RECOMBINANT POXVIRUS BASED VACCINE AGAINST SARS-CoV-2 VIRUS

Information

  • Patent Application
  • 20210260182
  • Publication Number
    20210260182
  • Date Filed
    February 26, 2021
    3 years ago
  • Date Published
    August 26, 2021
    3 years ago
Abstract
The invention relates in various aspects to a recombinant poxvirus comprising a nucleic acid encoding a SARS-CoV-2 virus protein, methods for producing such viruses and the use of such viruses. The recombinant poxviruses are well suited, among others, as protective virus vaccines against SARS-CoV-2 virus.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 26, 2021, is named 104545-0047-101-SL.txt and is 766,062 bytes in size.


BACKGROUND OF THE DISCLOSURE

On Dec. 31, 2019 the Wuhan Health Commission reported a cluster of atypical pneumonia cases in the city of Wuhan, China. The first patients began experiencing symptoms of illness in mid-December 2019. Clinical isolates were found to contain a novel coronavirus. As of Jan. 28, 2020, there are in excess of 4,500 laboratory-confirmed cases, with >100 known deaths. The novel coronavirus is currently referred to as SARS-CoV-2 or 2019-nCoV and is related to Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), although with only approximately 80% similarity at the nucleotide level. Ralph et al. J Infect Dev Ctries. 2020 Jan. 31; 14(1):3-17.


Coronaviruses are enveloped single stranded RNA viruses with positive-sense RNA genomes ranging from 25.5 to ˜32 kb in length. The spherical virus particles range from 70-120 nm in diameter with four structural proteins.


Despite the fact that a much effort is currently being invested into methods of providing vaccines and delivery vectors for SARS-CoV-2, there is still a need to provide additional and improved approaches against this coronavirus.


SUMMARY OF THE DISCLOSURE

An aspect of the present disclosure provides a recombinant poxvirus comprising a nucleic acid encoding a SARS-CoV-2 virus protein, methods for producing such viruses and the use of such viruses, for example, as immunogens, in immunogenic formulations against SARS-CoV-2 virus. Another aspect of the present disclosure provides a recombinant synthetic poxvirus comprising a nucleic acid encoding a SARS-CoV-2 virus protein, methods for producing such viruses and the use of such viruses, for example, as immunogens, in immunogenic formulations against SARS-CoV-2 virus. In some embodiments, the synthetic poxviruses are assembled and replicated from chemically synthesized DNA which are safe, reproducible and free of contaminants. Because chemical genome synthesis is not dependent on a natural template, a plethora of structural and functional modifications of the viral genome are possible. Chemical genome synthesis is particularly useful when a natural template is not available for genetic replication or modification by conventional molecular biology methods.


In one aspect, the disclosure relates to recombinant poxviruses comprising a nucleic acid encoding a SARS-CoV-2 virus protein, wherein the SARS-CoV-2 protein is selected from the group consisting of the spike protein (S), the membrane protein (M) and the nucleocapsid protein (N), or combinations of two or more of said proteins.


In another aspect, the disclosure relates to pharmaceutical compositions comprising the recombinant poxviruses of the disclosure.


In another aspect, the disclosure relates to cells infected with the recombinant poxviruses of the disclosure.


In another aspect, the disclosure relates to methods for selecting a cell that expresses a SARS-CoV-2 virus protein, comprising infecting said cell with the recombinant poxvirus of the disclosure and selecting the infected cell expressing said SARS-CoV-2 virus protein.


In another aspect, the disclosure relates to methods of inducing an immune response against a SARS-CoV-2 virus in a subject in need or at risk therefor, comprising administering to said subject an immunologically effective amount of a recombinant poxvirus of the disclosure.


In another aspect, the disclosure relates to methods of generating the recombinant poxviruses of the disclosure, the methods comprising: (a) infecting a host cell with a poxvirus; (b) transfecting the infected cell of step (a) with a nucleic acid encoding a SARS-CoV-2 virus protein to generate a recombinant poxvirus; and (c) selecting a recombinant poxvirus, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located, upon transfection, in a region of the poxvirus that is not essential for the replication of the poxvirus.





BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the disclosure that are shown in the drawings and various embodiment(s) of this disclosure. It should be understood, however, that the disclosure is not limited to the precise arrangements and instrumentalities shown in the drawings.



FIG. 1. Schematic representation of the linear dsDNA synthetic HPXV (GenBank accession Number KY349117) and synthetic VACV (synVACV) (GenBank accession Number MN974381) genomes. The Thymidine Kinase (TK) gene locus is depicted in orange. The TK gene locus in HPXV is located at genome positions: 92077-92610 with gene ID HPXV095 (SEQ ID NO: 1). The TK gene locus in VACV is located at genome positions: 83823-84344 with gene ID synVACV_105 (SEQ ID NO: 2).



FIG. 2. Schematic representation of the TK gene locus (HPXV095) of HPXV of approximately 4 kb, located between the HPXV094 and HPXV096 flanking regions.



FIG. 3. Sequence alignment of the TK gene locus of synthetic HPXV and synthetic VACV ACAM2000, where it is shown that the nucleotide similarity is around 99%. FIG. 3 refers to SEQ ID NOs: 34-36, respectively, in order of appearance.



FIG. 4. Schematic representation of the linear dsDNA HPXV, showing the generation of the PCR fragment encoding the SARS-CoV-2 expression cassette. The expression cassette is introduced in the TK gene locus of the HPXV genome and comprises the SARS-CoV2 Spike S gene that is operatively linked to a vaccinia virus early and late promoter inserted upstream of the SARS-CoV-2 Spike S gene.



