit). The AHAS III is feedback inhibited by L-valine. A reported method may be used to mutate the ilvI gene, such as amino acid substitution of ilvH 14 Gly→Asp (Vyazmensky, M. et al., “Biochemistry” 35:10339-10346 (1996)) and/or ilvH 17Ser→Phe (U.S. Pat. No. 6,737,255B2); and ilvH612 (De Felice et al., “Journal of Bacteriology” 120:1058-1067 (1974)) and the like.


In one embodiment, activity of a dihydroxy acid dehydratase (ilvD) in the recombinant microorganism of the disclosure is enhanced, for example, the ilvD gene is transferred into the microorganism to enhance the activity of the ilvD.


An operation in the item (7) is performed optionally in combination with any one or more of the above modifications (1)-(6).


In one embodiment, the operation is performed in combination with the modification of the item (2).


In one embodiment, the operation is performed in combination with the modification of the item (6).


In one embodiment, the operation is performed in combination with the modifications of the item (2) and the item (5).


In one embodiment, the operation is performed in combination with the modifications of the item (2) and the item (6).


In one embodiment, the operation is performed in combination with the modifications of the items (1) and (3)-(6).


In one embodiment, the operation is performed in combination with the modifications of the items (1)-(6).


In one embodiment, optionally, the knockout of the item (1) is achieved by substituting the endogenous mgsA gene of the microorganism with the ilvC gene.


In one embodiment, the knockout of the item (6) is achieved by substituting the endogenous pflB gene of the microorganism with the ilvD gene, and/or substituting the endogenous frd gene of the microorganism with the leuDH gene.


The substitution may be that, in a mode known to those skilled in the art, an encoding sequence of a gene to be inserted is integrated into a substituted gene in the microbial chromosome, so that the gene encoding sequence in the original site is substituted with the encoding sequence of the integrated inserted gene.


Preferably, the replacements of the ilvC, ilvD and leuDH occur simultaneously.


In one embodiment, the microorganism is Escherichia coli.


In one embodiment, the microorganism is Escherichia coli ATCC 8739.


In one embodiment, at least one regulatory element is used to regulate the genes encoding the above enzymes involved.


In one embodiment, the regulatory element is selected from an M1-93 artificial regulatory element, an MRS1 artificial regulatory element, a RBS artificial regulatory element or an M1-46 artificial regulatory element.


In one embodiment, the M1-93 artificial regulatory element regulates the ilvD, leuDH, ilvBN, zwf, pgl, and ilvGM genes.


In one embodiment, the MRS1 artificial regulatory element regulates an edd gene.


In one embodiment, the RBS artificial regulatory element regulates a gene eda.


In one embodiment, the M1-46 artificial regulatory element regulates an ilvC gene.


The regulatory element may be inserted at an upstream of the gene by a known genetic engineering method. The method includes, but is not limited to, inserting the sequence of the regulatory element into the upstream of the gene encoding sequence of the target enzyme by means of gene recombination, for example, by means of homologous recombination, so as to enhance the intensity of the target gene expression.


In one embodiment, herein the enzyme encoding gene and the regulatory element are integrated into the genome of the microorganism.


In one embodiment, a plasmid containing the enzyme encoding gene and the regulatory element sequence is transferred into the microorganism.


In one embodiment, the transfer, mutation or knockout of the target enzyme gene is completed by a method of integrating into the genome of the microorganism.


In one embodiment, the transfer, mutation or knockout of the enzyme gene is completed by a method of homologous recombination.


In one embodiment, the transfer, mutation or knockout of the enzyme gene is completed by a method of two-step homologous recombination.


A homologous recombination system known in the field may be used, such as an Escherichia coli RecA recombination system, and the Red recombination system is used for the homologous recombination to achieve the transfer, mutation or knockout of the target gene.


The two-step homologous recombination method to introduce, mutate or knock out the target gene includes the following steps (Escherichia coli are taken as an example):


(1) Preparation of a DNA fragment I: a pXZ-CS plasmid (Tan, et al., Appl Environ Microbiol, 2013, 79:4838-4844) DNA is used as a template, an amplification primer 1 is used to amplify the DNA fragment I, and used for the first step of homologous recombination;


(2) the first step of the homologous recombination: a pKD46 plasmid (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97:6640-6645) is transformed into Escherichia coli, and then the DNA fragment I is transformed into the Escherichia coli containing pKD46, a detection primer 1 is used to verify the transformed bacteria and select the correct colony;


(3) preparation of a DNA fragment II: the original Escherichia coli are used as a template, and an amplification primer 2 is used to amplify the DNA fragment II. The DNA fragment II is used for a second step of homologous recombination; and


(4) the second step of the homologous recombination: the DNA fragment II is transformed into the strain obtained in the second step; and a detection primer 2 is used to verify the transformed bacteria and select a correct colony.


The second aspect of the disclosure provides a recombinant microorganism for producing L-valine obtained by using the above construction method, specifically recombinant Escherichia coli, it contains an acetohydroxy acid isoreductase and/or an amino acid dehydrogenase gene,


In one embodiment, the Escherichia coli ATCC 8739 is used as an original strain, and coupling of intracellular cofactor NADH supply and cell growth is achieved through the gene homologous recombination, thereby coupling (FIG. 1) of the cell growth and L-valine production under anaerobic conditions is achieved.


In one embodiment, the recombinant Escherichia coli obtained by the above construction method undergo metabolic evolution, for example, through 50 generations, 70 generations, 80 generations, 90 generations, 100 generations, and 120 generations, the recombinant Escherichia coli for highly producing L-valine is obtained. In one embodiment, a recombinant Escherichia coli strain producing L-valine is obtained after 70 generations of metabolic evolution, the deposition number thereof is: CGMCC 19457, and the classification name is: Escherichia coli, a biological material is submitted for deposited on Mar. 6, 2020, Depository Authority: China General Microbiological Culture Collection Center (CGMCC), and the deposited address is No. 3, Courtyard 1, Beichen West Road, Chaoyang District, Beijing.


The third aspect of the disclosure is an application of the recombinant microorganism obtained by the above method in producing L-valine.


The fourth aspect of the disclosure is a method for fermentatively producing L-valine using the recombinant microorganism obtained by the above construction method, including: (1) fermenting the recombinant microorganism obtained by the above construction method; and (2) separating and harvesting L-valine.


In one embodiment, the fermentation is anaerobic fermentation.


In one embodiment, the anaerobic fermentation includes the following steps:


(1) seed culture: a clone on a plate is picked and inoculated into a seed culture medium at 37° C., and shake culture is performed, to obtain seed culture solution; and


(2) fermentation culture: the seed culture solution is inoculated into fermentation culture medium, and culturing at 37° C. and 150 rpm for 4 days, to obtain fermentation solution. The pH during fermentation process is controlled at 7.0. No air was sparged during the fermentation.


Herein the seed culture medium is formed by the following components (a solvent is water):


Glucose 20 g/L, corn syrup dry powder 10 g/L, KH2PO4 8.8 g/L, (NH4)2SO4 2.5 g/L, and MgSO4.7H2O 2 g/L.


The fermentation culture medium and the seed culture medium have the same components, and a difference is only that the glucose concentration is 50 g/L.


The beneficial effects of the disclosure:


(1) Compared with previous production methods and strains, the disclosure achieves the one-step anaerobic fermentation production of L-valine, reduces the production cost and improves the transformation rate.


(2) The disclosure preferably constructs a genetically stable L-valine production strain by modified directly on the genome of the recombinant microorganism rather than in the form of plasmid, and additional addition of substances such as antibiotics and inducers does not required, and the production process is stable and easy to operate.


