RECOMBINANT MICROORGANISM HAVING ENHANCED 1,3-PROPANEDIOL PRODUCING ABILITY AND METHOD FOR PRODUCING 1,3-PROPANEDIOL USING THE SAME

Information

  • Patent Application
  • 20160319308
  • Publication Number
    20160319308
  • Date Filed
    December 16, 2014
    9 years ago
  • Date Published
    November 03, 2016
    7 years ago
Abstract
The present invention relates to a recombinant microorganism for producing 1,3-propanediol, wherein a pathway converting pyruvate into 2,3-butanediol is inhibited in a microorganism having a pyruvate and acetyl CoA biosynthetic pathway. In addition, the present invention relates to a method for producing 1,3-propanediol by using the recombinant microorganism.
Description
TECHNICAL FIELD

The present invention relates to a recombinant microorganism having an enhanced ability to produce 1,3-propanediol and a method for producing 1,3-propanediol using the same.


BACKGROUND ART

1,3-propanediol is an alcohol (represented by CH2OHCH2CH2OH) having three carbons and two hydroxyl (—OH) groups and can be used as a monomer for for polymers such as polyesters or polyurethanes. In addition, 1,3-propanediol can be used as an additive for improving properties of cosmetics and personal care products. Particularly, polytrimethylene terephthalate (PTT) which is a linear aromatic polyester produced by polymerization of 1,3-propanediol and terephthalic acid has a unique twisted linkage called kinks created on a semi-crystal molecular structure of a polymer chain, and thus exhibits excellent elasticity and shape stability. Due to such a structural property, PPT can be used in a broad range of applications such as fibers, packages, films, non-woven fabric structures, engineering plastics, and the like.


1,3-propanediol can be synthesized by chemical synthesis and biological synthesis. As a chemical method, 1,3-propanediol can be produced by hydrogenation using ethylene oxide or acrolein as a raw material. However, this method has problems such as high cost and production of wastes containing environmental contaminants.


As a biological method, 1,3-propanediol can be produced from fermentation by recombinant Escherichia coli using corn derived sugars as a raw material or from fermentation by a 1,3-propanediol producing strain (1,3-propanediol natural producer) using glycerol as a raw material. A microorganism (recombinant Escherichia coli) which produces 1,3-propanediol using sugars derived from biomass such as corn was developed by DuPont, USA and has been used in industrialized production (WO 2001/12833). On the other hand, microorganisms capable of producing 1,3-propanediol using glycerol as a raw material has been known for over a century. Examples of such strains can include microorganisms belonging to genus Klebsiella, genus Enterobacter, genus Clostridium, genus Citrobacter, genus Lactobacillus, and the like. Such microorganisms produce 1,3-propanediol by a reductive metabolic pathway of glycerol and are provided with a carbon source and an energy source required for growth and a coenzyme (NAHD) required for 1,3-propanediol production by an oxidative metabolic pathway.



Klebsiella pneumoniae as a representative 1,3-propanediol producing microorganism is a gram negative (G(−)) bacterium, and has an excellent property of producing not only 1,3-propanediol but also 2,3-butanediol. This property can be a limitation on production of 1,3-propanediol using glycerol as a raw material since 2,3-butanediol has a boiling point similar to 1,3-propanediol, which creates problems such as making purification procedures difficult and lowering final purification yields. In order to solve these problems, research has been performed to construct variants having only a reductive metabolic pathway of producing 1,3-propanediol by employing a genetic recombination technology, i.e., by blocking an oxidative metabolic pathway of producing byproducts among glycerol metabolic pathways so as not to produce oxidative metabolic byproducts such as 2,3-butanediol. However, this method had a problem of poor 1,3-propanediol productivity, making commercial application difficult (Korean Patent Application No. 10-2008-0122166).


As a result of earnest investigation aimed at developing a recombinant microorganism capable of producing less oxidative metabolic byproducts including 2,3-butanediol upon production of 1,3-propanediol, the present inventors identified that a recombinant microorganism in which specific genes are deleted produces decreased amount of byproducts without lowering production yield and productivity of 1,3-propanediol. Based on this finding, the present invention has been completed.


DISCLOSURE
Technical Problem

It is an object of the present invention to provide a recombinant microorganism having an enhanced ability to produce 1,3-propanediol and a method for producing 1,3-propanediol using the same.


Technical Solution

In accordance with one aspect of the present invention,


there is provided a recombinant microorganism for producing 1,3-propanediol,


wherein a pathway for converting pyruvate into 2,3-butanediol is suppressed in a microorganism having pyruvate and acetyl-CoA biosynthetic pathways.


In accordance with another aspect of the present invention, there is provided a method for producing 1,3-propanediol, including:


culturing the recombinant microorganism according to the present invention; and harvesting 1,3-propanediol from the culture solution.


Advantageous Effects

A recombinant microorganism according to the present invention can produce 1,3-propanediol with high selectivity and yield without producing 2,3-butanediol which makes purification processes difficult by suppressing production of main byproducts including lactate, 2,3-butanediol, formic acid, and the like in a glycerol metabolic pathway.





DESCRIPTION OF DRAWINGS


FIG. 1 shows a glycerol metabolic pathway of Klebsiella pneumoniae which is a 1,3-propanediol producing strain.



FIG. 2 shows an operon of a 2,3-butanediol synthesis related gene in Klebsiella pneumoniae.



FIG. 3 shows production results of 2,3-butanediol upon batch fermentation of a recombinant strain of Klebsiella, Kp ΔldhA ΔpflB, wherein 2,3-BDO refers to 2,3-butanediol, and 1,3-PDO refers to 1,3-propanediol.



FIG. 4 shows production results of 2,3-butanediol upon batch fermentation of a recombinant strain of Klebsiella, Kp ΔldhA ΔpflB ΔbudA, wherein 2,3-BDO refers to 2,3-butanediol, and 1,3-PDO refers to 1,3-propanediol.



FIG. 5 shows production results of 2,3-butanediol upon batch fermentation of a recombinant strain of Klebsiella, Kp ΔldhA ΔpflB ΔbudC, wherein 2,3-BDO refers to 2,3-butanediol, and 1,3-PDO refers to 1,3-propanediol.



FIG. 6 shows production results of 2,3-butanediol upon batch fermentation of a recombinant strain of Klebsiella, Kp ΔldhA ΔpflB ΔbudRABC, wherein 2,3-BDO refers to 2,3-butanediol, and 1,3-PDO refers to 1,3-propanediol.





BEST MODE

The present invention relates to


a recombinant microorganism for producing 1,3-propanediol,


wherein a pathway for converting pyruvate into 2,3-butanediol is suppressed in a microorganism having pyruvate and acetyl-CoA biosynthetic pathways.


In addition, the present invention relates to a method for producing 1,3-propanediol, including:


culturing the recombinant microorganism according to the present invention; and


harvesting 1,3-propanediol from the culture solution.


Hereinafter, the present invention will be described in detail.


Microorganism Having Pyruvate and Acetyl-CoA Biosynthetic Pathways


The microorganism according to the present invention has pyruvate and acetyl-CoA biosynthetic pathways. Herein, the acetyl-CoA biosynthetic pathway refers to a pathway for synthesizing acetyl-CoA from a specific metabolite in a microorganism. The acetyl-CoA biosynthetic pathway may also refer to a pathway for synthesizing acetyl-CoA from pyruvate. The pyruvate biosynthetic pathway refers to a pathway for synthesizing pyruvate from a specific metabolite in a microorganism. The pyruvate biosynthetic pathway may also refer to a pathway for synthesizing pyruvate from phosphoenol pyruvic acid (PEP). Preferably, the microorganism according to the present invention has pyruvate and acetyl-CoA biosynthetic pathways from a carbon source such as glycerol.


The microorganism having pyruvate and acetyl-CoA biosynthetic pathways according to the present invention is not particularly limited as long as the microorganism has the aforementioned biosynthetic pathways. In addition, the microorganism according to the present invention may be a microorganism having wild type pyruvate and acetyl-CoA biosynthetic pathways or a recombinant microorganism having pyruvate and acetyl-CoA biosynthetic pathways by genetic recombination. Preferably, the microorganism has an ability to produce 1,3-propanediol. The microorganism may be selected from the group consisting of genus Klebsiella, genus Enterobacter, and genus Lactobacillus. The microorganism is preferably a microorganism belonging to genus Klebsiella, more preferably Klebsiella pneumoniae.


Recombinant Microorganism for Producing 1,3-Propanediol


The recombinant microorganism for producing 1,3-propanediol according to the present invention has high 1,3-propanediol productivity and yield, and is characterized by a higher concentration of 1,3-propanediol in a fermented solution than a wild type microorganism upon fermentation. In addition, in the recombinant microorganism according to the present invention, production of oxidative byproducts such as lactate, formic acid, 2,3-butanediol and succinic acid is suppressed. Particularly, in the recombinant microorganism according to the present invention, production of 2,3-butanediol is suppressed wherein 2,3-butanediol has a boiling point similar to 1,3-propanediol as a target product, which renders purification difficult and thus lowers final purification yield. Preferably, the recombinant microorganism according to the present invention has no ability to produce formic acid, 2,3-butanediol, and succinic acid. The expression “having no ability to produce formic acid, 2,3-butanediol, and succinic acid” means that the microorganism does not produce substantial amounts of formic acid, 2,3-butanediol, and succinic acid, and means that there is no need for a separate process for removing formic acid, 2,3-butanediol, and succinic acid.


Preferably, the recombinant microorganism for producing 1,3-propanediol according to the present invention is a recombinant microorganism wherein a pathway for converting pyruvate into 2,3-butanediol is suppressed in a microorganism having pyruvate and acetyl-CoA biosynthetic pathways. More preferably, a pathway for converting pyruvate into 2,3-butanediol and a pathway for converting pyruvate into lactate are suppressed, or a pathway for converting pyruvate into 2,3-butanediol and a pathway for converting pyruvate into formic acid are suppressed. Still more preferably, a pathway for converting pyruvate into 2,3-butanediol, a pathway for converting pyruvate into lactate, and a pathway for converting pyruvate into formic acid are suppressed.


Preferably, the recombinant microorganism for producing 1,3-propanediol according to the present invention produces 1,3-propanediol with a yield of 0.40 g/g or more and a productivity of 1.5 g/L/hr or more on the basis of batch fermentation. Preferably, the recombinant microorganism has a ratio of 1,3-propanediol of 80 wt % or more in fermentation products when calculated in accordance with the following Equation 1. More preferably, the recombinant microorganism has a ratio of 1,3-propanediol of 85 wt % or more, still more preferably 88 wt % or more. Preferably, the recombinant microorganism has a ratio of lactate of less than 5 wt % in fermentation products, more preferably less than 2 wt %. Preferably, the recombinant microorganism has a ratio of formic acid of less than 1 wt % in fermentation products, more preferably less than 0.2 wt %, still more preferably less than 0.1 wt %. Preferably, the recombinant microorganism has a ratio of 2,3-butanediol of less than 1 wt % in fermentation products, more preferably less than 0.2 wt %, still more preferably less than 0.1 wt %. Preferably, the recombinant microorganism has a ratio of succinic acid of less than 1 wt % in fermentation products, more preferably less than 0.2 wt %, still more preferably less than 0.1 wt %.