FIG. 5. Schematic representation of the HPXV and VACV, ACAM 2000 rescue viruses and the insertion of the synthesized expression cassette encoding the SARS-CoV-2 Spike S protein by recombination with the left and right recombination flanking arms.



FIG. 6. Schematic representation of the method of generating a recombinant HPXV, which comprises (1) infection of BSC-40 cells with the HPXV expressing yfpgpt cassette in the HPXV095 locus; (2) transfection of the infected cells with the synthesized Expression Cassette 24 hours post infection; (3) Harvest the cell lysate, release progeny virus of HPXV and recombinant HPXV expressing SARS-CoV-2 Spike S protein (rHPXV-SARS S) with repeated cycles rounds of freeze/thaw 48 hours post infection/transfection and (4) selection of cells comprising the rHPXV-SARS S.



FIG. 7. Schematic representation of the selection and purification of a recombinant HPXV comprising SARS-CoV-2 S protein, which comprises (1) previous steps of infection/transfection; (2) the harvest and cell lysis of the cells to release the control HPXV and the rHPXV-SARS S progeny; (3) plate titrations of progeny virus on BSC-40 cells; and (4) look for non-fluorescent plaques with a fluorescent microscope. Virus progeny that have replaced the yfpgpt cassette with SARS-CoV-2 S are non-fluorescent.



FIG. 8. Early, late and overlapping early/late Vaccinia Virus promoters. Core, spacer and initiator (init) are shown. Panel A shows the Early promoter nucleotide sequence (SEQ ID NO: 3); specific nucleotides required for optimal expression are indicated using the 4-base code; noncritical nucleotides are indicated by N; a purine must be present within the init region. Panel B shows the Late promoter nucleotide sequence (SEQ ID NO: 4); the T-run and TAAAT init sequence provide high expression. Panel B shows the synthetic Early/Late promoter nucleotide sequence (SEQ ID NO: 5); the elements of the early and late promoter are indicated above and below the sequence, respectively.



FIG. 9. Nucleotide sequence of variations of the overlapping early/late Vaccinia Virus promoters, comprising different spacers 3′ of the late promoter. Panel A shows a 38-nucleotides spacer (SEQ ID NO: 40; full-length sequence of promoter and spacer recited in SEQ ID NO: 37); Panel B shows a 99-nucleotides spacer (SEQ ID NO: 41; full-length sequence of promoter and spacer recited in SEQ ID NO: 38) and Panel C shows a 160-nucleotides spacer (SEQ ID NO: 42; full-length sequence of promoter and spacer recited in SEQ ID NO: 39).



FIG. 10. Schematic representation of the method of generating a recombinant scHPXV or synVACV comprising a nucleic acid encoding a SARS-CoV-2 S protein, which comprises (1) infection of BSC-40 cells with the rescue HPXV or VACV virus and (2) transfection of the infected BSC-40 cells with a PCR-generated fragment in the TK gene locus, wherein the PCR-generated fragment comprises the engineered SARS-CoV-2 S gene expression cassette. The SARS-CoV-2 S gene contains one or more modifications (at least Y459H is present). The resulting modified S protein is adapted to infect mice. The vaccinia Early Transcription Terminator Signal ETTS (T5NT (SEQ ID NO: 14)) are also removed from the SARS-CoV-2 S gene through coding silent mutagenesis to generate full length transcripts during the early phase of the infection.



FIG. 11. Western blot of SARS-CoV-2 Spike protein expression from BSC-40 cells infected with synVACVΔA2K105yfp-gpt or synVACVΔA2K105SARSCoV2-SPIKE-co::nm (TNX-2200) clones 1.1.1.1.1 or 2.1.1.1.1. “Mock” represents a negative control group with no virus. “Mr” is a set of molecular weight markers in kiloDaltons (kDa). The labels on the right identify various proteins: “S multimer”: the Spike multimer protein; “FL S-G”: the full length glycosylated spike protein; “FL S”: the full length spike protein; “VACV I3”: the single stranded DNA binding 13 protein (an internal control); “SPIKE-co::nm”: a spike protein that is codon optimized and has no marker, indicating there is no YFP-GPT expression.



FIG. 12. Western blot of Spike protein expression from BSC-40 cells infected with synthetic TNX-801, TNX-1800a-1, or TNX-1800b-2. “Mock” represents a negative control group with no virus. “kDa” is kiloDaltons (molecular weight). The labels on the right identify various proteins: “S multimer”: the Spike multimer protein; “FL S-G”: the full length glycosylated spike protein.; “FL S” the full length spike protein; “VACV I3”: the single stranded DNA binding 13 protein (an internal control).



FIG. 13. Schematic of day 7 cutaneous reactions (“takes”) in African Green Monkeys (AGM) vaccinated with a 2.9×106 PFU TNX-801. Panel A shows a female AGM (Animal #: 1F 16986); Panel B shows a female AGM (Animal #: 1F 16994); Panel C shows a male AGM (Animal #: 1M 16975); and Panel D shows a male AGM (Animal #: 1M 16977).



FIG. 14. Schematic of day 7 cutaneous reaction (“takes”) in African Green Monkeys (AGM) vaccinated with 1.06×106 PFU TNX-801. Panel A shows a female AGM (Animal #: 2F 16985); Panel B shows a female AGM (Animal #: 1F 16991); Panel C shows a male AGM (Animal #: 2M 16980); and Panel D shows a male AGM (Animal #: 1M 16983).