(3) Through metabolic evolution, the titer and yield of L-valine and cell tolerance are improved significantly in the recombinant microorganisms.


Preservation of Biological Material


Recombinant Escherichia coli Sval049 constructed in the disclosure are classified and named: Escherichia coli. A biological material is submitted for preservation on Mar. 6, 2020, Depository Authority: China General Microbiological Culture Collection Center (CGMCC), the preservation address is No. 3, Courtyard 1, Beichen West Road, Chaoyang District, Beijing, Telephone: 010-64807355, and the preservation number is CGMCC No. 19457.





BRIEF DESCRIPTION OF THE DRAWINGS

Drawings of the description for constituting a part of the present disclosure are used to provide further understanding of the disclosure. Exemplary embodiments of the disclosure and descriptions thereof are used to explain the disclosure, and do not constitute improper limitation to the disclosure. In the drawings:



FIG. 1: L-valine synthesis pathway.



FIG. 2: Determination of a standard substance of L-valine by high performance liquid chromatography.



FIG. 3: Determination of fermentation solution components of strain Sval048 by high performance liquid chromatography.



FIG. 4: construction of strain Sval049 by metabolic evolution.



FIG. 5: Determination of a standard substance of L-valine by high performance liquid chromatography.



FIG. 6: Determination of fermentation solution components of strain Sval049 by high performance liquid chromatography.





DETAILED DESCRIPTION OF THE EMBODIMENTS

The disclosure is further described by the following embodiments, but any embodiments or combinations thereof should not be interpreted as limiting a scope or an embodiment of the disclosure. The scope of the disclosure is defined by appended claims. In combination with the description and common knowledge in the field, those of ordinary skill in the art may clearly understand the scope defined by the claims. Without departing from the spirit and scope of the disclosure, those skilled in the art may make any modifications or changes to technical schemes of the disclosure, and such modifications and changes are also included in the scope of the disclosure.


Experimental methods used in the following embodiments are conventional methods unless otherwise specified. Materials, reagents and the like used in the following embodiments may be obtained from commercial sources unless otherwise specified.


Strains and plasmids constructed in this research are shown in Table 1, and primers used are shown in Table 2.









TABLE 1







Strains and plasmids used in the disclosure










Related characteristics
Sources













Strain




ATCC
Wild type
Laboratory preservation


8739


M1-93
ATCC 8739,
Lu, et al., Appl Microbiol



FRT-Km-FRT::M1-93::lacZ
Biotechnol, 2012, 93: 2455-




2462


M1-46
ATCC 8739,
Lu, et al., Appl Microbiol



FRT-Km-FRT::M1-46::lacZ
Biotechnol, 2012, 93: 2455-




2462


M1-37
ATCC 8739,
Lu, et al., Appl Microbiol



FRT-Km-FRT::M1-37::lacZ
Biotechnol, 2012, 93: 2455-




2462


Sval001
ATCC 8739, mgsA::cat-sacB
Constructed by the disclosure


Sval002
Sval001, ΔmgsA
Constructed by the disclosure


Sval003
Sval002, ldhA::cat-sacB
Constructed by the disclosure


Sval004
Sval003, ΔldhA
Constructed by the disclosure


Sval005
Sval004, ackA-pta::cat-sacB
Constructed by the disclosure


Sval006
Sval005, Δ ackA-pta
Constructed by the disclosure


Sval007
Sval006, tdcDE::cat-sacB
Constructed by the disclosure


Sval008
Sval007, ΔtdcDE
Constructed by the disclosure


Sval009
Sval008, adhE::cat-sacB
Constructed by the disclosure


Sval010
Sval009, ΔadhE
Constructed by the disclosure


Sval011
Sval010, mgsA::cat-sacB
Constructed by the disclosure


Sval012
Sval011, mgsA::ilvC
Constructed by the disclosure


Sval013
Sval012, mgsA::cat-sacB::ilvC
Constructed by the disclosure


Sval014
Sval013, mgsA::M1-46-ilvC
Constructed by the disclosure


Sval015
Sval014, pflB::cat-sacB
Constructed by the disclosure


Sval016
Sval015, pflB::ilvD
Constructed by the disclosure


Sval017
Sval016, pflB::cat-sacB::ilvD
Constructed by the disclosure


Sval018
Sval017, pflB::RBS4-ilvD
Constructed by the disclosure


Sval019
Sval018, cat-sacB::ilvB
Constructed by the disclosure


Sval020
Sval019, M1-93:: ilvB
Constructed by the disclosure


Sval021
Sval020, cat-sacB::ilvG
Constructed by the disclosure


Sval022
Sval021, M1-93:: ilvG
Constructed by the disclosure


Sval023
Sval022, ilvH::cat-sacB
Constructed by the disclosure


Sval024
Sval023, ilvH:: ilvH*
Constructed by the disclosure


Sval025
Sval024, frd::cat-sacB
Constructed by the disclosure


Sval026
Sval025, frd::M1-93-leuDH
Constructed by the disclosure


Sval041
Sval026, cat-sacB::zwf
Constructed by the disclosure


Sval042
Sval041, RBS1-zwf
Constructed by the disclosure


Sval043
Sval042, cat-sacB::pgl
Constructed by the disclosure


Sval044
Sval043, RBS2-pgl
Constructed by the disclosure


Sval045
Sval044, edd-eda::cat-sacB
Constructed by the disclosure


Sval046
Sval045, edd-eda::MRS1-edd-
Constructed by the disclosure



eda


Sval047
Sval046, pfkA::cat-sacB
Constructed by the disclosure


Sval048
Sval047, ΔpfkA
Constructed by the disclosure


Sval049
metabolic evolution of of
Constructed by the disclosure



Sval048 for 100 generations,



CGMCC 19457


Plasmid


pUC57-
Artificial regulatory element
Nanjing Genscript


M1-93-
M1-93 and chemically synthe-
Biotechnology Co., Ltd.


leuDH
sized gene leuDH are linked



to a pUC57 vector together


pUC57-
Artificial regulatory element
Nanjing Genscript


MRS1-
MRS1 and chemically synthe-
Biotechnology Co., Ltd.