Ratio of specific product in fermentation products={Concentration of specific product in fermentation products/(Total sum of concentrations of 1,3-propanediol, lactate, formic acid, 2,3-butanediol, ethanol, acetic acid, and succinic acid in fermentation products)}×100  <Equation 1>


Suppression of Pathway for Converting Pyruvate into 2,3-Butanediol


Microorganisms capable of producing 2,3-butanediol from pyruvate include a series of conversion enzymes such as α-acetolactate synthase, α-acetolactate decarboxylase, and acetoin reductase, as shown in FIG. 1. As shown in pathway 1, α-acetolactate synthase catalyzes conversion of pyruvate into α-acetolactate, α-acetolactate decarboxylase catalyzes conversion of α-acetolactate into acetoin, and acetoin reductase catalyzes conversion of acetoin into 2,3-butanediol.


<Pathway 1>


Pyruvate→α-acetolactate→acetoin→2,3-butanediol


Transcription of genes encoding enzymes involved in 2,3-butanediol synthesis is regulated by transcription activation factors, and genes encoding 2,3-butanediol synthase and transcription activation factors is present in a gene family, which is called the 2,3-butanediol operon, as shown in FIG. 2. Suppression of genes encoding enzymes on the 2,3-butanediol operon may be performed through expression suppression of each gene, suppression of enzyme activity, and the like. For example, those skilled in the art could easily suppress 2,3-butanediol synthase by selecting suitable methods, such as deleting one or more genes among budR (encodes a regulator), budA (encodes α-acetolactate decarboxylase (ALDC)), budB (encodes α-acetolactate synthetase (ALS)), and budC (encodes acetoin reductase (AR)) which are genes encoding enzymes on the 2,3-butanediol operon, causing mutations in the gene (mutations such as suppression of normal gene expression through modifying, substituting or deleting a partial nucleotide sequence or introducing a partial nucleotide sequence), regulating gene expression during transcription or translation, and the like.


Preferably, in the recombinant microorganism according to the present invention, the pathway for converting pyruvate into 2,3-butanediol is suppressed by suppressing one or more enzymes among α-acetolactate decarboxylase, α-acetolactate synthase, and acetoin reductase. More preferably, α-acetolactate decarboxylase, α-acetolactate synthase, and acetoin reductase are suppressed. Still more preferably, expression of budR, budA, budB and budC which are genes encoding the aforementioned enzymes and regulating expression thereof is suppressed.


Suppression of Pathway for Converting Pyruvate into Acetyl-CoA and Formic Acid


Pyruvate-formate lyase normally catalyzes conversion of pyruvate into acetyl-CoA and formic acid under anaerobic conditions (pathway 2).


<Pathway 2>


Pyruvate→acetyl-CoA+formic acid


A pathway for converting pyruvate into acetyl-CoA may be suppressed by suppressing pyruvate-formate lyase. Suppression of pyruvate-formate lyase may be performed by expression suppression of pyruvate-formate lyase, suppression of enzyme activity of pyruvate-formate lyase, and the like. For example, those skilled in the art could easily suppress pyruvate-formate lyase by selecting suitable methods, such as deleting pflB which is a gene encoding pyruvate-formate lyase, causing mutations in the gene (mutations such as suppression of normal gene expression through modifying, substituting or deleting a partial nucleotide sequence or introducing a partial nucleotide sequence), regulating gene expression during transcription or translation, and the like.


Suppression of Pathway for Converting Pyruvate into Lactate


Lactate dehydrogenase catalyzes conversion of pyruvate into lactate. The pathway for converting pyruvate into lactate may be suppressed by suppressing the lactate dehydrogenase. Suppression of lactate dehydrogenase may be performed by expression suppression of lactate dehydrogenase, suppression of enzyme activity of lactate dehydrogenase, and the like. For example, those skilled in the art could easily suppress lactate dehydrogenase by selecting suitable methods, such as deleting ldhA which is a gene encoding lactate dehydrogenase, causing mutations in the gene (mutations such as suppression of normal gene expression through modifying, substituting or deleting a partial nucleotide sequence or introducing a partial nucleotide sequence), regulating gene expression during transcription or translation, and the like. The recombinant microorganism in which the aforementioned pathways are suppressed exhibits lactate ratio of less than 12 wt %, more preferably less than 8 wt %, still more preferably less than 5 wt % in the fermentation products.


Method for producing 1,3-propanediol


The present invention relates to a method for producing 1,3-propanediol, including: culturing the recombinant microorganism according to the present invention; and harvesting 1,3-propanediol from the culture solution.


The recombinant microorganism according to the present invention may be cultured under aerobic conditions, preferably under microaerobic conditions. For example, the cultivation may be performed by supplying oxygen, namely, air, during cultivation. Specifically, the cultivation is performed by stirring, without being limited thereto.


Mode for Invention

The advantages and features of the present invention and methods for accomplishing the same will become apparent from the following examples. It should be understood that the present invention is not limited to the following examples and may be embodied in different ways, and the following examples are given to provide complete disclosure of the present invention and to provide a thorough understanding of the present invention to those skilled in the art. The present invention should be defined only by the accompanying claims and equivalents thereof.


<Materials and Methods>

    • Concentration of 1,3-propanediol (g/L): Amounts of 1,3-propanediol produced per unit volume
    • Yield of 1,3-propanediol (g/g): Produced amount of 1,3-propanediol (g)/carbon source (g)
    • Productivity of 1,3-propanediol (g/L/h): Amounts of 1,3-propanediol produced per unit time and unit volume


Experimental Example 1
Construction of Recombinant Microorganisms

Strain of Klebsiella pneumoniae GSC123 ΔldhA (Kp ΔldhA)


A strain of Klebsiella pneumoniae GSC123 ΔldhA (Kp ΔldhA) in which a lactate dehydrogenase gene (ldhA) was deleted was constructed as follows. Firstly, in order to clone a lactate dehydrogenase gene of Klebsiella pneumoniae, a homologous region 1 (SEQ ID NO: 2) of a target gene ldhA (SEQ ID NO: 1) was amplified using primers of SEQ ID NOs: 3 and 4 by polymerase chain reaction (PCR). Further, a homologous region 2 (SEQ ID NO: 5) was amplified using primers of SEQ ID NOs: 6 and 7 by PCR. Next, the homologous regions 1 and 2 were amplified using the same as templates for PCR, thereby obtaining a completed DNA fragment (SEQ ID NO: 8) in which the homologous regions 1 and 2 were ligated (Table 1).


The completed DNA fragment may include antibiotic resistance genes and the like in order to enhance the probability of recombination of target genes. Further, the completed DNA fragment may include a sacB gene encoding levansucrase in order to remove antibiotic resistance genes recombined in the chromosomes.


The prepared DNA fragment was transferred to wild type Klebsiella pneumoniae through electroporation (25 μF, 200 Ω, 18 kV/cm), in which the target gene was deleted by a homologous recombination mechanism indigenous to the microorganism.