FIG. 15. Schematic of day 7 cutaneous reaction (“takes”) in African Green Monkeys (AGM) vaccinated with 2.9×106 PFU TNX-1800b-2. Panel A shows a female AGM (Animal #: 3F 16988); Panel B shows a female AGM (Animal #: 3F 16995); Panel C shows a male AGM (Animal #: 3M 16976); and Panel D shows a male AGM (Animal #: 3M 16982).



FIG. 16. Schematic of day 7 cutaneous reaction (“takes”) in African Green Monkeys (AGM) vaccinated with 1.06×106 PFU TNX-1800b-2. Panel A shows a female AGM (Animal #: 4F 16989); Panel B shows a female AGM (Animal #: 4F 16990); Panel C shows a male AGM (Animal #: 4M 16972); and Panel D shows a male AGM (Animal #: 4M 16973).



FIG. 17. Schematic of day 7 cutaneous reaction (“takes”) in African Green Monkeys (AGM) vaccinated with 0.6×106 PFU TNX-1800a-1. Panel A shows a female AGM (Animal #: 5F 16992); Panel B shows a female AGM (Animal #: 5F 16993); Panel C shows a male AGM (Animal #: 5M 16979); and Panel D shows a male AGM (Animal #: 5M 16981).



FIG. 18. Stained plates showing cytopathic effects in BSC-40, HeLa and HEK 293 cells 48 hours after infection with TNX-801, TNX-1800b-2, TNX-1200, or TNX-2200.



FIGS. 19A, 19B, 19C and 19D. Viral growth curves in BSC-40, HeLa and HEK 293 cells over time. FIG. 19A shows cells infected with TNX-1200; FIG. 19B shows cells infected with TNX-2200; FIG. 19C shows cells infected with TNX-801; and FIG. 19D shows cells infected with TNX-1800b-2.



FIGS. 20A and 20B. Viral growth curves in BSC-40 cells infected with a synthetic horsepox virus (HPXV) over time. FIG. 20A shows viral titer (PFU/mL) measured in cells infected with TNX-801, scHPXVΔ095yfp-gpt, TNX-1800a-1, scHPXVΔ200yfp-gpt, or TNX-1800b-2; FIG. 20B shows fold change from input in infected cells.



FIGS. 21A and 21B. Viral growth curves in BSC-40 cells infected with a synthetic vaccinia virus (VACV) over time. FIG. 21A shows viral titer (PFU/mL) measured in cells infected with TNX-1200, TNX-2200 or synVACVΔA2K105yfp-gpt; FIG. 21B shows fold change from input in infected cells.



FIG. 22. Schematic representation of a linear dsDNA HPXV, showing the generation of a PCR fragment encoding a SARS-CoV-2 expression cassette. The expression cassette is introduced into the TK gene locus of the HPXV genome and comprises a DNA encoding the SARS-CoV2 Spike S gene protein that is operatively linked to a vaccinia virus early and late promoter inserted upstream of the SARS-CoV-2 Spike S DNA. The expression cassette further comprises a 1 kb HPXV left flanking arm (e.g., HPXV092, HPXV093 and HPXV094) and a 1 kb HPXV right flanking arm (e.g., HPXV096).





DETAILED DESCRIPTION OF THE DISCLOSURE
General Techniques

Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclature used in connection with, and techniques of, pharmacology, cell and tissue culture, molecular biology, cell and cancer biology, neurobiology, neurochemistry, virology, immunology, microbiology, genetics and protein and nucleic acid chemistry, described herein, are those well-known and commonly used in the art. In case of conflict, the present specification, including definitions, will control.


The practice of the present disclosure will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry, virology and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as Molecular Cloning: A Laboratory Manual, second edition (Sambrook et al., 1989) Cold Spring Harbor Press; Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1998) Academic Press; Animal Cell Culture (R. I. Freshney, ed., 1987); Introduction to Cell and Tissue Culture (J. P. Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds., 1993-1998) J. Wiley and Sons; Methods in Enzymology (Academic Press, Inc.); Gene Transfer Vectors for Mammalian Cells (J. M. Miller and M. P. Calos, eds., 1987); Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Sambrook and Russell, Molecular Cloning: A Laboratory Manual, 3rd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001); Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N Y (2002); Harlow and Lane Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1998); Coligan et al., Short Protocols in Protein Science, John Wiley & Sons, N Y (2003); Short Protocols in Molecular Biology (Wiley and Sons, 1999).


Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The nomenclatures used in connection with, and the laboratory procedures and techniques of, analytical chemistry, biochemistry, immunology, molecular biology, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well-known and commonly used in the art. Standard techniques are used for chemical syntheses, and chemical analyses.


Throughout this specification and embodiments, the word “comprise,” or variations such as “comprises” or “comprising,” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.


The term “including” is used to mean “including but not limited to.” “Including” and “including but not limited to” are used interchangeably.


Any example(s) following the term “e.g.” or “for example” is not meant to be exhaustive or limiting.


Unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.


The articles “a”, “an” and “the” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element. Reference to “about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. For example, description referring to “about X” includes description of “X.” Numeric ranges are inclusive of the numbers defining the range.


Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein. For example, a stated range of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more, e.g., 1 to 6.1, and ending with a maximum value of 10 or less, e.g., 5.5 to 10.


Exemplary methods and materials are described herein, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present application. The materials, methods, and examples are illustrative only and not intended to be limiting.


Definitions

The following terms, unless otherwise indicated, shall be understood to have the following meanings:


The terms “chimeric” or “engineered” or “modified” (e.g., chimeric poxvirus, engineered polypeptide, modified polypeptide, engineered nucleic acid, modified nucleic acid) or grammatical variations thereof are used interchangeably herein to refer to a non-native sequence that has been manipulated to have one or more changes relative a native sequence.