edd-eda
sized genes edd and eda are



linked to the pUC57 vector



together
















TABLE 2







Primers used in the disclosure











Sequence


Primer name
Sequence
number












mgsA-cs-up
gtaggaaagttaactacggatgtacattatggaactgacgactcgcacttTGTGA
1



CGGAAGATCACTTCGCAG






mgsA-cs-down
gcgtttgccacctgtgcaatattacttcagacggtccgcgagataacgctTTATTT
2



GTTAACTGTTAATTGTCCT






XZ-mgsA-up
cagctcatcaaccaggtcaa
3





XZ-mgsA-down
aaaagccgtcacgttattgg
4





mgsA-del-down
Gcgtttgccacctgtgcaatattacttcagacggtccgcgagataacgctaagtgcg
5



agtcgtcagttcc






mgsA-ilvC-up
gtaggaaagttaactacggatgtacattatggaactgacgactcgcacttATGGC
6



TAACTACTTCAATACac






mgsA-ilvC-down
gcgtttgccacctgtgcaatattacttcagacggtccgcgagataacgctTTAACC
7



CGCAACAGCAATACGtttc






mgsA-Pcs-up
gtaggaaagttaactacggatgtacattatggaactgacgactcgcacttTGTGA
8



CGGAAGATCACTTCGCAG






mgsA-Pcs-down
agctgtgccagctgctggcgcagattcagtGTATTGAAGTAGTTAGCCA
9



TTTATTTGTTAACTGTTAATTGTCCT






mgsA-P46-up
gtaggaaagttaactacggatgtacattatggaactgacgactcgcacttTTATCT
10



CTGGCGGTGTTGAC






ilvC-P46-down
agctgtgccagctgctggcgcagattcagtGTATTGAAGTAGTTAGCCA
11



TAGCTGTTTCCTGGTTTAAACCG






ilvC-YZ347-down
cgcactacatcagagtgctg
12





IdhA-cs-up
ttcaacatcactggagaaagtcttatgaaactcgccgtttatagcacaaaTGTGA
13



CGGAAGATCACTTCGCAG






IdhA-cs-down
agcggcaagattaaaccagttcgttcgggcaggtttcgcctttttccagaTTATTT
14



GTTAACTGTTAATTGTCCT






XZ-IdhA-up
GATAACGGAGATCGGGAATG
15





XZ-
CTTTGGCTGTCAGTTCACCA
16


IdhA-down







IdhA-del-down
agcggcaagattaaaccagttcgttcgggcaggtttcgcctttttccagatttgtgctat
17



aaacggcgagt






ackA-cs-up
aggtacttccatgtcgagtaagttagtactggttctgaactgcggtagttTGTGAC
18



GGAAGATCACTTCGCAG






pta-cs-down
ggtcggcagaacgctgtaccgctttgtaggtggtgttaccggtgttcagaTTATTT
19



GTTAACTGTTAATTGTCCT






XZ-ackA-up
cgggacaacgttcaaaacat
20





XZ-pta-down
attgcccatcttcttgttgg
21





ackA-del-down
ggtcggcagaacgctgtaccgctttgtaggtggtgttaccggtgttcagaaactaccg
22



cagttcagaacca






tdcDE-cs-up
ccgtgattggtctgctgaccatcctgaacatcgtatacaaactgttttaaTGTGAC
23



GGAAGATCACTTCGCAG






tdcDE-cs-down
cgcctggggcacgttgcgtttcgataatctttttcatacatcctccggcgTTATTTG
24



TTAACTGTTAATTGTCCT






XZ-tdcDE-up
TGATGAGCTACCTGGTATGGC
25





XZ-tdcDE-down
CGCCGACAGAGTAATAGGTTTTAC
26





tdcDE-del-down
cgcctggggcacgttgcgtttcgataatctttttcatacatcctccggcgttaaaacagt
27



ttgtatacgatgttcag






adhE-cs-up
ATAACTCTAATGTTTAAACTCTTTTAGTAAATCACAGTGAG
28



TGTGAGCGCTGTGACGGAAGATCACTTCGCA






adhE-cs-down
CCGTTTATGTTGCCAGACAGCGCTACTGATTAAGCGGATT
29



TTTTCGCTTTTTATTTGTTAACTGTTAATTGTCCT






adhE-del-down
CCGTTTATGTTGCCAGACAGCGCTACTGATTAAGCGGATT
30



TTTTCGCTTTGCGCTCACACTCACTGTGATTTAC






XZ-adhE-up
CATGCTAATGTAGCCACCAAA
31





XZ-adhE-down
TTGCACCACCATCCAGATAA
32





pflB-CS-up
aaacgaccaccattaatggttgtcgaagtacgcagtaaataaaaaatccaTGTG
33



ACGGAAGATCACTTCGCAG






pflB-CS-down
CGGTCCGAACGGCGCGCCAGCACGACGACCGTCTGGG
34



GTGTTACCCGTTTTTATTTGTTAACTGTTAATTGTCCT






pflB-ilvD-up
aaacgaccaccattaatggttgtcgaagtacgcagtaaataaaaaatccaatgcct
35



aagtaccgttccgc






pfIB-ilvD-down
CGGTCCGAACGGCGCGCCAGCACGACGACCGTCTGGG
36



GTGTTACCCGTTTttaaccccccagtttcgatttatc






XZ-pflB-up600
CTGCGGAGCCGATCTCTTTAC
37





XZ-pflB-down
CGAGTAATAACGTCCTGCTGCT
38





pflB-Pcs-up
aaacgaccaccattaatggttgtcgaagtacgcagtaaataaaaaatccaTGTG
39



ACGGAAGATCACTTCGCA






pflB-Pcs-down
CCCGCCATATTACGACCATGAGTGGTGGTGGCGGAACGG
40



TACTTAGGCATTTATTTGTTAACTGTTAATTGTCCT






pflB-Pro-up
AAACGACCACCATTAATGGTTGTCGAAGTACGCAGTAAAT
41



AAAAAATCCATTATCTCTGGCGGTGTTGAC






ilvD-Pro-down
cccgccatattacgaccatgagtggtggtggcggaacggtacttaggcatTGCT
42



GACCTCCTGGTTTAAACGTACATG






ilvD-YZ496-down
caaccagatcgagcttgatg
43





XZ-frd-up
TGCAGAAAACCATCGACAAG
44





XZ-frd-down
CACCAATCAGCGTGACAACT
45





frd-cs-up
GAAGGCGAATGGCTGAGATGAAAAACCTGAAAATTGAGG
46



TGGTGCGCTATTGTGACGGAAGATCACTTCGCA






frd-cs-down
TCTCAGGCTCCTTACCAGTACAGGGCAACAAACAGGATT
47



ACGATGGTGGCTTATTTGTTAACTGTTAATTGTCCT






frd-M93-up
GAAGGCGAATGGCTGAGATGAAAAACCTGAAAATTGAGG
48



TGGTGCGCTATTTATCTCTGGCGGTGTTGAC






frd-leuDH-down
TCTCAGGCTCCTTACCAGTACAGGGCAACAAACAGGATT
49



ACGATGGTGGCTTAACGGCCGTTCAAAATATTTTTTTC






ilvB pro-catup
ctgacgaaacctcgctccggcggggttttttgttatctgcaattcagtacTGTGAC
50



GGAAGATCACTTCGCA






ilvB
tctgcgccggtaaagcgcttacgcgtcgatgttgtgcccgaacttgccatTTATTT
51


pro-catdown
GTTAACTGTTAATTGTCCT






ilvB pro-up
ctgacgaaacctcgctccggcggggttttttgttatctgcaattcagtacTTATCTC
52



TGGCGGTGTTGAC






ilvB pro-down
tctgcgccggtaaagcgcttacgcgtcgatgttgtgcccgaacttgccatAGCTG
53



TTTCCTGGTTTAAAC






ilvB pro-YZup
gttctgcgcggaacacgtatac
54





ilvB
ccgctacaggccatacagac
55


pro-YZdown







ilvG
tgaactaagaggaagggaacaacattcagaccgaaattgaatttttttcaTGTGA
56


pro-catup
CGGAAGATCACTTCGCA






ilvG
ttcacaccctgtgcccgcaacgcatgtaccacccactgtgcgccattcatTTATTT
57


pro-catdown
GTTAACTGTTAATTGTCCT






ilvG pro-up
tgaactaagaggaagggaacaacattcagaccgaaattgaatttttttcaTTATC
58



TCTGGCGGTGTTGAC






ilvG
ttcacaccctgtgcccgcaacgcatgtaccacccactgtgcgccattcatAGCTG
59


pro-down
TTTCCTGGTTTAAACG






ilvG
gcataagatatcgctgctgtag
60


pro-YZup







ilvG
gccagttttgccagtagcac
61


p-YZdown







ilvH*-cat-up
agaacctgattatgCGCCGGATATTATCAGTCTTACTCGAAAATG
62



AATCATGTGACGGAAGATCACTTCGCA






ilvH*-cat-down
TTCATCGCCCACGGTCTGGATGGTCATACGCGATAATGTC
63



GGATCGTCGGTTATTTGTTAACTGTTAATTGTCCT






ilvH*-mut-up
agaacctgattatgCGCCGGATATTATCAGTCTTACTCGAAAATG
64



AATCAGaCGCGTTATtCCGCGTGATTGGC






ilvH*-mut-down
CACACCAGAGCGAGCAACCTC
65





ilvH*-mutYZ-
atgagctggaaagcaaacttagc
66


up







Zwf-Pcat-up
agttttgccgcactttgcgcgcttttcccgtaatcgcacgggtggataagTGTGAC
67




GGAAGATCACTTCGCA







Zwf-PsacB-down