TABLE 1





SEQ



ID NO
Sequence







1
ATGAAAATCGCGGTTTATAGTACGAAGCAGTACGATAAAAAGTACCTGCAGCACGTTAATGATGCAT



ACGGCTTTGAACTGGAATTCTTCGATTTCCTGCTGACAGCGAAGACTGCCAAAACCGCCAACGGTTG



CGAAGCGGTATGTATCTTCGTCAATGACGACGGCAGCCGCCCGGTGCTGGAAGAGCTGAAGGCCCAC



GGGGTGAAATATATCGCCCTGCGCTGCGCCGGGTTTAACAACGTCGACCTTGAGGCGGCAAAGGAGC



TTGGCCTGCGCGTCGTGCGCGTTCCAGCTTACTCTCCGGAAGCGGTCGCTGAGCATGCGATCGGTAT



GATGATGTCGCTCAACCGCCGCATCCACCGCGCTTACCAGCGTACCCGCGATGCCAATTTCTCCCTC



GAAGGCCTCACCGGCTTCACCATGTACGGCAAAACCGCCGGGGTGATCGGCACCGGGAAAATTGGCG



TAGCGATGTTGCGGATCCTCAAAGGCTTCGGCATGCGCCTGCTGGCGTTCGACCCGTACCCAAGCGC



CGCCGCGCTGGAGCTGGGGGTGGAATATGTTGACCTCGCCACGCTGTACAAGGAATCGGACGTGATC



TCCCTGCACTGTCCGCTGACCGACGAAAACTACCACCTGCTCAATCGCGAAGCTTTCGATCAGATGA



AAGACGGGGTGATGGTGATCAACACCAGCCGCGGCGCCCTGATCGACTCTCAGGCGGCCATCGACGC



CCTGAAGCACCAGAAAATTGGCGCGCTGGGGCTGGACGTTTATGAGAACGAACGCGATCTGTTCTTT



GAAGACAAATCCAACGACGTGATCCAGGACGATGTCTTCCGCCGCCTCTCCGCCTGCCATAACGTGC



TGTTTACCGGCCACCAGGCGTTCCTCACCGCCGAGGCGCTGATCAGCATTTCGGAGACCACTCTGGG



TAACCTGCAGCAGGTCGCCAACGGCGAAACCTGTCCGAACGCCATCGTC





2
CAAGCGTGCGCGGTGAACCGGGAGAGGGATCGCTGGCCGGCAGTTTGCTCAGGCAGGCGCTGTTGAT



CTCCAGCTGGCCAATATGCAGCCGCCAGCGGCTGGGACGCGAGAGACGGGCATCGGTCACCCGGGCG



ATTTCACAGTCGCCCACCAGATAACGCAGATCGGGGATCAGCAGGGCCGACCGCGTCAGGCGCGGGC



TCTCCTGCAAAGAGATACGCGTGCCCACGGGCAGCCAGATGCCCGCCAGCGTCGGCACCCAGTGGGT



TAGCGTCAACAGCAGGGTTAGCGGCAATAACACCAGAACTAACACCAGCGCGATGGCGGCTTTATAT



TTACCCTTCATGGGCAGTTAATATCCTGATTCAACATAAGTAAAAGCCGAAAGGCGTCCATTGTGAC



ACGTTCGACCAGTGAGTGAAAGTTTACGGCCTGTTAAAGCATAGTTGCCAGCCGGACTCGCGGCGCG



ACGTTCGGCCATTATCATTTAACTGTTGTTTAAGTCGCCCCTGCCACACTCCAGCCAGACGGGAATA



GCTTGCGGGAGAGGCGGTGTCGTTAATTATCTCGCTCATAGAGAGCGCACAGGACCACTATCCATGG



GTATTGCTGATTGTTTTTCTGCTTACCTTCACTAAATCCTGCGCATTGGTCTCGCTGGCAATCCCCG



GCACCTCCGGCCTGCTGCTGCTGGGGACATTCGCTTCCGCCAGCCTCGGACATTTCCTGTTAATGTG



GTCCAGCGCCAGCCTCGGCGCCATCGGCGGATTCTGGCTATCGTGGCGGCTGGGCATTCGCTACCGT



CATCGCCTCACCCATCTACGCTGGCTGACCGCCGAGCGTCTGGCCCGCAGCCGCCTCTTCTTTCAGC



GCTATGGCCCGTGGGCTATCTTTTTCAGCCGCTTTCTCTCTCCCCTGAGGGCTACGCTGCCCTTCGT



TAGCGGCGCCAGCAGTCTGCCGCTGTGGTCGTTTCAGCTGGCTAACGTCAGCTCCGGTCTGCTGTGG



CCGCTTCTGCTGCTCGCCCCCGGCGCTTTCAGCCTCAGTTTGTGGTGAAAAAACTTTGTCTTTCAAA



GAGATTCCGCAAGTCCGCGATATGCTCTAGAATTAGGATTAGCACCCTCTCATTAAACTATTTTTTA



ATAATTGTACGATTATTTTAAATATGCTACCGTGACGGTATAATCACTGGAGAAAAGTCTT





3
Kp_IdhA_FP1-TAGAGGATCCCAAGCGTGCGCGGTGAACCG





4
Kp_IdhA_RP1-GAGGAGCACAAAAGGGAAAGGCGAAGACTTTTCTCCAGTGATTATAC





5
CGCCTTTCCCTTTTGTGCTCCTCTCCCGGGGGGAGCACATTCAGATAATCCCCACAGATCCCTGCTG



CGATACCGTTACACTGGCTTGGTTTTATTAGTTATATGATTGTTTTGGAGTGAAAATGAACAAATTT



GCGGCGCTTCTGGCGGCAGGTATGCTGCTGTCCGGCTGTGTCTATAATAGTAAGGTGTCCACCGGTG



CGGAACAGCTGCAGCATCATCGTTTCGTGCTGACCAGCGTCAACGGCCAGGCGGTCAACGCCAGCGA



CCGGCCGCTGGAGCTGAGCTTCGGTGAGAAGATGGCTATTACCGGCAAGATGTATGTATCCGGCAAT



ATGTGCAACGGCTTTAGCGGGGAAGGTAAAGTGTCGGACGGCGAGCTGAAGGTCAAATCGCTGGCGA



TGACCCGGATGCTGTGCCACGACGCCCAGCTCAATACCCTGGATGCGACGATCGACAAGATGCTGCG



CGAGGGTGCGCAGGTCGATCTGACGGAAAACCAGTTGACGCTGGCGACCGCCGACCAGACGCTGGTC



TATAAGCTCGCCGACCTGATGCACTAGCCGGCGTTGAGGTGCCGCTGACGCTGCCCCGCGACGGGGC



CGCTGTTAGTAGCCGCAGCTGCCACCCGCCAGCGCCTGCTCGCTGCAGCGTTTGCCGTTCGGCAGCG



CGCACATGCCAATCGCCGAACCATCGAGCTGACGAGCCACCGATAACGAGCCGCCTATCATGGCGCA



GTTGGCCTGACCGGCGTCGCTCATCGCCGCCCGCATTCCCGGCGTGACGTGCGCCGCCGTGGCCTGC



TGAACGGGTTCACTACTGCACGCGGACAGCAACAGCGCCGCACATCCTACTAACATCGCAGCTCGCA



TTCTCTCTCCCCTCGGAAACGTCTTAAAAAAGCAAACCCCAGAATAATAGGCAGCGTGGCGGGCGGC



GTCGAGAGGGGAAGTACGTATTTATGCGCCTCATTAACATTTTCTAGCAAATTTTCGCCTAAAGCTT



GATCTGCCTCGGCCATGTCGCCCGGCGCAGGTGGTTCATCTCCCGGCAGGCAGCCATTTTCTCCGCG



AACCACGCAAAATATTGATCTGGTCACGGGTACCCGGCGCATTGAGGACACAAATGCAAAAATGGCG



GGGTCAGCGGTTTGCTAAACTACCCCTTATATAATTACAGGGCGCGTCGCGGTTTCACGC





6
Kp_IdhA_FP2-GTATAATCACTGGAGAAAAGTCTTCGCCTTTCCCTTTTGTGCTCCTC





7
Kp_IdhA_RP2-ATCGCGGCCGCGCGTGAAACCGCGACGCGCC





8
CAAGCGTGCGCGGTGAACCGGGAGAGGGATCGCTGGCCGGCAGTTTGCTCAGGCAGGCGCTGTTGAT



CTCCAGCTGGCCAATATGCAGCCGCCAGCGGCTGGGACGCGAGAGACGGGCATCGGTCACCCGGGCG



ATTTCACAGTCGCCCACCAGATAACGCAGATCGGGGATCAGCAGGGCCGACCGCGTCAGGCGCGGGC



TCTCCTGCAAAGAGATACGCGTGCCCACGGGCAGCCAGATGCCCGCCAGCGTCGGCACCCAGTGGGT



TAGCGTCAACAGCAGGGTTAGCGGCAATAACACCAGAACTAACACCAGCGCGATGGCGGCTTTATAT



TTACCCTTCATGGGCAGTTAATATCCTGATTCAACATAAGTAAAAGCCGAAAGGCGTCCATTGTGAC



ACGTTCGACCAGTGAGTGAAAGTTTACGGCCTGTTAAAGCATAGTTGCCAGCCGGACTCGCGGCGCG



ACGTTCGGCCATTATCATTTAACTGTTGTTTAAGTCGCCCCTGCCACACTCCAGCCAGACGGGAATA



GCTTGCGGGAGAGGCGGTGTCGTTAATTATCTCGCTCATAGAGAGCGCACAGGACCACTATCCATGG



GTATTGCTGATTGTTTTTCTGCTTACCTTCACTAAATCCTGCGCATTGGTCTCGCTGGCAATCCCCG



GCACCTCCGGCCTGCTGCTGCTGGGGACATTCGCTTCCGCCAGCCTCGGACATTTCCTGTTAATGTG



GTCCAGCGCCAGCCTCGGCGCCATCGGCGGATTCTGGCTATCGTGGCGGCTGGGCATTCGCTACCGT



CATCGCCTCACCCATCTACGCTGGCTGACCGCCGAGCGTCTGGCCCGCAGCCGCCTCTTCTTTCAGC



GCTATGGCCCGTGGGCTATCTTTTTCAGCCGCTTTCTCTCTCCCCTGAGGGCTACGCTGCCCTTCGT



TAGCGGCGCCAGCAGTCTGCCGCTGTGGTCGTTTCAGCTGGCTAACGTCAGCTCCGGTCTGCTGTGG



CCGCTTCTGCTGCTCGCCCCCGGCGCTTTCAGCCTCAGTTTGTGGTGAAAAAACTTTGTCTTTCAAA



GAGATTCCGCAAGTCCGCGATATGCTCTAGAATTAGGATTAGCACCCTCTCATTAAACTATTTTTTA



ATAATTGTACGATTATTTTAAATATGCTACCGTGACGGTATAATCACTGGAGAAAAGTCTTCGCCTT



TCCCTTTTGTGCTCCTCTCCCGGGGGGAGCACATTCAGATAATCCCCACAGATCCCTGCTGCGATAC



CGTTACACTGGCTTGGTTTTATTAGTTATATGATTGTTTTGGAGTGAAAATGAACAAATTTGCGGCG



CTTCTGGCGGCAGGTATGCTGCTGTCCGGCTGTGTCTATAATAGTAAGGTGTCCACCGGTGCGGAAC



AGCTGCAGCATCATCGTTTCGTGCTGACCAGCGTCAACGGCCAGGCGGTCAACGCCAGCGACCGGCC



GCTGGAGCTGAGCTTCGGTGAGAAGATGGCTATTACCGGCAAGATGTATGTATCCGGCAATATGTGC



AACGGCTTTAGCGGGGAAGGTAAAGTGTCGGACGGCGAGCTGAAGGTCAAATCGCTGGCGATGACCC



GGATGCTGTGCCACGACGCCCAGCTCAATACCCTGGATGCGACGATCGACAAGATGCTGCGCGAGGG



TGCGCAGGTCGATCTGACGGAAAACCAGTTGACGCTGGCGACCGCCGACCAGACGCTGGTCTATAAG



CTCGCCGACCTGATGCACTAGCCGGCGTTGAGGTGCCGCTGACGCTGCCCCGCGACGGGGCCGCTGT



TAGTAGCCGCAGCTGCCACCCGCCAGCGCCTGCTCGCTGCAGCGTTTGCCGTTCGGCAGCGCGCACA



TGCCAATCGCCGAACCATCGAGCTGACGAGCCACCGATAACGAGCCGCCTATCATGGCGCAGTTGGC



CTGACCGGCGTCGCTCATCGCCGCCCGCATTCCCGGCGTGACGTGCGCCGCCGTGGCCTGCTGAACG



GGTTCACTACTGCACGCGGACAGCAACAGCGCCGCACATCCTACTAACATCGCAGCTCGCATTCTCT



CTCCCCTCGGAAACGTCTTAAAAAAGCAAACCCCAGAATAATAGGCAGCGTGGCGGGCGGCGTCGAG



AGGGGAAGTACGTATTTATGCGCCTCATTAACATTTTCTAGCAAATTTTCGCCTAAAGCTTGATCTG



CCTCGGCCATGTCGCCCGGCGCAGGTGGTTCATCTCCCGGCAGGCAGCCATTTTCTCCGCGAACCAC



GCAAAATATTGATCTGGTCACGGGTACCCGGCGCATTGAGGACACAAATGCAAAAATGGCGGGGTCA



GCGGTTTGCTAAACTACCCCTTATATAATTACAGGGCGCGTCGCGGTTTCACGC









Strain of Klebsiella pneumoniae GSC123 ΔldhA ΔpflB (Kp ΔldhA ΔpflB)


A strain of Klebsiella pneumoniae GSC123 ΔldhA ΔpflB (Kp ΔldhA ΔpflB) in which a pyruvate-formate lyase gene (pflB) was further deleted was constructed as follows. Firstly, in order to clone a pyruvate-formate lyase gene of Klebsiella pneumoniae, a homologous region 1 (SEQ ID NO: 10) of a target gene pflB (SEQ ID NO: 9) was amplified using primers of SEQ ID NOs: 11 and 12 by polymerase chain reaction (PCR). Further, a homologous region 2 (SEQ ID NO: 13) was amplified using primers of SEQ ID NOs: 14 and 15 by PCR. Next, the homologous regions 1 and 2 were amplified using the same as templates for PCR, thereby obtaining a completed DNA fragment (SEQ ID NO: 16) in which the homologous regions 1 and 2 were ligated (Table 2).


The completed DNA fragment may include antibiotic resistance genes and the like in order to enhance the probability of recombination of target genes. Further, the completed DNA fragment may include a sacB gene encoding levansucrase in order to remove antibiotic resistance genes recombined in the chromosomes.


The prepared DNA fragment was transferred to lactate dehydrogenase (ldhA) deleted Klebsiella pneumoniae GSC123 ΔldhA (Kp ΔldhA) through electroporation (25 μF, 200 Ω, 18 kV/cm), in which the target gene was deleted by a homologous recombination mechanism indigenous to the microorganism.