As used herein, the term “essential gene for replication” or “essential region for replication” refers to those gene(s) or region(s) indispensable for the replication of an organism, and therefore are considered a foundation of life. In the context of a virus, a gene or region is considered essential (i.e. has a role in cell culture) if its deletion results in a decrease in virus titer of greater than 10-fold in either a single or multiple step growth curve. Most of the essential genes are thought to encode proteins that maintain a central metabolism, replicate DNA, translate genes into proteins, maintain a basic cellular structure, and mediate transport processes into and out of the cell. Genes involved in virion production, actin tail formation, and extracellular virion release are typically also considered as essential. Two main strategies have been employed to identify essential genes on a genome-wide basis: directed deletion of genes and random mutagenesis using transposons. In the first case, individual genes (or ORFs) are completely deleted from the genome in a systematic way. In random mutagenesis, transposons are randomly inserted in as many positions in a genome as possible, aiming to inactivate the targeted genes. Insertion mutants that are still able to survive or grow are not in essential genes. (Zhang, R., 2009 & Gerdes, S., 2006).


The term “expression cassette” or “transcription unit”, as used herein, defines a nucleic acid sequence region that contains one or more genes to be transcribed. The nucleotide sequences encoding the to be transcribed gene(s), as well as the polynucleotide sequences containing the regulatory elements contained within an expression cassette, are operably linked to each other. The genes are transcribed from a promoter and transcription is terminated by at least one polyadenylation signal. In some embodiments, each of the one or more genes are transcribed from one promoter. In some embodiments, the one or more genes are transcribed from one single promoter. In that case, the different genes are at least transcriptionally linked. More than one protein or product can be transcribed and expressed from each transcription unit (multicistronic transcription unit). Each transcription unit will comprise the regulatory elements necessary for the transcription and translation of any of the selected sequences that are contained within the unit. Each transcription unit may contain the same or different regulatory elements.


“Homologous,” in all its grammatical forms and spelling variations, refers to the relationship between two proteins that possess a “common evolutionary origin,” including proteins from superfamilies in the same species of organism, as well as homologous proteins from different species of organism. Such proteins (and their encoding nucleic acids) have sequence homology, as reflected by their sequence similarity, whether in terms of percent identity or by the presence of specific residues or motifs and conserved positions. “Homologous” may also refer to a nucleic acid which is native to the virus.


In common usage and in the instant application, the term “homologous,” when modified with an adverb such as “highly,” may refer to sequence similarity and may or may not relate to a common evolutionary origin.


“Heterologous,” in all its grammatical forms and spelling variations, may refer to a nucleic acid which is non-native to the virus. It means derived from a different species or a different strain than the nucleic acid of the organism to which the nucleic acid is described as being heterologous relative to. In a non-limiting example, the viral genome of the synVACV comprises heterologous terminal hairpin loops. Those heterologous terminal hairpin loops can be derived from a different viral species or from a different VACV strain.


As used herein, a “host cell” includes an individual cell or cell culture that can be or has been a recipient for the virus of the disclosure. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in genomic DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. A host cell includes cells transfected and/or transformed in vivo with a poxvirus of this disclosure.


An “immunologically effective amount” refers to the amount to be administered of a composition of matter that comprises at least one antigen, or immunogenic portion thereof, which is able to elicit an immunological response in the host cell or an antibody-mediated immune response to the composition. An immunologically effective amount of a recombinant poxvirus, as disclosed herein, refers to the amount of poxviral particles necessary to deliver a SARS-CoV-2 virus protein and elicit an immune response against said SARS-CoV-2 virus protein. In some embodiments, an immunologically effective amount of the recombinant poxvirus of the present disclosure is an amount within the range of 102-109 PFU. In some embodiments, an immunologically effective amount of the recombinant poxvirus of the present disclosure is from about 103-105 PFU. In some embodiments, an immunologically effective amount of the recombinant poxvirus of the present disclosure is about 105 PFU.


The terms “operative linkage” and “operatively linked” (or “operably linked”) or variations thereof, as used herein, are used interchangeably with reference to a juxtaposition of two or more components (such as sequence elements), in which the components are arranged such that both components function normally and allow the possibility that at least one of the components can mediate a function that is exerted upon at least one of the other components. By way of illustration, the nucleic acid encoding a SARS-CoV-2 virus protein may be operatively linked to a promoter. The nucleic acid sequence encoding a SARS-CoV-2 virus protein may be operatively linked in cis with a poxvirus specific promoter nucleic acid sequence, but does not need to be directly adjacent to it. For example, a linker sequence can be located between both sequences.


As used herein, the phrase “multiplicity of infection” or “MOI” is the average number of viruses per infected cell. The MOI is determined by dividing the number of virus added (ml added×plaque forming units (PFU)) by the number of cells added (ml added×cells/ml).


The terms “patient”, “subject”, or “individual” are used interchangeably herein and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, camels, etc.), companion animals (e.g., canines, felines, etc.) and rodents (e.g., mice and rats).