qcqccqaaaatqaccaqqtcacaqqcctqqqctqtttqcqttaccqccatTTATT
68




TGTTAACTGTTAATTGTCCT







zwf-RBS1-up
agttttgccgcactttgcgcgcttttcccgtaatcgcacgggtggataagTTATCTC
69



TGGCGGTGTTGAC






zwf-RBS1-down
gcgccgaaaatgaccaggtcacaggcctgggctgtttgcgttaccgccatATTG
70



TTTCTCCTGGTTTAAACGTACGTG






zwf-YZ442-up
cgaatggatcgcgttatcgg
71





zwf-YZ383-down
caaattgcgccaaaagtgctg
72





pgl-Pcat-up
ttcaqcattcaccqccaaaaqcqactaattttaqctqttacaqtcaqttqTGTGAC
73




GGAAGATCACTTCGCA







pgl-PsacB-down
acqtqaatttqctqqctctcaqqqctqqcqatataaactqtttqcttcatTTATTTG
74




TTAACTGTTAATTGTCCT







pgl-RBS2-up
ttcagcattcaccgccaaaagcgactaattttagctgttacagtcagttgTTATCTC
75



TGGCGGTGTTGAC






pgl-RBS2-down
acgtgaatttgctggctctcagggctggcgatataaactgtttgcttcatACGTTTC
76



CTCCTGGTTTAAACGTACATGCTAACAATAC






pgl-YZ308-up
gatgaatagcgacgtgatgg
77





pgl-YZ341-down
ccatcttccagacgcgttac
78





Edd-cat-up
tggtcgttcctggaatgagtttgagtaatatctgcgcttatcctttatggTGTGACG
79



GAAGATCACTTCGCA






Eda-sacB-down
gcaaaaaaacgctacaaaaatgcccgatcctcgatcgggcattttgacttTTATT
80



TGTTAACTGTTAATTGTCCT






Edd-int-up
tggtcgttcctggaatgagtttgagtaatatctgcgcttatcctttatggTTATCTCT
81



GGCGGTGTTGAC






Eda-int-down
gcaaaaaaacgctacaaaaatgcccgatcctcgatcgggcattttgacttTTAG
82



GCAACAGCAGCGCGCTTG






Edd-YZ-up
gcatctggcggatgcctatg
83





Edd-YZ-down
caactgaccagtcagaatgtcac
84





pfkAdel-cat-up
GGTATCGACGCGCTGGTGGTTATCGGCGGTGACGGTTC
85



CTACATGGGTGCTGTGACGGAAGATCACTTCGCA






pfkAdel-sacB-
GTGGCCCAGCACAGTTGCGCGGGTTTCACGACCGGTTT
86


down
CTTTCTCGATGATTATTTGTTAACTGTTAATTGTCCT






pfkAdel-up
ATGATTAAGAAAATCGGTGTG
87





pfkAdel-down
GTGGCCCAGCACAGTTGCGCGGGTTTCACGACCGGTTT
88



CTTTCTCGATGAGCACCCATGTAGGAACCGTC






pfkAdel-YZ-down
GTCGATGATGTCGTGGTGAAC
89









EXAMPLE 1
Knockout of Methylglyoxal Synthase Encoding Gene mgsA in ATCC 8739 Strain

Started from Escherichia coli ATCC 8739, a two-step homologous recombination method is used to knock out the methylglyoxal synthase encoding gene mgsA, and specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers mgsA-cs-up/mgsA-cs-down, and used for the first step of homologous recombination.


An amplification system is: Phusion 5× buffer (NewEngland Biolabs) 10 μl, dNTP (10 mM for each dNTP) 1 μl, DNAtemplate 20 ng, primers (10 μM) 2 μl each, Phusion High-Fidelity DNA polymerase (NewEngland Biolabs) (2.5 U/μl) 0.5 μl, distilled water 33.5 μl, and a total volume is 50 μl.


Amplification conditions are 98° C. pre-denaturation for 2 minutes (1 cycle); 98° C. denaturation for 10 seconds, 56° C. annealing for 10 seconds, 72° C. extension for 2 minutes (30 cycles); and 72° C. extension for 10 minutes (1 cycle).


The above DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid (purchased from the Coil Genetic Stock Center (CGSC) of Yale University, CGSC#7739) is transformed into Escherichia coli ATCC 8739 by an electrotransformation method, and then the DNA fragment I is electrotransformed to the Escherichia coli ATCC 8739 with the pKD46.


Electrotransformation conditions are as follows: firstly, electrotransformation competent cells of the Escherichia coli ATCC 8739 with the pKD46 plasmid are prepared; 50 μl of the competent cells are placed on ice, and 50 ng of the DNA fragment I is added. The mixture was placed on ice for 2 minutes, and transferred into a 0.2 cm MicroPulser Electroporation Cuvette (Bio-Rad). The electroporation was carried with the MicroPulser (Bio-Rad) electroporation apparatus and the electric voltage was 2.5 kV. After electric shock, 1 ml of LB medium was quickly added into the electroporation cuvette, and transferred into a test tube after pipetting five times. The culture was incubated at 30° C. with shaking at 75 rpm for 2 hours. 200 μl of culture was spread onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were verified with primer set XZ-mgsA-up/XZ-mgsA-down, and a correct colony amplification product is a 3646 bp fragment. A correct single colony was selected, and named as Sval001.


In a second step, a genomic DNA of wild-type Escherichia coli ATCC 8739 is used as template, and 566 bp of a DNA fragment II is amplified with primer set XZ-mgsA-up/mgsA-del-down. DNA fragment II is used for the second homologous recombination. Amplification conditions and system are the same as those described in the first step. The DNA fragment II is electrotransformed into strain Sval001.


Electrotransformation conditions are as follows: firstly, electrotransformation competent cells of the Sval001 with the pKD46 plasmid (Dower et al., 1988, Nucleic Acids Res 16:6127-6145) were prepared; 50 μl of the competent cells were placed on ice, and 50 ng of a DNAfragment II is added. The mixture was placed on ice for 2 minutes, and transferred into a 0.2 cm MicroPulser Electroporation Cuvette (Bio-Rad). The electroporation was carried with the MicroPulser (Bio-Rad) electroporation apparatus and the electric voltage was 2.5 kV. After electric shock, 1 ml of LB medium was quickly added into the electroporation cuvette, and transferred into a test tube after pipetting five times. The culture was incubated at 30° C. with shaking at 75 rpm for 4 hours. The culture was then transferred into LB medium containing 10% sucrose but without a sodium chloride (50 ml of a medium is loaded in 250 ml of a flask), and after being cultured for 24 hours, it is streak-cultured on an LB solid medium containing 6% sucrose without a sodium chloride. The correct clone was verified by colony PCR amplification with primer set XZ-mgsA-up/XZ-mgsA-down, and a correct colony amplification product was 1027 bp. A correct single colony is then selected, and named as Sval002 (Table 1).