TABLE 2





SEQ



ID NO
Sequence







 9
ATGTCCGAGCTTAATGAAAAGTTAGCCACAGCCTGGGAAGGTTTTGCGAAAGGTGACTGGCAGAATGAAGT



CAACGTCCGTGACTTTATTCAGAAAAACTACACCCCATATGAAGGCGACGAATCCTTCCTGGCTGGCGCGA



CTGAAGCGACCACCAAGCTGTGGGACACCGTAATGGAAGGTGTAAAACAGGAAAACCGCACTCACGCGCCT



GTTGATTTTGACACTGCCCTGGCTTCCACCATCACCTCTCACGACGCGGGCTATATCGAGAAAGGTCTGGA



AAAAATCGTTGGTCTGCAGACCGAAGCGCCGCTGAAACGTGCGATCATCCCGTTCGGTGGTATCAAAATGG



TTGAAGGTTCCTGCAAAGCGTATAATCGCGAGCTGGACCCGATGCTGAAAAAAATCTTCACAGAGTACCGT



AAAACTCACAACCAGGGCGTTTTCGACGTCTATACCCCGGACATTCTGCGCTGCCGTAAATCCGGCGTGCT



GACGGGTCTGCCGGATGCTTACGGTCGTGGTCGTATCATCGGTGACTACCGTCGCGTTGCGCTGTACGGTA



TCGACTTCCTGATGAAAGACAAATTCGCCCAGTTCAACTCTCTGCAAGCGAAACTGGAAAGCGGCGAAGAC



CTGGAAGCGACCATCCGTCTGCGTGAAGAAATCGCTGAACAACACCGCGCACTGGGCCAGATCAAAGAGAT



GGCCGCTAAATATGGCTATGACATCTCCGGTCCGGCGACCACCGCTCAGGAAGCGATTCAGTGGACCTACT



TCGGTTACCTGGCTGCCGTGAAATCTCAGAACGGCGCGGCAATGTCCTTCGGTCGTACCTCCAGCTTCCTG



GATATCTACATCGAGCGTGACCTGCAGGCGGGTAAAATCACCGAGCAAGACGCGCAGGAAATGGTTGACCA



CCTGGTCATGAAACTGCGTATGGTTCGCTTCCTGCGTACCCCGGAATATGATGAACTGTTCTCCGGCGACC



CGATTTGGGCAACGGAATCCATCGGCGGTATGGGCGTTGACGGCCGTACTCTGGTGACCAAAAACAGCTTC



CGCTTCCTGAACACCCTGTACACCATGGGGCCGTCTCCGGAGCCGAACATTACTATCCTGTGGTCTGAAAA



ACTGCCGCTGAGCTTCAAGAAATTCGCCGCTAAAGTGTCCATCGATACCTCTTCTCTGCAGTATGAGAACG



ATGACCTGATGCGTCCGGACTTCAACAACGACGACTACGCTATCGCATGCTGCGTAAGCCCGATGGTTGTT



GGTAAGCAAATGCAGTTCTTCGGCGCTCGCGCTAACCTCGCGAAAACCATGCTGTACGCTATCAACGGCGG



CGTGGATGAAAAACTGAAAATGCAGGTTGGTCCGAAATCTGAACCGATCAAAGGCGACGTCCTGAACTTCG



ACGAAGTAATGGATCGCATGGATCACTTCATGGACTGGCTGGCTAAACAGTACGTCACCGCGCTGAACATC



ATCCACTACATGCACGACAAGTACAGCTACGAAGCCTCTCTGATGGCGCTGCACGACCGTGACGTTATCCG



CACCATGGCGTGTGGTATCGCTGGTCTGTCCGTTGCTGCTGACTCCCTGTCTGCTATCAAATATGCGAAAG



TTAAACCGATTCGTGACGAAGACGGTCTGGCTATCGACTTCGAAATCGAAGGCGAATACCCGCAGTTTGGT



AACAACGACCCTCGCGTCGATGACATGGCCGTTGACCTGGTTGAACGTTTCATGAAGAAAATTCAGAAACT



GCACACCTACCGCAACGCTATCCCGACTCAGTCTGTTCTGACCATCACCTCTAACGTGGTGTACGGTAAGC



CGGTAATACCCCAGACGGTCGTCGCGCTGGCGCGCCGTTCGGTCCAGGTGCTAACCCGATGCACGGCCGTG



ACCAGAAAGGCGCAGTAGCCTCTCTGACCTCCGTCGCTAAACTGCCGTTTGCTTACGCGAAAGATGGTATC



TCTTATACCTTCTCTATCGTGCCGAACGCGCTGGGTAAAGACGACGAAGTTCGTAAGACCAACCTGGCGGG



TCTGATGGATGGTTACTTCCATCACGAAGCGTCCATCGAAGGTGGTCAGCACCTGAACGTGAACGTCATGA



ACCGCGAAATGCTGCTCGACGCGATGGAAAACCCGGAAAAATATCCGCAGCTGACCATCCGTGTATCTGGC



TACGCCGTACGTTTTAACTCCCTGACCAAAGAACAGCAGCAGGATGTTATTACCCGTACCTTCACTCAGAC



CATG





10
GTTTGTGCTGCTGATGTGGTTATCAGGCGAATATATGACTGCCAACGGCGGCTGGGGGCTAAACGTTCTGC



AGACCGCCGACCACAAAATGCACCATACTTTTGTGGAGGCCGTGAGCCTGGGTATCCTCGCTAACCTGATG



GTTTGTCTCGCCGTATGGATGAGCTATTCCGGTCGTAGCCTGATGGATAAAGCGATGATCATGGTCCTGCC



GGTAGCGATGTTCGTTGCCAGCGGCTTTGAGCACAGCATCGCCAACATGTTTATGATCCCGATGGGTATCG



TAATCCGCAACTTTGCAAGCCCGGAATTCTGGACCGCCATCGGTTCGACTCCGGAAAGTTTCTCTCACTTG



ACCGTTATGAACTTCATCACTGATAACCTGATTCCGGTAACTATCGGGAACATTATCGGCGGGGGTCTGCT



GGTCGGGTTGACATACTGGGTCATTTACCTGCGTGGCAACGACCATCACTAAGGGTTGTTTCAGGCAGTAA



ATAAAAAATCCACTTAAGAAGGTAGGTGTTAC





11
Kp_pflB_FP1-GGATCCGTTTGTGCTGCTGATGTGGTTATCAGGC





12
Kp_pflB_RP1-CGCCTTTTCAGTCAGACAGGGAAGTAACACCTACCTTCTTAAGTGG





13
TTCCCTGTCTGACTGAAAAGGCGTACAATAAAGGCCCCACATCAGTGGGGCCTTTTTAACAAGCATTCCCC



GCCCCAGCCTGCTTTGCCAGTTATCTATACTTTGGGTACCTGTCAAAACAGACTCGACGCAGCCGCTGAGC



TGCGCACCAACACGGCCCCGGATGGGCCACATCTGGAGAAAACACCGCAATGTCAGTTATTGGTCGCATTC



ACTCCTTTGAATCCTGTGGCACCGTTGATGGCCCAGGCATCCGCTTTATTACCTTTTTCCAGGGCTGCCTG



ATGCGCTGCCTGTACTGCCATAACCGTGACACCTGGGATACCCACGGCGGCAAAGAAATCACCGTTGAAGA



ATTAATGAAAGAGGTGGTGACCTATCGTCACTTTATGAATGCTTCCGGCGGCGGCGTCACCGCCTCGGGCG



GTGAGGCGATCCTGCAGGCGGAGTTTGTTCGCGACTGGTTCCGCGCGTGTAAGAAAGAAGGCATCCACACC



TGCCTGGATACCAACGGCTTCGTACGTCGCTACGATCCGGTTATCGACGAGCTGCTGGAGGTAACAGACCT



GGTGATGCTGGATCTCAAGCAGATGAAC





14
Kp pflB_FP2-CCACTTAAGAAGGTAGGTGTTACTTCCCTGTCTGACTGAAAAGGCG





15
Kp_pflB_RP2-GCGGCCGCGTTCATCTGCTTGAGATCCAGCATCACC





16
GTTTGTGCTGCTGATGTGGTTATCAGGCGAATATATGACTGCCAACGGCGGCTGGGGGCTAAACGTTCTGC



AGACCGCCGACCACAAAATGCACCATACTTTTGTGGAGGCCGTGAGCCTGGGTATCCTCGCTAACCTGATG



GTTTGTCTCGCCGTATGGATGAGCTATTCCGGTCGTAGCCTGATGGATAAAGCGATGATCATGGTCCTGCC



GGTAGCGATGTTCGTTGCCAGCGGCTTTGAGCACAGCATCGCCAACATGTTTATGATCCCGATGGGTATCG



TAATCCGCAACTTTGCAAGCCCGGAATTCTGGACCGCCATCGGTTCGACTCCGGAAAGTTTCTCTCACTTG



ACCGTTATGAACTTCATCACTGATAACCTGATTCCGGTAACTATCGGGAACATTATCGGCGGGGGTCTGCT



GGTCGGGTTGACATACTGGGTCATTTACCTGCGTGGCAACGACCATCACTAAGGGTTGTTTCAGGCAGTAA



ATAAAAAATCCACTTAAGAAGGTAGGTGTTACTTCCCTGTCTGACTGAAAAGGCGTACAATAAAGGCCCCA



CATCAGTGGGGCCTTTTTAACAAGCATTCCCCGCCCCAGCCTGCTTTGCCAGTTATCTATACTTTGGGTAC



CTGTCAAAACAGACTCGACGCAGCCGCTGAGCTGCGCACCAACACGGCCCCGGATGGGCCACATCTGGAGA



AAACACCGCAATGTCAGTTATTGGTCGCATTCACTCCTTTGAATCCTGTGGCACCGTTGATGGCCCAGGCA



TCCGCTTTATTACCTTTTTCCAGGGCTGCCTGATGCGCTGCCTGTACTGCCATAACCGTGACACCTGGGAT



ACCCACGGCGGCAAAGAAATCACCGTTGAAGAATTAATGAAAGAGGTGGTGACCTATCGTCACTTTATGAA



TGCTTCCGGCGGCGGCGTCACCGCCTCGGGCGGTGAGGCGATCCTGCAGGCGGAGTTTGTTCGCGACTGGT



TCCGCGCGTGTAAGAAAGAAGGCATCCACACCTGCCTGGATACCAACGGCTTCGTACGTCGCTACGATCCG



GTTATCGACGAGCTGCTGGAGGTAACAGACCTGGTGATGCTGGATCTCAAGCAGATGAAC









Strain of Klebsiella pneumoniae GSC123 Δ dhA ΔpflB ΔbudA (Kp ΔldhA ΔpflB ΔbudA)


A strain of Klebsiella pneumoniae GSC123 ΔldhA ΔpflB ΔbudA (Kp ΔldhA ΔpflB ΔbudA) in which a gene for converting α-acetolactate into acetoin (α-acetolactate decarboxylase gene, budA) on a pathway of synthesizing 2,3-butanediol was further deleted was constructed as follows. Firstly, in order to clone an α-acetolactate decarboxylase gene of Klebsiella pneumoniae, a homologous region 1 (SEQ ID NO: 18) of a target gene budA (SEQ ID NO: 17) was amplified using primers of SEQ ID NOs: 19 and 20 by polymerase chain reaction (PCR). Further, a homologous region 2 (SEQ ID NO: 21) was amplified using primers of SEQ ID NOs: 22 and 23 by PCR. Next, the homologous regions 1 and 2 were amplified using the same as templates for PCR, thereby obtaining a completed DNA fragment (SEQ ID NO: 24) in which the homologous regions 1 and 2 were ligated (Table 3).


The completed DNA fragment may include antibiotic resistance genes and the like in order to enhance the probability of recombination of target genes. Further, the completed DNA fragment may include a sacB gene encoding levansucrase in order to remove antibiotic resistance genes recombined in the chromosomes.


The prepared DNA fragment was transferred to lactate dehydrogenase (ldhA) and pyruvate-formate lyase (pflB) deleted Klebsiella pneumoniae GSC123 ΔldhA ΔpflB (Kp ΔldhA ΔpflB) through electroporation (25 μF, 200 Ω, 18 kV/cm), in which the target gene was deleted by a homologous recombination mechanism indigenous to the microorganism.