As known in the art, “polynucleotide,” or “nucleic acid,” as used interchangeably herein, refer to chains of nucleotides of any length, and include DNA and RNA. The nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a chain by DNA or RNA polymerase. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the chain. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. Other types of modifications include, for example, “caps”, substitution of one or more of the naturally occurring nucleotides with an analog; internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.); those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.); those with intercalators (e.g., acridine, psoralen, etc.); those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.); those containing alkylators; those with modified linkages (e.g., alpha anomeric nucleic acids, etc.); as well as unmodified forms of the polynucleotide(s). Further, any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to prepare additional linkages to additional nucleotides, or may be conjugated to solid supports. The 5′ and 3′ terminal OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms. Other hydroxyls may also be derivatized to standard protecting groups. Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for example, 2′-O-methyl-, 2′-O-allyl, 2′-fluoro- or 2′-azido-ribose, carbocyclic sugar analogs, alpha- or beta-anomeric sugars, epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs and abasic nucleoside analogs such as methyl riboside. One or more phosphodiester linkages may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(O)S(“thioate”), P(S)S (“dithioate”), (O)NR2 (“amidate”), P(O)R, P(O)OR′, CO or CH2 (“formacetal”), in which each R or R′ is independently H or substituted or unsubstituted alkyl (1-20 C) optionally containing an ether and (—O—) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.


The terms “polypeptide”, “oligopeptide”, “peptide” and “protein” are used interchangeably herein to refer to chains of amino acids of any length. The chain may be linear or branched, it may comprise modified amino acids, and/or may be interrupted by non-amino acids. The terms also encompass an amino acid chain that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), as well as other modifications known in the art. It is understood that the polypeptides can occur as single chains or associated chains.


“Percent (%) sequence identity” or “sequence % identical to” with respect to a reference polypeptide (or nucleotide) sequence is defined as the percentage of amino acid residues (or nucleic acids) in a candidate sequence that are identical with the amino acid residues (or nucleic acids) in the reference polypeptide (nucleotide) sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.


As outlined elsewhere herein, certain positions of the viral genome can be altered. By “position” as used herein is meant a location in the genome sequence. Corresponding positions are generally determined through alignment with other parent sequences.


As used herein, “purify,” and grammatical variations thereof, refers to the removal, whether completely or partially, of at least one impurity from a mixture containing the polypeptide and one or more impurities, which thereby improves the level of purity of the polypeptide in the composition (i.e., by decreasing the amount (ppm) of impurity(ies) in the composition). As used herein “purified” in the context of viruses refers to a virus which is substantially free of cellular material and culture media from the cell or tissue source from which the virus is derived. The language “substantially free of cellular material” includes preparations of virus in which the virus is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, a virus that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of cellular protein (also referred to herein as a “contaminating protein”). The virus may also be substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the virus preparation. A virus can be “purified” using routine methods known to one of skill in the art including, but not limited to, chromatography and centrifugation.


As used herein, the term “recombinant poxvirus” refers to a poxvirus comprising an exogenous or heterologous sequence in its genome generated by artificial manipulation of the viral genome, i.e. generation by recombinant DNA technology. The recombinant poxvirus contains an exogenous polynucleotide sequence encoding a polypeptide of interest. In some embodiments, the recombinant poxvirus comprises a nucleic acid encoding a SARS-CoV-2 virus protein.


As used herein, the term “rescue poxvirus” or “rescue virus” or “rescue system” refers to a virus or system which relies on a helper virus to provide the machinery necessary to produce recombinant viruses, by assembling the fragmented genome, while simultaneously integrating the targeted gene or expression cassette. Rice et al. Viruses. 2011 March; 3(3): 217-232.


As used herein, the term “residue” in the context of a polypeptide refers to an amino-acid unit in the linear polypeptide chain. It is what remains of each amino acid, i.e. —NH—CHR—C—, after water is removed in the formation of the polypeptide from α-amino-acids, i.e. NH2-CHR—COOH.


The term “sequence similarity,” in all its grammatical forms, refers to the degree of identity or correspondence between nucleic acid or amino acid sequences that may or may not share a common evolutionary origin.


As used herein, “synthetic virus” refers to a virus initially derived from synthetic DNA (e.g., chemically synthesized DNA, PCR amplified DNA, engineered DNA, polynucleotides comprising nucleoside analogs, etc., or combinations thereof) and includes its progeny, and the progeny may not necessarily be completely identical (in morphology or in genomic DNA complement) to the original parent synthetic virus due to natural, accidental, or deliberate mutation. In some embodiments, the synthetic virus refers to a virus where substantially all of the viral genome is initially derived from synthetic DNA (e.g., chemically synthesized DNA, PCR amplified DNA, engineered DNA, polynucleotides comprising nucleoside analogs, etc., or combinations thereof). In a preferred embodiment, the synthetic virus is derived from chemically synthesized DNA.


As used herein, “substantially pure” refers to material which is at least 50% pure (i.e., free from contaminants), more preferably, at least 90% pure, more preferably, at least 95% pure, yet more preferably, at least 98% pure, and most preferably, at least 99% pure.


The term “vaccine”, as used herein, refers to a composition comprising at least one immunologically active component that induces an immunological response in an animal and possibly, but not necessarily, one or more additional components that enhance the immunological activity of the active component. A vaccine may additionally comprise further components typical to pharmaceutical compositions. The immunologically active component of a vaccine may comprise complete virus particles in either their original form or as attenuated particles (modified live vaccine), or particles inactivated by appropriate methods (killed or inactivated vaccine). In other embodiments, the immunologically active component of a vaccine may comprise appropriate elements of the organisms (subunit vaccines) that best stimulate the immune system. The immunologically active component may be a protein of the viral envelope. The immunologically active component may be a protein forming part of the nucleocapsid. In some embodiments, the immunologically active component of a vaccine against SARS-CoV-2 is an envelope protein. Non-limiting examples of such proteins are the Spike protein (S), the Membrane protein (M) and the Hemagglutinin-Esterase protein (HE). In some embodiments, the immunologically active component of a vaccine against SARS-CoV-2 is the nucleocapsid protein (N).