EXAMPLE 2
Knockout of Lactate Dehydrogenase Encoding Gene IdhA

Started from Sval002, and a lactate dehydrogenase encoding gene IdhA is knocked out by a two-step homologous recombination method. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers IdhA-cs-up/IdhA-cs-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1. The DNA fragment I is electrotransformed to the Sval002.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval002 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval002 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of culture solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified with primer set XZ-IdhA-up/XZ-IdhA-down, and a correct PCR product should be 3448 bp. A correct single colony is picked, and named as Sval003.


In a second step, a DNA of wild-type Escherichia coli ATCC 8739 is used as a template, and 476 bp of a DNA fragment II is amplified with primers XZ-IdhA-up/IdhA-del-down. The DNA fragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval003.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colony PCR is used to verify clones, the used primers are XZ-IdhA-up/XZ-IdhA-down, and a correct colony amplification product is 829 bp. A correct single colony is picked, and named as Sval004 (Table 1).


EXAMPLE 3
Knockout of Phosphoacetyl Transferase Encoding Gene pta and Acetate Kinase Encoding Gene ackA

Started from Sval004, a two-step homologous recombination method is used to knock out a phosphoacetyl transferase encoding gene pta and an acetate kinase encoding gene ackA. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers ackA-cs-up/pta-cs-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1. The DNA fragment I is electrotransformed to the Sval004.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval004 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval004 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto an LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers XZ-ackA-up/XZ-pta-down, and a correct PCR product should be 3351 bp. A correct single colony is picked, and named as Sval005.


In a second step, a DNA of wild-type Escherichia coli ATCC 8739 is used as a template, and 371 bp of a DNA fragment II is amplified with primers XZ-ackA-up/ackA-del-down. The DNA fragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval005.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colony PCR is used to verify clones using primers XZ-ackA-up/XZ-pta-down, and a correct colony amplification product is 732 bp. A correct single colony is picked, and named as Sval006 (Table 1).


EXAMPLE 4
Knockout of Propionate Kinase Encoding Gene tdcD and Formate Acetyltransferase Encoding Gene tdcE

Started from Sval006, a two-step homologous recombination method is used to knock out the propionate kinase encoding gene tdcD and the formate acetyltransferase encoding gene tdcE. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers tdcDE-cs-up/tdcDE-cs-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1. The DNA fragment I is electrotransformed to the Sval006.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval006 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval006 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of culture solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers XZ-tdcDE-up/XZ-tdcDE-down, and a correct PCR product should be 4380 bp. A correct single colony is picked, and named as Sval007.


In a second step, a DNA of wild-type Escherichia coli ATCC 8739 is used as a template, and 895 bp of a DNA fragment II is amplified with primers XZ-tdcDE-up/tdcDE-del-down. The DNAfragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval007.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers XZ-tdcDE-up/XZ-tdcDE-down, and a correct colony amplification product is 1761 bp. A correct single colony is picked, and named as Sval008 (Table 1).


EXAMPLE 5
Knockout of Alcohol Dehydrogenase Gene adhE

Started from Sval008, a two-step homologous recombination method is used to knock out the alcohol dehydrogenase gene adhE. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers adhE-cs-up/adhE-cs-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval008 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval008 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers XZ-adhE-up/XZ-adhE-down, and a correct PCR product should be 3167 bp. A correct single colony is picked, and named as Sval009.


In a second step, a DNA of wild-type Escherichia coli ATCC 8739 is used as a template, and 271 bp of a DNA fragment II is amplified with primers XZ-adhE-up/adhE-del-down. The DNA fragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval009.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers XZ-adhE-up/XZ-adhE-down, and a correct colony amplification product is 548 bp. A correct single colony is picked, and named as Sval010 (Table 1).


EXAMPLE 6
Integration of Acetohydroxy Acid Reductoisomerase Encoding Gene ilvC in Methylglyoxal Synthase Encoding Gene mgsA Site

Started from Sval010, an acetohydroxy acid reductoisomerase encoding gene ilvC from Escherichia coli is integrated into the methylglyoxal synthase encoding gene mgsA site through a two-step homologous recombination method. Specific steps are as follows.


In a first step, a cat-sacB fragment is integrated into the mgsA site of strain Sval010. PCR, integration, and verification of the cat-sacB fragment are exactly the same as the first step of the mgsA gene knockout in Example 1, and an obtained clone is named as Sval011.


In a second step, a DNA of wild-type Escherichia coli ATCC 8739 is used as a template, 1576 bp of a DNA fragment II is amplified by using primers mgsA-ilvC-up/mgsA-ilvC-down. The DNA fragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval011.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers XZ-mgsA-up/XZ-mgsA-down and sequenced, and a correct colony amplification product is 2503 bp. A correct single colony is picked, and named as Sval012 (Table 1).


EXAMPLE 7
Regulation of Acetohydroxy Acid Reductoisomerase Encoding Gene ilvC

Started from Sval012, and an artificial regulatory element is used to regulate expression of the acetohydroxy acid reductoisomerase encoding gene ilvC integrated in a methylglyoxal synthase encoding gene mgsA site. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers mgsA-Pcs-up/mgsA-Pcs-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1. The DNAfragment I is electrotransformed into the Sval012.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid (purchased from the Coil Genetic Stock Center (CGSC) of Yale University, CGSC#7739) is transformed into Escherichia coli Sval012 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval012 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1.200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers XZ-mgsA-up/ilvC-YZ347-down, and a correct PCR product should be 3482 bp. A correct single colony is picked, and named as Sval013.


In a second step, a genomic DNA of M1-46 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93:2455-2462) is used as a template, and 188 bp of a DNA fragment II is amplified by using primers mgsA-P46-up/ilvC-P46-down. The DNA fragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval013.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers XZ-mgsA-up/ilvC-YZ347-down and sequenced, and a correct colony amplification product is 951 bp. A correct single colony is picked, and named as Sval014 (Table 1).


EXAMPLE 8
Integration of Dihydroxy Acid Dehydratase Encoding Gene ilvD

Started from Sval014, a dihydroxy acid dehydratase encoding gene ilvD from Escherichia coli is integrated into the pyruvate formate lyase encoding gene pflB site and replaces the pflB gene through a two-step homologous recombination method, namely the pflB gene is knocked out while the ilvD is integrated. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers pflB-CS-up/pflB-CS-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1. The DNA fragment I is electrotransformed into the Sval014.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval014 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval014 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers XZ-pflB-up600/XZ-pflB-down, and a correct PCR product should be 3675 bp. A correct single colony is picked, and named as Sval015.


In a second step, a genomic DNA of Escherichia coli MG1655 (from ATCC, No. 700926) is used as a template, and 1951 bp of a DNA fragment II is amplified by using primers pflB-ilvD-up/pflB-ilvD-down. The DNAfragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval015.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers XZ-pflB-up600/XZ-pflB-down and sequenced, and a correct colony amplification product is 2907 bp. A correct single colony is picked, and named as Sval016 (Table 1).


EXAMPLE 9
Regulation of Dihydroxy Acid Dehydratase Encoding Gene ilvD

Started from Sval016, and an artificial regulatory element is used to regulate expression of the dihydroxy acid dehydratase encoding gene ilvD integrated in the pyruvate formate lyase encoding gene pflB site. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers pflB-Pcs-up/pflB-Pcs-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1. The DNA fragment I is electrotransformed into the Sval016.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval016 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval016 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1.200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers XZ-pflB-up600/ilvD-YZ496-down, and a correct PCR product should be 3756 bp. A correct single colony is picked, and named as Sval017.