TABLE 3





SEQ



ID NO
Sequence







17
ATGAATCATTCTGCTGAATGCACCTGCGAAGAGAGTCTATGCGAAACCCTGCGGGCGTTTTCCGCGC



AGCATCCCGAGAGCGTGCTCTATCAGACATCGCTCATGAGCGCCCTGCTGAGCGGGGTTTACGAAGG



CAGCACCACCATCGCCGACCTGCTGAAACACGGCGATTTCGGCCTCGGCACCTTTAATGAGCTGGAC



GGGGAGCTGATCGCCTTCAGCAGTCAGGTCTATCAGCTGCGCGCCGACGGCAGCGCGCGCAAAGCCC



AGCCGGAGCAGAAAACGCCGTTCGCGGTGATGACCTGGTTCCAGCCGCAGTACCGGAAAACCTTTGA



CCATCCGGTGAGCCGCCAGCAGCTGCACGAGGTGATCGACCAGCAAATCCCCTCTGACAACCTGTTC



TGCGCCCTGCGCATCGACGGCCATTTCCGCCATGCCCATACCCGCACCGTGCCGCGCCAGACGCCGC



CGTACCGGGCGATGACCGACGTACTCGACGATCAGCCGGTGTTCCGCTTTAACCAGCGCGAAGGGGT



GCTGGTCGGCTTCCGGACCCCGCAGCATATGCAGGGGATCAACGTCGCCGGGTATCACGAGCATTTT



ATTACCGATGACCGCAAAGGCGGCGGTCACCTGCTGGATTACCAGCTCGACCACGGGGTGCTGACCT



TCGGCGAAATTCACAAGCTGATGATCGACCTGCCCGCCGACAGCGCGTTCCTGCAGGCTAATCTGCA



TCCCGATAATCTCGATGCCGCCATCCGTTCCGTAGAAAGT





18
GCAGATTAAAGGCTTTACTGCTCTCGCACGGCAGGCGGACGAAGGCGATATCCAGCTCGGCCTCGCT



CAGGGCGGTCATCAGATTGGCCATATTGTCTTCCATCTGGTGCAGGGTCACCCCGGGGTGGTCGAGC



TGAAAACGGTGCAGCAGCGTGAAGATTTGCGGATGGAAAGCATCAGAACTGGTAATGCCTAGCGACA



GGCTGCCGTTCATCCCGCGCGCAATGCCCTTGGCCTTCTCCAGCGCCGCATCGCTCATGGCGAGGAT



CTGGCGGGCATCCTCATAGAAAGACTCTCCCGCTTCCGTCAGCTCCACCCCGCGGGTTAAACGCCGG



AACAGCGGGGTCCCCACCTCGCGCTCAAGCCGCTGAATTTGCTGACTTAACGGAGGCTGTGAAATAC



CCAGCTCCTTGGCGGCCTGGGTGAAGTGCCGCGTCCTGGCGACGGCGACAAAATAGCGAAGATAACG



AAGTTCCATATCGAAAACGTCTCAAACCAGCATGGTTTCTATATTGGAACTGTGAGCTGAATCGGGT



CAACATTTATTTAACCTTTCTTATATTTGTTGAACGAGGAAGTGGTATATGAATCATTCTGCTGAAT



GCACCTGCGAACCCGATAATCTCGATGCCGCCATCCGTTCCGTAGAAAGT





19
Kp_budA_FP1-TCTAGAGGATCCGCAGATTAAAGGCTTTACTGCTCTC





20
Kp_budA_RP1-CGGATGGCGGCATCGAGATTATCGGGTTCGCAGGTGCATTCAGCAGAATGATTC





21
ATGAATCATTCTGCTGAATGCACCTGCGAACCCGATAATCTCGATGCCGCCATCCGTTCCGTAGAAA



GTTAAGGGGGTCACATGGACAAACAGTATCCGGTACGCCAGTGGGCGCACGGCGCCGATCTCGTCGT



CAGTCAGCTGGAAGCACAGGGGGTACGCCAGGTGTTCGGCATCCCCGGCGCCAAAATCGACAAGGTC



TTCGATTCACTGCTGGATTCCTCCATTCGCATTATTCCGGTACGCCACGAAGCCAACGCCGCATTTA



TGGCCGCCGCCGTCGGACGTATTACCGGCAAAGCGGGCGTGGCGCTGGTCACCTCCGGTCCGGGTTG



TTCTAACCTGATCACCGGCATGGCCACCGCGAACAGCGAAGGCGACCCGGTGGTGGCCCTGGGCGGC



GCGGTAAAACGCGCCGATAAAGCCAAACAGGTCCACCAGAGTATGGATACGGTGGCGATGTTCAGCC



CGGTCACCAAATACGCCGTCGAGGTGACGGCGCCGGATGCGCTGGCGGAAGTGGTCTCCAACGCCTT



CCGCGCCGCCGAGCAGGGCCGGCCGGGCAGCGCGTTCGTTAGCCTGCCGCAGGATGTGGTCGATG





22
Kp_budA_FP2-GAATCATTCTGCTGAATGCACCTGCGAACCCGATAATCTCGATGCCGCCATCCG





23
Kp_budA_RP2-GATCGCGGCCGCCATCGACCACATCCTGCGGCAGG





24
GCAGATTAAAGGCTTTACTGCTCTCGCACGGCAGGCGGACGAAGGCGATATCCAGCTCGGCCTCGCT



CAGGGCGGTCATCAGATTGGCCATATTGTCTTCCATCTGGTGCAGGGTCACCCCGGGGTGGTCGAGC



TGAAAACGGTGCAGCAGCGTGAAGATTTGCGGATGGAAAGCATCAGAACTGGTAATGCCTAGCGACA



GGCTGCCGTTCATCCCGCGCGCAATGCCCTTGGCCTTCTCCAGCGCCGCATCGCTCATGGCGAGGAT



CTGGCGGGCATCCTCATAGAAAGACTCTCCCGCTTCCGTCAGCTCCACCCCGCGGGTTAAACGCCGG



AACAGCGGGGTCCCCACCTCGCGCTCAAGCCGCTGAATTTGCTGACTTAACGGAGGCTGTGAAATAC



CCAGCTCCTTGGCGGCCTGGGTGAAGTGCCGCGTCCTGGCGACGGCGACAAAATAGCGAAGATAACG



AAGTTCCATATCGAAAACGTCTCAAACCAGCATGGTTTCTATATTGGAACTGTGAGCTGAATCGGGT



CAACATTTATTTAACCTTTCTTATATTTGTTGAACGAGGAAGTGGTATATGAATCATTCTGCTGAAT



GCACCTGCGAACCCGATAATCTCGATGCCGCCATCCGTTCCGTAGAAAGTTAAGGGGGTCACATGGA



CAAACAGTATCCGGTACGCCAGTGGGCGCACGGCGCCGATCTCGTCGTCAGTCAGCTGGAAGCACAG



GGGGTACGCCAGGTGTTCGGCATCCCCGGCGCCAAAATCGACAAGGTCTTCGATTCACTGCTGGATT



CCTCCATTCGCATTATTCCGGTACGCCACGAAGCCAACGCCGCATTTATGGCCGCCGCCGTCGGACG



TATTACCGGCAAAGCGGGCGTGGCGCTGGTCACCTCCGGTCCGGGTTGTTCTAACCTGATCACCGGC



ATGGCCACCGCGAACAGCGAAGGCGACCCGGTGGTGGCCCTGGGCGGCGCGGTAAAACGCGCCGATA



AAGCCAAACAGGTCCACCAGAGTATGGATACGGTGGCGATGTTCAGCCCGGTCACCAAATACGCCGT



CGAGGTGACGGCGCCGGATGCGCTGGCGGAAGTGGTCTCCAACGCCTTCCGCGCCGCCGAGCAGGGC



CGGCCGGGCAGCGCGTTCGTTAGCCTGCCGCAGGATGTGGTCGATG









Strain of Klebsiella pneumoniae GSC123 ΔldhA ΔpflB ΔbudC (Kp ΔldhA ΔpflB ΔbudC)


A strain of Klebsiella pneumoniae GSC123 ΔldhA ΔpflB ΔbudC (Kp ΔldhA ΔpflB ΔbudC) in which acetoin reductase gene, budC for converting acetoin into 2,3-butanediol on a pathway of synthesizing 2,3-butanediol, was further deleted was constructed as follows. Firstly, in order to clone an acetoin reductase gene of Klebsiella pneumoniae, a homologous region 1 (SEQ ID NO: 26) of a target gene budC (SEQ ID NO: 25) was amplified using primers of SEQ ID NOs: 27 and 28 by polymerase chain reaction (PCR). Further, a homologous region 2 (SEQ ID NO: 29) was amplified using primers of SEQ ID NOs: 30 and 31 by PCR. Next, the homologous regions 1 and 2 were amplified using the same as templates for PCR, thereby obtaining a completed DNA fragment (SEQ ID NO: 32) in which the homologous regions 1 and 2 were ligated (Table 4).


The completed DNA fragment may include antibiotic resistance genes and the like in order to enhance the probability of recombination of target genes. Further, the completed DNA fragment may include a sacB gene encoding levansucrase in order to remove antibiotic resistance genes recombined in the chromosomes.


The prepared DNA fragment was transferred to lactate dehydrogenase (ldhA) and pyruvate-formate lyase (pflB) deleted Klebsiella pneumoniae GSC123 ΔldhA ΔpflB (Kp ΔldhA ΔpflB) through electroporation (25 μF, 200 Ω, 18 kV/cm), in which the target gene was deleted by a homologous recombination mechanism indigenous to the microorganism.