The term “viral vector”, as used herein, describes a genetically modified virus which was manipulated by a recombinant DNA technique in a way so that its entry into a host cell is capable of resulting in a specific biological activity, e.g. the expression of a foreign target gene carried by the vector. A viral vector may or may not be replication competent in the target cell, tissue, or organism. A viral vector can incorporate sequences from the genome of any known organism. The sequences can be incorporated in their native form or can be modified in any way to obtain a desired activity. For example, the sequences can comprise insertions, deletions or substitutions. A viral vector can also incorporate an insertion site for an exogenous polynucleotide sequence. In some embodiments, the viral vector is a poxvirus. In some embodiments, the viral vector is a horsepox viral vector. In some embodiments, the viral vector is a synthetic horsepox viral vector.


As used herein, the terms “wild type virus”, “wild type genome”, “wild type protein,” or “wild type nucleic acid” refer to a sequence of amino or nucleic acids that occurs naturally within a certain population (e.g., a particular viral species, etc.).


Each embodiment described herein may be used individually or in combination with any other embodiment described herein.


Overview

Poxviruses are large (˜200 kbp) DNA viruses that replicate in the cytoplasm of infected cells. The Orthopoxvirus (OPV) genus comprises a number of poxviruses that vary greatly in their ability to infect different hosts. Vaccinia virus (VACV), for example, can infect a broad group of hosts, whereas variola virus (VARV), the causative agent of smallpox, only infects humans. A feature common to many, if not all poxviruses, is their ability to non-genetically “reactivate” within a host. Non-genetic reactivation refers to a process wherein cells infected by one poxvirus can promote the recovery of a second “dead” virus (for example one inactivated by heat) that would be non-infectious on its own.


Purified poxvirus DNA is not infectious because the virus life cycle requires transcription of early genes via the virus-encoded RNA polymerases that are packaged in virions. However, this deficiency can be overcome if virus DNA is transfected into cells previously or subsequently infected with a helper poxvirus, providing the necessary factors needed to transcribe, replicate, and package the transfected genome in trans (Sam C K, Dumbell K R. Expression of poxvirus DNA in coinfected cells and marker rescue of thermosensitive mutants by subgenomic fragments of DNA. Ann Virol (Inst Past). 1981; 132:135-50). Although this produces mixed viral progeny, a desired virus can be obtained by performing a reactivation reaction in a cell line that supports the propagation of both viruses, and then eliminating the helper virus by plating the mixture of viruses on cells that do not support the helper virus' growth (Scheiflinger F, Dorner F, Falkner F G. Construction of chimeric vaccinia viruses by molecular cloning and packaging. Proceedings of the National Academy of Sciences of the United States of America. 1992; 89(21):9977-81).


Preparation of Poxviruses

Any of the synthetic poxviruses disclosed in US 2018/0251736 and WO 2019/213452, the entire disclosure of each is incorporated by reference herein, may be used in the present disclosure.


In one aspect, the present disclosure provides recombinant poxviruses comprising a nucleic acid encoding a SARS-CoV-2 virus protein, wherein the SARS-CoV-2 protein is selected from the group consisting of the spike protein (S), the membrane protein (M) and the nucleocapsid protein (N), or combinations of two or more of said proteins.


In some embodiments, the poxvirus belongs to the Chordopoxvirinae subfamily. In some embodiments, the poxvirus belongs to a genus of Chordopoxvirinae subfamily selected from Avipoxvirus, Capripoxvirus, Cervidpoxvirus, Crocodylipoxvirus, Leporipoxvirus, Molluscipoxvirus, Orthopoxvirus, Parapoxvirus, Suipoxvirus, or Yatapoxvirus. In some embodiments, the recombinant poxvirus is an Orthopoxvirus. In some embodiments, the Orthopoxvirus is selected from the group consisting of camelpox virus (CMLV), cowpox virus (CPXV), ectromelia virus (ECTV, “mousepox agent”), horsepox virus (HPXV), monkeypox virus (MPXV), rabbitpox virus (RPXV), raccoonpox virus, skunkpox virus, Taterapox virus, Uasin Gishu disease virus, vaccinia virus (VACV), variola virus (VARV) and volepox virus (VPV). In some embodiments, the poxvirus is a Parapoxvirus. In some embodiments, the Parapoxvirus is selected from orf virus (ORFV), pseudocowpox virus (PCPV), bovine popular stomatitis virus (BPSV), squirrel parapoxvirus (SPPV), red deer parapoxvirus, Ausdyk virus, Chamois contagious ecythema virus, reindeer parapoxvirus, or sealpox virus. In some embodiments, the poxvirus is a Molluscipoxvirus. In some embodiments, the Molluscipoxvirus is molluscum contagiousum virus (MCV). In some embodiments, the poxvirus is a Yatapoxvirus. In some embodiments, the Yatapoxvirus is selected from Tanapox virus or Yaba monkey tumor virus (YMTV). In some embodiments, the poxvirus is a Capripoxvirus. In some embodiments, the Capripoxvirus is selected from sheepox, goatpox, or lumpy skin disease virus. In some embodiments, the poxvirus is a Suipoxvirus. In some embodiments, the Suipoxvirus is swinepox virus. In some embodiments, the poxvirus is a Leporipoxvirus. In some embodiments, the Leporipoxvirus is selected from myxoma virus, Shope fibroma virus (SFV), squirrel fibroma virus, or hare fibroma virus. In some embodiments, the poxvirus is an HPXV. In some embodiments, the horsepox virus is strain MNR-76. In other embodiments, the poxvirus is a VACV. In some embodiments, the VACV is selected from the group of strains consisting of: Western Reserve, Western Reserve Clone 3, Tian Tian, Tian Tian clone TP5, Tian Tian clone TP3, NYCBH, NYCBH clone Acambis 2000, Wyeth, Copenhagen, Lister, Lister 107, Lister-LO, Lister GL-ONC1, Lister GL-ONC2, Lister GL-ONC3, Lister GL-ONC4, Lister CTC1, Lister IMG2 (Turbo FP635), IHD-W, LC16m18, Lederle, Tashkent clone TKT3, Tashkent clone TKT4, USSR, Evans, Praha, L-IVP, V-VET1 or LIVP 6.1.1, Ikeda, EM-63, Malbran, Duke, 3737, CV-1, Connaught Laboratories, Serro 2, CM-01, NYCBH Dryvax clone DPP13, NYCBH Dryvax clone DPP15, NYCBH Dryvax clone DPP20, NYCBH Dryvax clone DPP17, NYCBH Dryvax clone DPP21, VACV-IOC, Chorioallantoid Vaccinia virus Ankara (CVA), Modified vaccinia Ankara (MVA), and MVA-BN. New poxviruses (e.g. Orthopoxviruses) are still being constantly discovered. It is understood that a poxvirus of the disclosure may be based on such a newly discovered poxvirus.