In a second step, a genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93:2455-2462) is used as a template, and 189 bp of a DNA fragment II is amplified by using primers pflB-Pro-up/ilvD-Pro-down. The DNA fragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval017.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers XZ-pflB-up600/ilvD-YZ496-down and sequenced, and a correct colony amplification product is 1226 bp. A correct single colony is picked, and named as Sval018 (Table 1).


EXAMPLE 10
Regulation of Acetolactate Synthase Gene ilvBN

An artificial regulatory element M1-93 is used to regulate expression of an acetolactate synthase gene ilvBN through a two-step homologous recombination method. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers ilvB pro-catup/ilvB pro-catdown, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval018 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval018 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers ilvB pro-YZup/ilvB pro-YZdown, and a correct PCR product should be 2996 bp. A correct single colony is picked, and named as Sval019.


In a second step, a genomic DNA of M1-93 is used as a template, and 188 bp of a DNA fragment II is amplified by using primers ilvB pro-up/ilvB pro-down. The DNA fragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval019.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers ilvB pro-YZup/ilvB pro-YZdown, and a correct colony amplification product is 465 bp. A correct single colony is picked, and named as Sval020.


EXAMPLE 11
Regulation of Acetolactate Synthase Gene ilvGM

An artificial regulatory element M1-93 is used to regulate expression of the acetolactate synthase gene ilvGM through a two-step homologous recombination method. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers ilvG pro-catup/ilvG pro-catdown, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval020 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval020 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers ilvG pro-YZup/ilvG p-YZdown, and a correct PCR product should be 2993 bp. A correct single colony is picked, and named as Sval0121.


In a second step, a genomic DNA of M1-93 is used as a template, and 188 bp of a DNA fragment II is amplified by using primers ilvG pro-up/ilvG pro-down. The DNAfragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval021.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers ilvG pro-YZup/ilvG p-YZ down and sequenced, and a correct colony amplification product is 462 bp. A correct single colony is picked, and named as Sval022.


EXAMPLE 12
Mutation of Acetolactate Synthase Gene ilvH

A mutation is transferred into the ilvH gene so as to release feedback inhibition of L-valine through a two-step homologous recombination method. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers ilvH*-cat-up/ilvH*-cat-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval022 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval022 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers ilvH*-mutYZ-up/ilvH*-mut-down, and a correct PCR product should be 3165 bp. A correct single colony is picked, and named as Sval023.


In a second step, a DNA of wild-type Escherichia coli ATCC 8739 is used as a template, and 467 bp of a DNA fragment II is amplified by using primers ilvH*-mut-up/ilvH*-mut-down. The DNA fragment II is used for the second homologous recombination. The DNAfragment II is electrotransformed into strain Sval023.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers ilvH*-mutYZ-up/ilvH*-mut-down, and a correct colony amplification product is 619 bp. A correct single colony is picked, and named as Sval024.


EXAMPLE 13
Fermentation and Production of L-Valine Using Recombinant Strain Sval024

A seed culture medium is formed by the following components (a solvent is water):


Glucose 20 g/L, corn syrup dry powder 10 g/L, KH2PO4 8.8 g/L, (NH4)2SO4 2.5 g/L, and MgSO4.7H2O 2 g/L.


The fermentation culture medium is most the same as the seed culture medium, and a difference is only that the glucose concentration is 50 g/L.


Anaerobic fermentation of Sval024 includes the following steps:


(1) Seed culture: a fresh clone on an LB plate is inoculated into a test tube containing 4 ml of the seed culture medium, and shake-cultured overnight at 37° C. and 250 rpm. Then, a culture is transferred to 250 ml of a triangular flask containing 30 ml of the seed culture medium according to an inoculum size of 2% (V/V), and seed culture solution is obtained by shake culture at 37° C. and 250 rpm for 12 hours, and used for fermentation medium inoculation.


(2) Fermentation culture: a volume of the fermentation culture medium in 500 ml of an fermenter is 250 ml, and the seed culture solution is inoculated into the fermentation culture medium according to an inoculum size of final concentration OD550=0.1, and fermented at 37° C. and 150 rpm for 4 days, to obtain fermentation solution. The neutralizer is 5M ammonia, the pH was is controlled at 7.0. No air was sparged during the fermentation.


Analytical method: an Agilent (Agilent-1260) high performance liquid chromatograph is used to determine components in the fermentation solution after fermentation for 4 days. The concentrations of glucose and organic acid in the fermentation solution are determined by using an Aminex HPX-87H organic acid analytical column of Biorad Company. A Sielc amino acid analysis column primesep 100 250×4.6 mm is used for amino acid determination.


It is discovered from results that: strain Sval024 could produce 1.3 g/L of L-valine (L-valine peak corresponding to a position in FIG. 2 appears) with a yield of 0.31 mol/mol after 4 days fermentation under anaerobic conditions.


EXAMPLE 14
Cloning and Integration of Leucine Dehydrogenase Encoding Gene leuDH

Referring to the reported (Ohshima, T. et. al, Properties of crystalline leucine dehydrogenase from Bacillus sphaericus. The Journal of biological chemistry 253, 5719-5725 (1978)) sequence of a leuDH from Lysinibacillus sphaericus IFO 3525, a leuDH gene was codon optimized and chemically synthesized (an optimized sequence is as shown in a sequence number 90). During the synthesis, an M1-93 artificial regulatory element is added before the leuDH gene to initiate expression of the leuDH gene, and inserted into a pUC57 vector to construct a plasmid pUC57-M1-93-leuDH (gene synthesis and vector construction are completed by Nanjing Genscript Biotechnology Co., Ltd.). The M1-93 artificial regulatory element and the leuDH gene are integrated into the fumarate reductase encoding gene frd site in strain Sval024 through a two-step homologous recombination method and substitute the frd gene, namely the frd gene is knocked out while the leuDH is integrated. Specific steps are as follows.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers frd-cs-up/frd-cs-down, and used for the first step of the homologous recombination. Amplification system and amplification conditions are the same as those described in Example 1.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval024 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval024 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers XZ-frd-up/XZ-frd-down, and a correct PCR product should be 3493 bp. A correct single colony is picked, and named as Sval025.


In a second step, a pUC57-M1-93-leuDH plasmid DNA is used as a template, and 1283 bp of a DNA fragment II is amplified by using primers frd-M93-up/frd-leuDH-down. The DNA fragment II is used for the second homologous recombination. The DNA fragment II is electrotransformed into strain Sval025.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers XZ-frd-up/XZ-frd-down, and a correct colony amplification product is 2057 bp. A correct single colony is picked, and named as Sval026.


EXAMPLE 15
Fermentation and Production of L-Valine Using Recombinant Strain Sval026

Components and preparation of seed culture medium and fermentation culture medium are the same as those described in Example 13.


The fermentation is performed in 500 mL of a fermentation vessel, and a fermentation process and an analysis process are the same as the fermentation process and the analysis process of the Sval024 described in Example 13.


It is discovered from results that: the strain Sval026 could produce 1.8 g/L of L-valine (L-valine peak corresponding to a position in FIG. 2 appears) 0.56 mol/mol after 4 days fermentation under anaerobic conditions.


EXAMPLE 16
Regulation of 6-phosphate Glucose Dehydrogenase Gene Encoding zwf

Started from Sval026, an artificial regulatory element is used to regulate expression of zwf gene through a method of two-step homologous recombination, and recombinant Escherichia coli Sval041 are obtained. It specifically includes the following steps.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers Zwf-Pcat-up/Zwf-PsacB-down, and used for the first step of the homologous recombination.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval026 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval026 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers zwf-YZ442-up/zwf-YZ383-down, and a correct colony amplification product is 3339 bp. A correct single colony is picked, and named as Sval041.