TABLE 4





SEQ



ID NO
Sequence







25
ATGAAAAAAGTCGCACTTGTTACCGGCGCCGGCCAGGGGATTGGTAAAGCTATCGCCCTTCGTCTGG



TGAAGGATGGATTTGCCGTGGCCATTGCCGATTATAACGACGCCACCGCCAAAGCGGTCGCCTCCGA



AATCAACCAGGCCGGCGGCCGCGCCATGGCGGTGAAAGTGGATGTTTCTGACCGCGACCAGGTATTT



GCCGCCGTCGAACAGGCGCGCAAAACGCTGGGCGGCTTCGACGTCATCGTCAACAACGCCGGCGTGG



CGCCATCCACGCCGATCGAGTCCATTACCCCGGAGATTGTCGACAAAGTCTACAACATCAACGTCAA



AGGGGTGATCTGGGGCATCCAGGCAGCGGTCGAGGCCTTTAAGAAAGAGGGTCACGGCGGGAAAATC



ATCAACGCCTGTTCCCAGGCCGGCCACGTCGGCAACCCGGAGCTGGCGGTATATAGCTCGAGTAAAT



TCGCGGTACGCGGCTTAACCCAGACCGCCGCTCGCGACCTCGCGCCGCTGGGCATCACGGTCAACGG



CTACTGCCCGGGGATTGTCAAAACGCCGATGTGGGCCGAAATTGACCGCCAGGTGTCCGAAGCCGCC



GGTAAACCGCTGGGCTACGGTACCGCCGAGTTCGCCAAACGCATCACCCTCGGCCGCCTGTCCGAGC



CGGAAGATGTCGCCGCCTGCGTCTCCTATCTTGCCAGCCCGGATTCTGATTATATGACCGGTCAGTC



ATTGCTGATCGACGGCGGCATGGTGTTTAAC





26
GCTGCGTATCGTTCGCGCCATGCAGGACATCGTCAACAGCGACGTCACGTTGACCGTGGACATGGGCA



GCTTCCATATCTGGATTGCCCGCTACCTGTACAGCTTCCGCGCCCGCCAGGTGATGATCTCCAACGGC



CAGCAGACCATGGGCGTCGCCCTGCCCTGGGCCATCGGCGCCTGGCTGGTCAATCCTGAGCGCAAAGT



GGTCTCCGTCTCCGGCGACGGCGGCTTCCTGCAGTCGAGCATGGAGCTGGAGACCGCCGTCCGCCTGA



AAGCCAACGTGCTGCACCTGATCTGGGTCGATAACGGCTACAACATGGTGGCCATTCAGGAAGAGAAA



AAATACCAGCGCCTGTCCGGCGTCGAGTTTGGGCCGATGGATTTTAAAGCCTATGCCGAATCCTTCGG



CGCGAAAGGGTTTGCCGTGGAAAGCGCCGAGGCGCTGGAGCCGACCCTGCGCGCGGCGATGGACGTCG



ACGGCCCGGCGGTAGTGGCCATCCCGGTGGATTATCGCGATAACCCGCTGCTGATGGGCCAGCTGCAT



CTGAGTCAGATTCTGTAAGTCATCACAATAAGGAAAGAAAAATGAAAAAAGTCGCACTTGTTACCGGC



GCCATGACCGGTCAGTCATTGCTGATCG





27
Kp budC_FP1-TCTAGAGGATCCGCTGCGTATCGTTCGCGCCATGC





28
Kp_budC_RP1-CGATCAGCAATGACTGACCGGTCATGGCGCCGGTAACAAGTGCGACTT





29
AAGTCGCACTTGTTACCGGCGCCATGACCGGTCAGTCATTGCTGATCGACGGCGGCATGGTGTTTAAC



TAATAAAAAAAAGCTCTGACATGGCTTGCCCCTGCTTTCGCGCAGGGGCTTTTTTTGGTTTGGGTGTA



AGTGTAAGCATCCCGGAGAAACGAAGCATCGATATTTGAGGGCTTCTGGCGTTCTCACTTACGCTTCG



ACACGACGTGGGCAATCTGACTGGGATGAAGGTCTGATTTGAGCGAGGAGCGGAAGTTCGGGAACGGG



ATAGCTCTGACCTGCCACCAGGATTAGATACAACCGTCAGTTAGTAAGGTCGGTTTGTTTACCTTCAC



ATTTTCCATTTCGCCACCGTGCTGCAAACTCTGATGGCGTCTGATAATTCAGTGCTGAATGTGGACGA



CACTCGTTATAATCCTGCCGCCAGTCATTAATGATTTTCCTTGCGTGAACGATATCGCTGAACCAGTG



CTCATTCAGGCATTCATCGCGAAATCGTCCGTTAAAGCTCTCAATAAATCCGTTCTGCGTTGGCTTGC



CCGGCTGGATTAAGCGCAACTCAACACCATGCTCAAAGGCCCATTGATCCAGTGCACGGCAAGTGAAC



TCCGGCCCCTGG





30
Kp_budC_FP2-AAGTCGCACTTGTTACCGGCGCCATGACCGGTCAGTCATTGCTGATCG





31
Kp_budC_RP2-GCGGCCGCCCAGGGGCCGGAGTTCACTTGCC





32
GCTGCGTATCGTTCGCGCCATGCAGGACATCGTCAACAGCGACGTCACGTTGACCGTGGACATGGGCA



GCTTCCATATCTGGATTGCCCGCTACCTGTACAGCTTCCGCGCCCGCCAGGTGATGATCTCCAACGGC



CAGCAGACCATGGGCGTCGCCCTGCCCTGGGCCATCGGCGCCTGGCTGGTCAATCCTGAGCGCAAAGT



GGTCTCCGTCTCCGGCGACGGCGGCTTCCTGCAGTCGAGCATGGAGCTGGAGACCGCCGTCCGCCTGA



AAGCCAACGTGCTGCACCTGATCTGGGTCGATAACGGCTACAACATGGTGGCCATTCAGGAAGAGAAA



AAATACCAGCGCCTGTCCGGCGTCGAGTTTGGGCCGATGGATTTTAAAGCCTATGCCGAATCCTTCGG



CGCGAAAGGGTTTGCCGTGGAAAGCGCCGAGGCGCTGGAGCCGACCCTGCGCGCGGCGATGGACGTCG



ACGGCCCGGCGGTAGTGGCCATCCCGGTGGATTATCGCGATAACCCGCTGCTGATGGGCCAGCTGCAT



CTGAGTCAGATTCTGTAAGTCATCACAATAAGGAAAGAAAAATGAAAAAAGTCGCACTTGTTACCGGC



GCCATGACCGGTCAGTCATTGCTGATCGACGGCGGCATGGTGTTTAACTAATAAAAAAAAGCTCTGAC



ATGGCTTGCCCCTGCTTTCGCGCAGGGGCTTTTTTTGGTTTGGGTGTAAGTGTAAGCATCCCGGAGAA



ACGAAGCATCGATATTTGAGGGCTTCTGGCGTTCTCACTTACGCTTCGACACGACGTGGGCAATCTGA



CTGGGATGAAGGTCTGATTTGAGCGAGGAGCGGAAGTTCGGGAACGGGATAGCTCTGACCTGCCACCA



GGATTAGATACAACCGTCAGTTAGTAAGGTCGGTTTGTTTACCTTCACATTTTCCATTTCGCCACCGT



GCTGCAAACTCTGATGGCGTCTGATAATTCAGTGCTGAATGTGGACGACACTCGTTATAATCCTGCCG



CCAGTCATTAATGATTTTCCTTGCGTGAACGATATCGCTGAACCAGTGCTCATTCAGGCATTCATCGC



GAAATCGTCCGTTAAAGCTCTCAATAAATCCGTTCTGCGTTGGCTTGCCCGGCTGGATTAAGCGCAAC



TCAACACCATGCTCAAAGGCCCATTGATCCAGTGCACGGCAAGTGAACTCCGGCCCCTGG









Strain of Klebsiella pneumoniae GSC123 ΔldhA ΔpflB ΔbudRABC (Kp ΔldhA ΔpflB ΔbudRABC)


A strain of Klebsiella pneumoniae GSC123 ΔldhA ΔpflB ΔbudRABC (Kp ΔldhA ΔpflB ΔbudRABC) in which genes (budRABC) constituting a 2,3-butanediol operon, namely, a gene for transcription activation factors (budR), a gene for α-acetolactate decarboxylase (budA), a gene for α-acetolactate synthase (budB), and a gene for acetoin reductase (budC) were further deleted was constructed as follows. Firstly, in order to clone a gene for a 2,3-butanediol operon of Klebsiella pneumoniae, a homologous region 1 (SEQ ID NO: 34) of a target gene budRABC (SEQ ID NO: 33) was amplified using primers of SEQ ID NOs: 35 and 36 by polymerase chain reaction (PCR). Further, a homologous region 2 (SEQ ID NO: 37) was amplified using primers of SEQ ID NOs: 38 and 39 by PCR. Next, the homologous regions 1 and 2 were amplified using the same as templates for PCR, thereby obtaining a completed DNA fragment (SEQ ID NO: 40) in which the homologous regions 1 and 2 were ligated (Table 5).


The completed DNA fragment may include antibiotic resistance genes and the like in order to enhance the probability of recombination of target genes. Further, the completed DNA fragment may include a sacB gene encoding levansucrase in order to remove antibiotic resistance genes recombined in the chromosomes.


The prepared DNA fragment was transferred to lactate dehydrogenase (ldhA) and pyruvate-formate lyase (pflB) deleted Klebsiella pneumoniae GSC123 ΔldhA ΔpflB (Kp ΔldhA ΔpflB) through electroporation (25 μF, 200 Ω, 18 kV/cm) in which the target gene was deleted by a homologous recombination mechanism indigenous to the microorganism.