Chemical viral genome synthesis opens up the possibility of introducing a large number of useful modifications to the resulting genome or to specific parts of it. The modifications may improve ease of cloning to generate the virus, provide sites for introduction of recombinant gene products, improve ease of identifying reactivated viral clones and/or confer a plethora of other useful features (e.g. introducing a desired antigen, producing an oncolytic virus, etc.). In some embodiments, the modifications may include the attenuation or deletion of one or more virulence factors. In some embodiments, the modifications may include the addition or insertion of one or more virulence regulatory genes or gene-encoding regulatory factors.


Traditionally, the terminal hairpins of poxviruses have been difficult to clone and to sequence. As a result, some of the published genome sequences (e.g., VACV, ACAM 2000 and HPXV MNR-76) are incomplete. The published sequence of the HPXV genome is likewise incomplete, probably missing ˜60 bp from the terminal ends. In an exemplary embodiment, 129 nt ssDNA fragments were chemically synthesized using the published sequence of the VACV terminal hairpins as a guide and ligated onto dsDNA fragments comprising left and right ends of the HPXV genome. In some embodiments, the terminal hairpins of the poxvirus of the disclosure are derived from VACV. In some embodiments, the terminal hairpins are derived from CMLV, CPXV, ECTV, HPXV, MPXV, RPXV, raccoonpox virus, skunkpox virus, Taterapox virus, Uasin Gishu disease virus or VPV. In some embodiments, the terminal hairpins are based on the terminal hairpins of any poxvirus whose genome has been completely sequenced or a natural isolate of which is available for genome sequencing. In some embodiments, the poxviruses are synthetic versions of HPXV comprising the terminal hairpins of VACV (GenBank accession number KY349117; see US 2018/0251736, incorporated by reference herein).


In some embodiments, the modifications introduced in a poxvirus genome may include the deletion of one or more restriction sites. In some embodiments, the modifications may include the introduction of one or more restriction sites. In some embodiments, the restriction sites to be deleted from the genome or added to the genome may be selected from one or more of restriction sites such as but not limited to AanI, AarI, AasI, AatI, AatII, AbaSI, AbsI, Acc65I, AccI, AccII, AccIII, AciI, AcII, AcuI, AfeI, AflII, AflIII, AgeI, AhdI, AleI, AluI, AlwI, AlwNI, ApaI, ApaLI, ApeKI, ApoI, AscI, AseI, AsiSI, AvaI, AvaII, AvrII, BaeGI, BaeI, BamHI BanI, BanII, BbsI, BbvCI, BbvI, BccI, BceAI, BcgI, BciVI, BclI, BcoDI, BfaI, BfuAI, BfuCI, BglI, BglII, BlpI, BmgBI, BmrI, BmtI, BpmI, Bpu10I, BpuEI, BsaAI, BsaBI, BsaHI, BsaI, BsaXI, BsaWI, BsaXI, BseRI, BseYI, BsgI, BsiEI, BsiHKAI, BsiWI, BslI, BsmAI, BsmBI, BsmFI, BsmI, BsoBI, Bsp1286I, BspCNI, BspDI, BspEI, BspHI, BspMI, BspQI, BsrBI, BsrDI, BsrFαI, BsrGI, BsrI, BssHII, BssSαI, BstAPI, BstBI, BstEII, BstNI, BstUI, BstXI, BstYI, BstZ171, Bsu36I, BtgI, BtgZI, BtsαI, BtsCI, BtsIMutI, Cac8I, ClaI, CspCI, CviAII, CviKI-1, CviQI, DdeI, DpnI, DpnII, DraI, DrdI, EaeI, EagI, EarI, EciI, Eco53kI, EcoNI, EcoO1091, EcoP15I, EcoRI, EcoRV, FatI, FauI, Fnu4HI, FokI, FseI, FspEI, FspI, HaeII, HaeIII, HgaI, HhaI, HincII, HindIII, HinfI, HinP1I, HpaI, HpaII, HphI, Hpy166II, Hpy188I, Hpy188III, Hpy99I, HpyAV, HpyCH4III, HpyCH4IV, HpyCH4V, I-CeuI, I-SceI, KasI, KpnI, LpnPI, MboI, MboII, MfeI, MluCI, MluI, MlyI, MmeI, MnlI, MscI, MseI, MslI, MspA1I, MspI, MspJI, MwoI, NaeI, NarI, NciI, NcoI, NdeI, NgoMIV, NheI, NlaIII, NlaIV, NmeAIII, NotI, NruI, NsiI, NspI, PacI, PaeR7I, PciI, PflFI, PflMI, PleI, PluTI, PmeI, PmII, PpuMI, PshAI, PsiI, PspGI, PspOMI, PspXI, PstI, PvuI, PvuII, RsaI, RsnII, SacI, SacII, SalI, SapI, Sau3AI, Sau96I, SbfI, ScrFI, SexAI, SfaNI, SfcI, SfiI, SfoI, SgrAI, SmaI, SmII, SnaBI, SpeI, SphI, SrfI, SspI, StuI, StyD4I, StyI, SwaI, TaqαI, TfiI, TseI, Tsp45I, TspMI, TspRI, Tth111I, XbaI, XcmI, XhoI, XmaI, XmnI, or ZraI. It is understood that any desired restriction site(s) or combination of restriction sites may be inserted into the genome or mutated and/or eliminated from the genome. In some embodiments, one or more AarI sites are deleted from the viral genome. In some embodiments, one or more BsaI sites are deleted from the viral genome. In some embodiments, one or more restriction sites are completely eliminated from the genome (e.g. all the AarI sites in the viral genome may be eliminated). In some embodiments, one or more AvaI restriction sites are introduced into the viral genome. In some embodiments, one or more StuI sites are introduced into the viral genome. In some embodiments, the one or more modifications may include the incorporation of recombineering targets including but not limited to loxP or FRT sites.