In a second step, a genomic DNA of M1-93 is used as a template, and 189 bp of a DNA fragment II is amplified by using primers zwf-RBS1-up/zwf-RBS1-down, and used for the second homologous recombination. Amplification conditions and system are the same as those described in (1). The DNA fragment II is electrotransformed into strain Sval041.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers zwf-YZ442-up/zwf-YZ383-down, and a correct colony amplification product is 809 bp. A correct single colony is picked, and named as Sval042 (Table 1).


EXAMPLE 17
Regulation of Lactonase Encoding Gene pgl

Started from Sval033, an artificial regulatory element is used to regulate expression of a pgl gene through a method of two-step homologous recombination, and recombinant Escherichia coli Sval042 are acquired. It specifically includes the following steps.


In a first step, a pXZ-CS plasmid DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers pgl-Pcat-up/pgl-PsacB-down, and used for the first step of the homologous recombination.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval033 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval042 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial culture is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers pgl-YZ308-up/pgl-YZ341-down, and a correct PCR product should be 3248 bp. A correct single colony is picked, and named as Sval043.


In a second step, a genomic DNA of M1-93 (Lu, et al., Appl Microbiol Biotechnol, 2012, 93:2455-2462) is used as a template, and 189 bp of a DNA fragment II is amplified by using primers pgl-RBS2-up/pgl-RBS2-down, and used for the second homologous recombination. Amplification conditions and system are the same as those described in (1). The DNA fragment II is electrotransformed into strain Sval043.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers pgl-YZ308-up/pgl-YZ341-down, and a correct colony amplification product is 718 bp. A correct single colony is picked, and named as Sval044 (Table 1).


EXAMPLE 18
Cloning and Integration of edd and eda Genes from Zymomonas mobilis ZM4 Strain

According to sequences of edd and eda genes derived from Zymomonas mobilis ZM4 reported by a literature (The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4, Nat. Biotechnol., 2005, 23(1):63-68), the edd and eda genes derived from the Zymomonas mobilis ZM4 are synthesized by whole genes, herein an artificial regulatory element MRS1 is added before the edd gene, and the edd and eda genes are connected by an artificial RBS regulatory element (CAGGAAACAGCT). A whole-gene-synthesized MRS1-edd-RBS-eda fragment is linked to a pUC57 vector through EcoRV. The whole gene synthesis of the sequence is completed by Nanjing Genscript Biotechnology Co., Ltd., and the pUC57 vector is also from Nanjing Genscript Biotechnology Co., Ltd. The MRS1-edd-RBS-eda is integrated into an edd-eda site of the Escherichia coli itself through a two-step homologous recombination method and replaces the edd-eda gene of the Escherichia coli itself. Specific steps are as follows.


In a first step, a pXZ-CS plasmid (Tan, et al., Appl Environ Microbiol, 2013, 79:4838-4844) DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers edd-cat-up/eda-sacB-down, and used for the first step of the homologous recombination.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid is transformed into Escherichia coli Sval044 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval044 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers edd-YZ-up/edd-YZ-down, and a correct PCR product should be 3123 bp. A correct single colony is picked, and named as Sval045.


In a second step, a plasmid DNA of pUC57-MRS1-edd-eda is used as a template, and 2651 bp of a DNA fragment II is amplified by using primers Edd-int-up/Eda-int-down, and used for the second homologous recombination. Amplification conditions and system are the same as those described in (1). The DNA fragment II is electrotransformed into strain Sval045.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers edd-YZ-up/edd-YZ-down, and a correct colony amplification product is 3055 bp. A correct single colony is picked, and named as Sval046 (Table 1).


EXAMPLE 19
Knockout of 6-phosphoglucokinase Encoding Gene pfkA

In an strain Sval037, a key enzyme 6-phosphoglucokinase gene pfkA in a glycolytic pathway is knocked out to achieve that a recombinant strain uses an ED pathway to ferment and generate L-valine. The pfkA gene is knocked out through a method of two-step homologous recombination, and specific steps are as follows.


In a first step, a pXZ-CS plasmid (Tan, et al., Appl Environ Microbiol, 2013, 79:4838-4844) DNA is used as a template, 2719 bp of a DNA fragment I is amplified by using primers pfkAdel-cat-up/pfkAdel-sacB-down, and used for the first step of the homologous recombination.


The DNA fragment I is used for the first homologous recombination: firstly, a pKD46 plasmid (Datsenko and Wanner 2000, Proc Natl Acad Sci USA 97:6640-6645; and the plasmid is purchased from Coil Genetic Stock Center (CGSC) of Yale University, CGSC#7739) is transformed into Escherichia coli Sval046 by an electrotransformation method, and then the DNA fragment I is electrotransformed into the Escherichia coli Sval046 with the pKD46.


Electrotransformation conditions and steps are the same as the first step method for the mgsA gene knockout described in Example 1. 200 μl of bacterial solution is spreaded onto a LB plate containing ampicillin (a final concentration is 100 μg/ml) and chloramphenicol (a final concentration is 34 μg/ml). After being cultured overnight at 30° C., colonies were PCR verified using primers pfkAdel-up/pfkAdel-YZ-down, and a correct PCR product should be 3145 bp. A correct single colony is picked, and named as Sval047.


In a second step, a genomic DNA of wild-type ATCC8739 is used as a template, and 379 bp of a DNA fragment II is amplified by using primers pfkAdel-up/pfkAdel-down, and used for the second homologous recombination. Amplification conditions and system are the same as those described in (1). The DNA fragment II is electrotransformed into strain Sval047.


Electrotransformation conditions and steps are the same as the second step method for the mgsA gene knockout described in Example 1. Colonies were PCR verified using primers pfkAdel-up/pfkAdel-YZ-down, and a correct colony amplification product is 526 bp. A correct single colony is picked, and named as Sval048 (Table 1).


EXAMPLE 20
Production of L-Valine Using Recombinant Strain Sval048

Components and preparation of seed culture medium and fermentation culture medium are the same as those described in Example 13.


The fermentation is performed in 500 mL of a fermentation vessel, a fermentation process and an analysis process are the same as the fermentation process and the analysis process of the Sval024 described in Example 13.


It is discovered from results that: the strain Sval048 could produce 1.9 g/L of L-valine with a yield of 0.82 mol/mol after fermentation for 4 days under anaerobic conditions. FIG. 2 is a spectrum of L-valine standard substance, and FIG. 3 is a spectrum of Sval048 fermentation solution.


EXAMPLE 21
Construction of Recombinant Strain Sval049

Started from Sval048, cell growth and L-valine production capacity are synchronously improved through metabolic evolution.


Metabolic evolution was carried out in 500 ml fermentation vessel with 250 ml fermentation culture medium. The fermentative pH was controlled at 7.0 by using 5 Mammonia as neutralizer. Components and preparation of the fermentation culture medium used for the metabolic evolution are the same as those of the fermentation culture medium described in Example 18. Every 24 hours, fermentation solution is transferred into a new fermentation vessel, and the initial OD550 is 0.1. After 100 generations of the evolution, a strain Sval049 is obtained (FIG. 4). The strain Sval049 is preserved in China General Microbiological Culture Collection Center (CGMCC) with a preservation number CGMCC 19457.


EXAMPLE 22
Fermentation of Strain Sval049 to Produce L-Valine in 500 mL Fermentation Vessel

Components and preparation of a seed culture medium are the same as those described in Example 13.