TABLE 5





SEQ



ID NO
Sequence







33
GAACATCGCCAGAAAGCGTTTCACCGTACGCGAGCGCTCGAAGCGCCGCCAGGCGATGGCGATATC



GGTCTTCAGCGGCGCCCCGCTAAGCGGGTGATAGCTGACGTTCGGCTGCTGGATGCAGGTCATCGA



CTGCGGAACCAGCGCGAAGCCGAAGCCAGCATTGACCATGCTCAGCGACGACGAAATTTGCGACGA



CTGCCAGGCGCGCTCCATATCGATCCCGGCGCGCAGACAGCTGTTGTACACCAGCTCATACAGCCC



GGGGGCCACCTCCCGCGGGAAGAGGATCGGCGCCACGTCGCGCAGCTGCTCCAGGGCCAGGGTCGG



CTGCGTCGCCAGCGGGTTATCGCGCGGCAGCGCGATAACCATCGGCTCCTCATCGATAATCCGCAG



ATTAAAGGCTTTACTGCTCTCGCACGGCAGGCGGACGAAGGCGATATCCAGCTCGGCCTCGCTCAG



GGCGGTCATCAGATTGGCCATATTGTCTTCCATCTGGTGCAGGGTCACCCCGGGGTGGTCGAGCTG



AAAACGGTGCAGCAGCGTGAAGATTTGCGGATGGAAAGCATCAGAACTGGTAATGCCTAGCGACAG



GCTGCCGTTCATCCCGCGCGCAATGCCCTTGGCCTTCTCCAGCGCCGCATCGCTCATGGCGAGGAT



CTGGCGGGCATCCTCATAGAAAGACTCTCCCGCTTCCGTCAGCTCCACCCCGCGGGTTAAACGCCG



GAACAGCGGGGTCCCCACCTCGCGCTCAAGCCGCTGAATTTGCTGACTTAACGGAGGCTGTGAAAT



ACCCAGCTCCTTGGCGGCCTGGGTGAAGTGCCGCGTCCTGGCGACGGCGACAAAATAGCGAAGATA



ACGAAGTTCCATATCGAAAACGTCTCAAACCAGCATGGTTTCTATATTGGAACTGTGAGCTGAATC



GGGTCAACATTTATTTAACCTTTCTTATATTTGTTGAACGAGGAAGTGGTATATGAATCATTCTGC



TGAATGCACCTGCGAAGAGAGTCTATGCGAAACCCTGCGGGCGTTTTCCGCGCAGCATCCCGAGAG



CGTGCTCTATCAGACATCGCTCATGAGCGCCCTGCTGAGCGGGGTTTACGAAGGCAGCACCACCAT



CGCCGACCTGCTGAAACACGGCGATTTCGGCCTCGGCACCTTTAATGAGCTGGACGGGGAGCTGAT



CGCCTTCAGCAGTCAGGTCTATCAGCTGCGCGCCGACGGCAGCGCGCGCAAAGCCCAGCCGGAGCA



GAAAACGCCGTTCGCGGTGATGACCTGGTTCCAGCCGCAGTACCGGAAAACCTTTGACCATCCGGT



GAGCCGCCAGCAGCTGCACGAGGTGATCGACCAGCAAATCCCCTCTGACAACCTGTTCTGCGCCCT



GCGCATCGACGGCCATTTCCGCCATGCCCATACCCGCACCGTGCCGCGCCAGACGCCGCCGTACCG



GGCGATGACCGACGTACTCGACGATCAGCCGGTGTTCCGCTTTAACCAGCGCGAAGGGGTGCTGGT



CGGCTTCCGGACCCCGCAGCATATGCAGGGGATCAACGTCGCCGGGTATCACGAGCATTTTATTAC



CGATGACCGCAAAGGCGGCGGTCACCTGCTGGATTACCAGCTCGACCACGGGGTGCTGACCTTCGG



CGAAATTCACAAGCTGATGATCGACCTGCCCGCCGACAGCGCGTTCCTGCAGGCTAATCTGCATCC



CGATAATCTCGATGCCGCCATCCGTTCCGTAGAAAGTTAAGGGGGTCACATGGACAAACAGTATCC



GGTACGCCAGTGGGCGCACGGCGCCGATCTCGTCGTCAGTCAGCTGGAAGCACAGGGGGTACGCCA



GGTGTTCGGCATCCCCGGCGCCAAAATCGACAAGGTCTTCGATTCACTGCTGGATTCCTCCATTCG



CATTATTCCGGTACGCCACGAAGCCAACGCCGCATTTATGGCCGCCGCCGTCGGACGTATTACCGG



CAAAGCGGGCGTGGCGCTGGTCACCTCCGGTCCGGGTTGTTCTAACCTGATCACCGGCATGGCCAC



CGCGAACAGCGAAGGCGACCCGGTGGTGGCCCTGGGCGGCGCGGTAAAACGCGCCGATAAAGCCAA



ACAGGTCCACCAGAGTATGGATACGGTGGCGATGTTCAGCCCGGTCACCAAATACGCCGTCGAGGT



GACGGCGCCGGATGCGCTGGCGGAAGTGGTCTCCAACGCCTTCCGCGCCGCCGAGCAGGGCCGGCC



GGGCAGCGCGTTCGTTAGCCTGCCGCAGGATGTGGTCGATGGCCCGGTCAGCGGCAAAGTACTGCC



GGCCAGCGGGGCCCCGCAGATGGGCGCCGCGCCGGATGATGCCATCGACCAGGTGGCGAAGCTTAT



CGCCCAGGCGAAGAACCCGATCTTCCTGCTCGGCCTGATGGCCAGCCAGCCGGAAAACAGCAAGGC



GCTGCGCCGTTTGCTGGAGACCAGCCATATTCCAGTCACCAGCACCTATCAGGCCGCCGGAGCGGT



GAATCAGGATAACTTCTCTCGCTTCGCCGGCCGGGTTGGGCTGTTTAACAACCAGGCCGGGGACCG



TCTGCTGCAGCTTGCCGACCTGGTGATCTGCATCGGCTACAGCCCGGTGGAATACGAACCGGCGAT



GTGGAACAGCGGCAACGCGACGCTGGTGCACATCGACGTGCTGCCCGCCTATGAAGAGCGCAACTA



CACCCCGGATGTCGAGCTGGTAGGCGATATCGCCGGCACTCTCAACAAGCTGGCGCAAAATATCGA



TCATCGGCTGGTGCTCTCCCCGCAGGCAGCGGAGATCCTCCGCGACCGCCAGCACCAGCGCGAGCT



GCTGGACCGCCGCGGCGCGCAGCTCAACCAGTTTGCCCTGCATCCGCTGCGTATCGTTCGCGCCAT



GCAGGACATCGTCAACAGCGACGTCACGTTGACCGTGGACATGGGCAGCTTCCATATCTGGATTGC



CCGCTACCTGTACAGCTTCCGCGCCCGCCAGGTGATGATCTCCAACGGCCAGCAGACCATGGGCGT



CGCCCTGCCCTGGGCCATCGGCGCCTGGCTGGTCAATCCTGAGCGCAAAGTGGTCTCCGTCTCCGG



CGACGGCGGCTTCCTGCAGTCGAGCATGGAGCTGGAGACCGCCGTCCGCCTGAAAGCCAACGTGCT



GCACCTGATCTGGGTCGATAACGGCTACAACATGGTGGCCATTCAGGAAGAGAAAAAATACCAGCG



CCTGTCCGGCGTCGAGTTTGGGCCGATGGATTTTAAAGCCTATGCCGAATCCTTCGGCGCGAAAGG



GTTTGCCGTGGAAAGCGCCGAGGCGCTGGAGCCGACCCTGCGCGCGGCGATGGACGTCGACGGCCC



GGCGGTAGTGGCCATCCCGGTGGATTATCGCGATAACCCGCTGCTGATGGGCCAGCTGCATCTGAG



TCAGATTCTGTAAGTCATCACAATAAGGAAAGAAAAATGAAAAAAGTCGCACTTGTTACCGGCGCC



GGCCAGGGGATTGGTAAAGCTATCGCCCTTCGTCTGGTGAAGGATGGATTTGCCGTGGCCATTGCC



GATTATAACGACGCCACCGCCAAAGCGGTCGCCTCCGAAATCAACCAGGCCGGCGGCCGCGCCATG



GCGGTGAAAGTGGATGTTTCTGACCGCGACCAGGTATTTGCCGCCGTCGAACAGGCGCGCAAAACG



CTGGGCGGCTTCGACGTCATCGTCAACAACGCCGGCGTGGCGCCATCCACGCCGATCGAGTCCATT



ACCCCGGAGATTGTCGACAAAGTCTACAACATCAACGTCAAAGGGGTGATCTGGGGCATCCAGGCA



GCGGTCGAGGCCTTTAAGAAAGAGGGTCACGGCGGGAAAATCATCAACGCCTGTTCCCAGGCCGGC



CACGTCGGCAACCCGGAGCTGGCGGTATATAGCTCGAGTAAATTCGCGGTACGCGGCTTAACCCAG



ACCGCCGCTCGCGACCTCGCGCCGCTGGGCATCACGGTCAACGGCTACTGCCCGGGGATTGTCAAA



ACGCCGATGTGGGCCGAAATTGACCGCCAGGTGTCCGAAGCCGCCGGTAAACCGCTGGGCTACGGT



ACCGCCGAGTTCGCCAAACGCATCACCCTCGGCCGCCTGTCCGAGCCGGAAGATGTCGCCGCCTGC



GTCTCCTATCTTGCCAGCCCGGATTCTGATTATATGACCGGTCAGTCATTGCTGATCGACGGCGGC



ATGGTGTTTAAC





34
CCAGCTGGTGCTCAATGGCTTCGGCGACAGCAGCCACGCCCGGGCTGAAGTCGCCGCGCTGGGCAA



GATCCCCGGCTATCACGACGCCGACCTGCGCGACGTCGGGCAGATCGAGGCGATGATGCGCTATGC



CGAAAGCACCTTCGGCGGCGTCGATATCGTGATCAATAACGCCGGCATCCAGCACGTGGCCCCGGT



GGAGCAGTTCCCGGTGGACAAATGGAACGATATTCTCGCCATCAATCTCTCCAGCGTCTTCCACAC



CACCCGCCTGGCGCTGCCGGGTATGCGCCAGCGCAACTGGGGGCGCATCATCAACATTGCCTCAGT



GCATGGCCTGGTGGCGTCGAAAGAGAAATCGGCCTACGTCGCCGCCAAGCACGCGGTGGTCGGGCT



GACCAAAACCGTGGCCCTGGAAACCGCGCGCAGCGGTATCACCTGCAACGCCATCTGCCCTGGCTG



GGTGCTAACCCCGCTGGTGCAGCAGCAGATCGACAAACGCATCGCCGAGGGGGTCGACCCGGAGCA



GGCCAGCGCCCAGCTGCTGGCGGAAAAACAGCCCTCCGGGGAGTTTGTCACCCCGCAGCAGCTGGG



CGAAATGGCGCTGTTTCTGTGCAGCGATGCCGCCGCCCAGGTGCGCGGCGCCGCATGGAACATGGA



TGGCGGCTGGGTGGCGCAGTAAGCCGCTGGCGCCGCGAAGA





35
Kp_budRABC_FP1-TAGAGGATCCCCAGCTGGTGCTCAATGGCTTCG





36
Kp_budRABC_RP1-CAAGCCATGTCAGAGCTTTTTTTTATCTTCGCGGCGCCAGCGGC





37
TAAAAAAAAGCTCTGACATGGCTTGCCCCTGCTTTCGCGCAGGGGCTTTTTTTGGTTTGGGTGTAA



GTGTAAGCATCCCGGAGAAACGAAGCATCGATATTTGAGGGCTTCTGGCGTTCTCACTTACGCTTC



GACACGACGTGGGCAATCTGACTGGGATGAAGGTCTGATTTGAGCGAGGAGCGGAAGTTCGGGAAC



GGGATAGCTCTGACCTGCCACCAGGATTAGATACAACCGTCAGTTAGTAAGGTCGGTTTGTTTACC



TTCACATTTTCCATTTCGCCACCGTGCTGCAAACTCTGATGGCGTCTGATAATTCAGTGCTGAATG



TGGACGACACTCGTTATAATCCTGCCGCCAGTCATTAATGATTTTCCTTGCGTGAACGATATCGCT



GAACCAGTGCTCATTCAGGCATTCATCGCGAAATCGTCCGTTAAAGCTCTCAATAAATCCGTTCTG



CGTTGGCTTGCCCGGCTGGATTAAGCGCAACTCAACACCATGCTCAAAGGCCCATTGATCCAGTGC



ACGGCAAGTGAACTCCGGCCCCTGGTCAGTTCTTATCGTCGCCGGATAGCCTCGAAACAGTGCAAT



GCTGTCCAGAATACGCGAGACCTGAACGCCTGAAATCCCAAAGGCAACAGTGACCGTCAGGCATTC



CTTTGTGAAATCATCGACGCAGGTAAGACACTTGATCCTGC





38
Kp_budRABC_FP2-GCCGCTGGCGCCGCGAAGATAAAAAAAAGCTCTGACATGGCTTG





39
Kp_budRABC_RP2-GATCGCGGCCGCGCAGGATCAAGTGTCTTACCTGCG





40
CCAGCTGGTGCTCAATGGCTTCGGCGACAGCAGCCACGCCCGGGCTGAAGTCGCCGCGCTGGGCAA



GATCCCCGGCTATCACGACGCCGACCTGCGCGACGTCGGGCAGATCGAGGCGATGATGCGCTATGC



CGAAAGCACCTTCGGCGGCGTCGATATCGTGATCAATAACGCCGGCATCCAGCACGTGGCCCCGGT



GGAGCAGTTCCCGGTGGACAAATGGAACGATATTCTCGCCATCAATCTCTCCAGCGTCTTCCACAC



CACCCGCCTGGCGCTGCCGGGTATGCGCCAGCGCAACTGGGGGCGCATCATCAACATTGCCTCAGT



GCATGGCCTGGTGGCGTCGAAAGAGAAATCGGCCTACGTCGCCGCCAAGCACGCGGTGGTCGGGCT



GACCAAAACCGTGGCCCTGGAAACCGCGCGCAGCGGTATCACCTGCAACGCCATCTGCCCTGGCTG



GGTGCTAACCCCGCTGGTGCAGCAGCAGATCGACAAACGCATCGCCGAGGGGGTCGACCCGGAGCA



GGCCAGCGCCCAGCTGCTGGCGGAAAAACAGCCCTCCGGGGAGTTTGTCACCCCGCAGCAGCTGGG



CGAAATGGCGCTGTTTCTGTGCAGCGATGCCGCCGCCCAGGTGCGCGGCGCCGCATGGAACATGGA



TGGCGGCTGGGTGGCGCAGTAAGCCGCTGGCGCCGCGAAGATAAAAAAAAGCTCTGACATGGCTTG



CCCCTGCTTTCGCGCAGGGGCTTTTTTTGGTTTGGGTGTAAGTGTAAGCATCCCGGAGAAACGAAG



CATCGATATTTGAGGGCTTCTGGCGTTCTCACTTACGCTTCGACACGACGTGGGCAATCTGACTGG



GATGAAGGTCTGATTTGAGCGAGGAGCGGAAGTTCGGGAACGGGATAGCTCTGACCTGCCACCAGG



ATTAGATACAACCGTCAGTTAGTAAGGTCGGTTTGTTTACCTTCACATTTTCCATTTCGCCACCGT



GCTGCAAACTCTGATGGCGTCTGATAATTCAGTGCTGAATGTGGACGACACTCGTTATAATCCTGC



CGCCAGTCATTAATGATTTTCCTTGCGTGAACGATATCGCTGAACCAGTGCTCATTCAGGCATTCA



TCGCGAAATCGTCCGTTAAAGCTCTCAATAAATCCGTTCTGCGTTGGCTTGCCCGGCTGGATTAAG



CGCAACTCAACACCATGCTCAAAGGCCCATTGATCCAGTGCACGGCAAGTGAACTCCGGCCCCTGG



TCAGTTCTTATCGTCGCCGGATAGCCTCGAAACAGTGCAATGCTGTCCAGAATACGCGAGACCTGA



ACGCCTGAAATCCCAAAGGCAACAGTGACCGTCAGGCATTCCTTTGTGAAATCATCGACGCAGGTA



AGACACTTGATCCTGC









The genotypes of recombinant strains of Klebsiella pneumoniae constructed for the present invention are as summarized in Table 6.










TABLE 6





Recombinant strains
Description







KpΔldhA

Klebsiella pneumoniae GSC123 in which a gene




for lactate dehydrogenase (ldhA) is deleted


KpΔldhA ΔpflB

Klebsiella pneumoniae GSC123 in which a gene




for lactate dehydrogenase (ldhA) and a gene for



pyruvate-formate lyase (pflB) are deleted


KpΔldhA ΔpflBΔbudA

Klebsiella pneumoniae GSC123 in which a gene




for lactate dehydrogenase (ldhA), a gene for



pyruvate-formate lyase (pflB) and a gene for α-



acetolactate decarboxylase (budA) are deleted


KpΔldhA ΔpflB ΔbudC

Klebsiella pneumoniae GSC123 in which a gene




for lactate dehydrogenase (ldhA), a gene for



pyruvate-formate lyase (pflB) and a gene for



acetoin reductase (budC) are deleted


KpΔldhA ΔpflB ΔbudRABC

Klebsiella pneumoniae GSC123 in which a gene




for lactate dehydrogenase (ldhA), a gene for



pyruvate-formate lyase (pflB) and a gene for 2,3-



butanediol operon (budRABC) are deleted









Experimental Example 2
Production of 1,3-Propanediol

The recombinant strains constructed in Experimental Example 1 were cultured, thereby producing 1,3-propanediol. As a control for comparison, a wild type Klebsiella pneumoniae GSC123 (Kp wt) was used.


250 ml of a complex medium was inoculated with each recombinant strain, followed by culturing at 37° C. for 16 hours. 3 L of complex medium was inoculated with the resulting culture solution, and subjected to fermentation. The fermentation conditions were as follows: microaerobic conditions (aeration rate of 1 vvm, stirring speed of 200 rpm), 46 g/L of glycerol (500 mM glycerol), pH 7.0, and cultivation temperature of 37° C. While fermenting, ammonia (NH3) was used in order to adjust pH. Samples were taken while fermenting using the recombinant Klebsiella. The growth rate was determined by measuring OD600 (optical density) of the sampled specimens. The sampled specimens were subjected to centrifugation at 13,000 rpm for 10 minutes, followed by assaying the concentration of metabolites and 1,3-propanediol in the supernatant by high performance liquid chromatography (HPLC).


As a result, the recombinant strain (Kp ΔldhA) in which ldhA was deleted produced a remarkably reduced amount of lactate which was a major byproduct of the wild type Klebsiella pneumoniae (Kp wt). However, the strain produced an increased amount of other byproducts such as formic acid, 2,3-butanediol, ethanol, acetic acid, and succinic acid, which in turn decreased production concentration and production yield of final 1,3-propanediol. In addition, the recombinant strain (KpΔldhA ΔpflB) in which both ldhA and NW were deleted at the same time showed greatly reduced byproducts except 2,3-butanediol while improved production concentration and production yield of 1,3-propanediol as compared to the wild type Klebsiella pneumoniae GSC123 (Kp wt) or the ldhA deleted Klebsiella pneumoniae Kp ΔldhA. However, concentration of 2,3-butanediol was also greatly increased.


As compared to recombinant strains, namely, Kp ΔldhA ΔpflB ΔbudA or Kp ΔldhA ΔpflB ΔbudC in which a part of enzyme family related to 2,3-butanediol synthesis was deleted, the recombinant strain Kp ΔldhA ΔpflB ΔbudRABC in which the entire operon of 2,3-butanediol was deleted exhibited the highest 1,3-propanediol concentration and the lowest byproduct production. In view of production yield and productivity, the recombinant strain Kp ΔldhA ΔpflB ΔbudRABC showed the best results. Meanwhile, the recombinant strain Kp ΔldhA ΔpflB ΔbudA in which budA was deleted in order to reduce accumulation of 2,3-butanediol and the recombinant strain Kp ΔldhA ΔpflB ΔbudRABC in which budRABC were deleted in order to reduce accumulation of 2,3-butanediol were found to be effective. However, the recombinant strain Kp ΔldhA ΔpflB ΔbudC in which budC was deleted was found to have no effect. The recombinant strain Kp ΔldhA ΔpflB ΔbudA in which budA was deleted showed poor fermentation performance, exhibiting residual glycerol after 24 hours of fermentation which was close to the end point of fermentation. The recombinant strain Kp ΔldhA ΔpflB ΔbudRABC in which budRABC was deleted showed fermentation patterns that were similar to those of parent strain Kp ΔldhA ΔpflB, thereby not producing 2,3-butanediol (Tables 7 and 8, FIGS. 3 to 6).











TABLE 7









Fermentation products (g/L)















1,3-

Formic
2,3-

Acetic
Succinic


Strains
propanediol
Lactate
acid
butanediol
Ethanol
acid
acid

















Kp wt
17.3
11.5
6.1
0.0
4.7
3.8
1.8


Kp ΔldhA
16.3
0.4
8.4
2.6
6.2
4.6
2.4


Kp ΔldhA ΔpflB
20.0
0.3
0.0
7.0
1.4
0.4
2.2


Kp ΔldhA ΔpflB
17.7
0.0
0.7
0.0
1.5
0.2
0.1


ΔbudA


Kp ΔldhA ΔpflB
19.4
0.7
0.0
7.9
1.2
0.1
0.9


ΔbudC


KpΔldhA ΔpflB
22.1
0.3
0.0
0.0
1.7
0.1
0.0


ΔbudRABC

















TABLE 8








Production result of 1,3-propanediol












Final concentration
Productivity


Strains
Yield (g/g)
(g/L)
(g/L/hr)





Kp wt
0.36
17.3
1.7


Kp ΔldhA
0.33
16.3
1.6


Kp ΔldhA ΔpflB
0.41
20.0
1.4


Kp ΔldhA ΔpflB ΔbudA
0.36
17.7
0.7


Kp ΔldhA ΔpflB ΔbudC
0.38
19.4
0.8


KpΔldhAΔpflB ΔbudRABC
0.47
22.1
1.6









INDUSTRIAL APPLICABILITY

The present invention relates to a recombinant microorganism for producing 1,3-propanediol, wherein a pathway for converting pyruvate into 2,3-butanediol is suppressed in a microorganism having pyruvate and acetyl-CoA biosynthetic pathways. In addition, the present invention relates to a method for producing 1,3-propanediol using the recombinant microorganism.


[Brief Description of the Sequences Provided in the Sequence]


SEQ ID NO: 1 is a nucleotide sequence of ldhA gene. SEQ ID NO: 2 is a homologous region 1 of ldhA gene, and SEQ ID NOs: 3 and 4 are primers for amplification of it. SEQ ID NO: 5 is a homologous region 2 of ldhA gene, and SEQ ID NOs: 6 and 7 are primers for PCR amplification of it. SEQ ID NO: 8 is a DNA fragment in which the homologous regions 1 and 2 of ldhA gene are ligated.


SEQ ID NO: 9 is a nucleotide sequence of pflB gene. SEQ ID NO: 10 is a homologous region 1 of pflB gene, and SEQ ID NOs: 11 and 12 are primers for amplification of it. SEQ ID NO: 13 is a homologous region 2 of pflB gene, and SEQ ID NOs: 14 and 15 are primers for PCR amplification of it. SEQ ID NO: 16 is a DNA fragment in which the homologous regions 1 and 2 of pflB gene are ligated.


SEQ ID NO: 17 is a nucleotide sequence of budA gene. SEQ ID NO: 18 is a homologous region 1 of budA gene, and SEQ ID NOs: 19 and 20 are primers for amplification of it. SEQ ID NO: 21 is a homologous region 2 of budA gene, and SEQ ID NOs: 22 and 23 are primers for PCR amplification of it. SEQ ID NO: 24 is a DNA fragment in which the homologous regions 1 and 2 of budA gene are ligated.


SEQ ID NO: 25 is a nucleotide sequence of budC gene. SEQ ID NO: 26 is a homologous region 1 of budC gene, and SEQ ID NOs: 27 and 28 are primers for amplification of it. SEQ ID NO: 29 is a homologous region 2 of budC gene, and SEQ ID NOs: 30 and 31 are primers for PCR amplification of it. SEQ ID NO: 32 is a DNA fragment in which the homologous regions 1 and 2 of budC gene are ligated.


SEQ ID NO: 33 is a nucleotide sequence of budRABC gene. SEQ ID NO: 34 is a homologous region 1 of budRABC gene, and SEQ ID NOs: 35 and 36 are primers for amplification of it. SEQ ID NO: 37 is a homologous region 2 of budRABC gene, and SEQ ID NOs: 38 and 39 are primers for PCR amplification of it. SEQ ID NO: 40 is a DNA fragment in which the homologous regions 1 and 2 of budRABC gene are ligated.

Claims
  • 1. A recombinant microorganism for producing 1,3-propanediol, wherein a pathway for converting pyruvate into 2,3-butanediol is suppressed in a microorganism having pyruvate and acetyl-CoA biosynthetic pathways.
  • 2. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein the pathway for converting pyruvate into 2,3-butanediol is suppressed by suppressing at least one of α-acetolactate decarboxylase, α-acetolactate synthase, and acetoin reductase.
  • 3. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein the pathway for converting pyruvate into 2,3-butanediol is suppressed by suppressing α-acetolactate decarboxylase, α-acetolactate synthase, and acetoin reductase.
  • 4. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein a gene having a nucleotide sequence set forth in SEQ ID NO: 33 is suppressed.
  • 5. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein production of formic acid is suppressed.
  • 6. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein production of 2,3-butanediol is suppressed.
  • 7. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein production of succinic acid is suppressed.
  • 8. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein a pathway for converting pyruvate into lactate is further suppressed.
  • 9. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein lactate dehydrogenase is further suppressed.
  • 10. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein a pathway for converting pyruvate into formic acid is further suppressed.
  • 11. The recombinant microorganism for producing 1,3-propanediol according to claim 1, wherein pyruvate formate lyase is further suppressed. culturing the recombinant microorganism
  • 12. The recombinant microorganism for producing 1,3-propanediol according to claim 8, wherein a pathway for converting pyruvate into formic acid is further suppressed.
  • 13. The recombinant microorganism for producing 1,3-propanediol according to claim 8, wherein pyruvate formate lyase is further suppressed.
  • 14. A method for producing 1,3-propanediol, comprising: culturing the recombinant microorganism according to claim 1; andharvesting 1,3-propanediol from the culture solution.
  • 15. A method for producing 1,3-propanediol, comprising: culturing the recombinant microorganism according to claim 2; and harvesting 1,3-propanediol from the culture solution.
Priority Claims (1)
Number Date Country Kind
10-2013-0156803 Dec 2013 KR national
PCT Information
Filing Document Filing Date Country Kind
PCT/KR2014/012429 12/16/2014 WO 00