The fermentation is performed in 500 mL of a fermentation vessel, and a fermentation culture medium is 250 ml. The fermentation culture medium is basically the same as the seed culture medium. A difference is that a glucose concentration is 100 g/L, and a neutralizer used is 5M ammonia, so that fermentative pH is controlled in 7.0.


It is discovered from results that: after fermented in 500 mL of the fermentation vessel for 48 hours, strain Sval049 produced 47 g/L with a yield of 0.91 mol/mol, and impurities such as a heteroacid are not generated.


EXAMPLE 23
Production of L-Valine by Fermentation of Recombinant Strain Sval049 in 5 L Fermentation Vessel

Components, preparation and analytical method of a seed culture medium are the same as those described in Example 13. A fermentation culture medium is basically the same as the seed culture medium, and a difference is that a glucose concentration is 140 g/L.


The fermentation is performed in 5 L of a fermentation vessel (Shanghai Baoxing, BIOTECH-5BG) under anaerobic conditions, including the following steps:


(1) Seed culture: the seed culture medium in 500 ml of a triangular flask is 150 ml, and it is sterilized at 115° C. for 15 min. After cooling, recombinant Escherichia coli Sval041 are inoculated into the seed culture medium according to an inoculum size of 1% (V/V), and cultured at 37° C. and 100 rpm for 12 hours to obtain seed solution for inoculation of the fermentation culture medium.


(2) Fermentation culture: a volume of the fermentation culture medium in 5 L is 3 L, and it is sterilized at 115° C. for 25 min. The seed solution is inoculated into the fermentation culture medium according to an inoculum size of final concentration OD550=0.2, and cultured under anaerobic conditions at 37° C. for 48 hours, and a stirring speed is 200 rpm, fermentation solution is obtained. The fermentation solution is all of substances in the fermentation vessel. No air was sparged during the fermentation.


It is discovered from results that: after fermented in 5 L of the fermentation vessel for 48 hours, Sval049 produced 87 g/L L-valine with a yield of 0.92 mol/mol, and impurities such as a heteroacid are not generated. FIG. 5 is a spectrum of L-valine standard substance, and FIG. 6 is a spectrum of Sval049 fermentation solution.

Claims
  • 1. A construction method of a recombinant microorganism for producing L-valine comprising: transferring an amino acid dehydrogenase gene into a microorganism and/or activating an Entner-Doudoroff metabolic pathway in the microorganism.
  • 2. The construction method according to claim 1, wherein the method further comprises one or more of the following modifications (1)-(7) to the recombinant microorganism according to claim 1: (1) knocking out a gene mgsA;(2) knocking out a gene IdhA;(3) knocking out genes pta and/or ackA;(4) knocking out genes tdcD and/or tdcE;(5) knocking out a gene adhE;(6) knocking out genes frd and/or pflB; and(7) enhancing activity of AHAS and/or ilvD;preferably, the above items (7), (2) and (5) are selected for modification;preferably, the above items (7), (2) and (6) are selected for modification;preferably, the above items (7), (1), and (3)-(6) are selected for modification;preferably, the above items (1)-(7) are selected for modification;preferably, the item (6) is achieved by substituting the pflB gene of the microorganism itself with the ilvD gene;preferably, the item (6) is achieved by substituting the frd gene of the microorganism itself with the leuDH gene; andpreferably, the item (1) is achieved by substituting the mgsA gene of the microorganism itself with the ilvC gene.
  • 3. The construction method according to claim 1, wherein the microorganism is Escherichia coli; and more preferably, the microorganism is Escherichia coli ATCC 8739.
  • 4. The construction method according to claim 1, wherein at least one regulatory element is used to activate or enhance activity of encoding genes of ilvD, leuDH, ilvBN, zwf, pgl, ilvGM, edd, eda or ilvC; preferably, the regulatory element is selected from an M1-93 artificial regulatory element, an MRS1 artificial regulatory element, a RBS artificial regulatory element or an M1-46 artificial regulatory element;preferably, the M1-93 artificial regulatory element regulates ilvD, leuDH, ilvBN, zwf, pgl and ilvGM genes;the MRS1 artificial regulatory element regulates the edd gene;the RBS artificial regulatory element regulates the gene eda; andthe M1-46 artificial regulatory element regulates the ilvC gene.
  • 5. The construction method according to claim 1, wherein one or more copies of the enzyme encoding gene and the regulatory element are integrated into a genome of the microorganism, or a plasmid containing the enzyme encoding gene is transferred into the microorganism; preferably, transfer, mutation, knockout, activation or regulation of the enzyme gene is completed by a method of integrating into the genome of the microorganism;preferably, the transfer, mutation, knockout, activation or regulation of the enzyme gene is completed by a homologous recombination method; andpreferably, the transfer, mutation, knockout, activation or regulation of the enzyme gene is completed by a two-step homologous recombination method.
  • 6. A recombinant microorganism obtained by the construction method according to claim 1.
  • 7. The construction method according to claim 1, wherein the construction method further comprises acquiring a recombinant microorganism for highly producing L-valine obtained through metabolic evolution on the basis of the recombinant microorganism obtained by the construction method according to claim 1.
  • 8. A recombinant microorganism, wherein a preservation number thereof is CGMCC 19457.
  • 9. (canceled)
  • 10. A method for producing L-valine, wherein the method comprises: (1) fermenting and culturing the recombinant microorganism according to claim 6; and (2) separating and harvesting L-valine; preferably, the fermentation is carried out under anaerobic conditions.
  • 11. The construction method according to claim 1, wherein the construction method further comprising a step of knocking out a 6-phosphoglucokinase gene pfkA.
  • 12. The construction method according to claim 1, wherein the construction method further comprising a step of transferring an acetohydroxy acid reductoisomerase encoding gene into the microorganism; the acetohydroxy acid reductoisomerase encoding gene is preferably ilvC.
  • 13. The construction method according to claim 1, wherein the amino acid dehydrogenase gene is NADH-dependent.
  • 14. The construction method according to claim 1, wherein the amino acid dehydrogenase gene is a leucine dehydrogenase gene.
  • 15. The construction method according to claim 1, wherein the activation of the Entner-Doudoroff metabolic pathway comprises a step of improving expression intensity of a zwf gene, a pgl gene, an edd gene and an eda gene.
  • 16. The construction method according to claim 2, wherein the AHAS is ilvBN, or ilvGM, or ilvIH; optionally, the activity of the ilvIH is enhanced by releasing feedback inhibition of valine to the ilvH, preferably, the ilvH gene enhanced by mutation.
  • 17. The construction method according to claim 2, wherein the AHAS is ilvBN, or ilvGM, or ilvIH; optionally, the activity of the ilvIH is enhanced by releasing feedback inhibition of valine to the ilvH, preferably, the ilvH gene enhanced by mutation.
  • 18. The construction method according to claim 2, wherein the item (7) is selected for modification.
  • 19. The construction method according to claim 2, wherein the items (7) and (2) are selected for modification.
  • 20. The construction method according to claim 2, wherein the items (7) and (6) are selected for modification.
  • 21. A method for producing L-valine, wherein the method comprises: (1) fermenting and culturing the recombinant microorganism according to claim 8; and (2) separating and harvesting L-valine; preferably, the fermentation is carried out under anaerobic conditions.
Priority Claims (1)
Number Date Country Kind
202010460035.9 May 2020 CN national
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a National Stage of International Patent Application No: PCT/CN2020/137779 filed on 18 Dec. 2020, which claims the benefit of priority to Chinese Patent Application No.202010460035.9 filed to the China National Intellectual Property Administration on 27 May 2020 and entitled “Recombinant microorganism for producing L-valine, construction method and application thereof”, the content of which is hereby incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/CN2020/137779 12/18/2020 WO