In some embodiments, the poxvirus modifications may include the introduction of fluorescence markers such as but not limited to green fluorescent protein (GFP), enhanced GFP, yellow fluorescent protein (YFP), cyan/blue fluorescent protein (BFP), red fluorescent protein (RFP), or variants thereof, etc.; selectable markers such as but not limited to drug resistance markers (e.g. E. coli xanthine-guanine phosphoribosyl transferase gene (gpt), Streptomyces alboniger puromycin acetyltransferase gene (pac), neomycin phosphotransferase I gene (nptI), neomycin phosphotransferase gene II (nptII), hygromycin phosphotransferase (hpt), sh ble gene, etc.; protein or peptide tags such as but not limited to MBP (maltose-binding protein), CBD (cellulose-binding domain), GST (glutathione-S-transferase), poly(His), FLAG, V5, c-Myc, HA (hemagglutinin), NE-tag, CAT (chloramphenicol acetyl transferase), DHFR (dihydrofolate reductase), HSV (Herpes simplex virus), VSV-G (Vesicular stomatitis virus glycoprotein), luciferase, protein A, protein G, streptavidin, T7, thioredoxin, Yeast 2-hybrid tags such as B42, GAL4, LexA, or VP16; localization tags such as an NLS-tag, SNAP-tag, Myr-tag, etc. It is understood that other selectable markers and/or tags known in the art may be used. In some embodiments, the modifications include one or more selectable markers to aid in the selection of reactivated clones (e.g. a fluorescence marker such as YFP, a drug selection marker such as gpt, etc.) to aid in the selection of reactivated viral clones. In some embodiments, the one or more selectable markers are deleted from the reactivated clones after the selection step.


In some embodiments, the poxviruses are synthetic horsepox viruses (scHPXV). In some embodiments, the synthetic horsepox viruses have been produced by recombination of overlapping DNA fragments of the viral genome and reactivation of the functional poxvirus is carried out in cells previously infected with a helper virus. Briefly, overlapping DNA fragments that encompass all or substantially all of the viral genome of the horsepox are chemically synthesized and transfected into helper virus-infected cells. The transfected cells are cultured to produce mixed viral progeny comprising the helper virus and reactivated horsepox virus. Next, the mixed viral progeny is plated on host cells that do not support the growth of the helper virus but allow the synthetic poxvirus to grow, in order to eliminate the helper virus and recover the synthetic poxviruses.


In some embodiments, substantially all of the synthetic poxviral genome is derived from chemically synthesized DNA. In some embodiments, about 40%, about 50%, about 60%, about 70%, about 75%, about 80%, about 85%, about 90%, about 95%, about 96%, about 97%, about 98%, about 99%, over 99%, or 100% of the synthetic poxviral genome is derived from chemically synthesized DNA. In some embodiments, the poxviral genome is derived from a combination of chemically synthesized DNA and naturally occurring DNA.


The number of overlapping DNA fragments used to generate the synthetic poxvirus will depend on the size of the poxviral genome. Practical considerations such as reduction in recombination efficiency as the number of fragments increases on the one hand and difficulties in synthesizing very large DNA fragments as the number of fragments decreases on the other hand will also inform the number of overlapping fragments used. In some embodiments, the synthetic poxviral genome may be synthesized as a single fragment. In some embodiments, the synthetic poxviral genome is assembled from 2-14 overlapping DNA fragments. In some embodiments, the synthetic poxviral genome is assembled from 4-12 overlapping DNA fragments. In some embodiments, the synthetic poxviral genome is assembled from 6-10 overlapping DNA fragments. In some embodiments, the synthetic poxviral genome is assembled from 8-12 overlapping DNA fragments. In some embodiments, the synthetic poxviral genome is assembled from 10 overlapping DNA fragments. In an exemplary embodiment of the disclosure, a synthetic horsepox virus (scHPXV) is reactivated from 10 chemically synthesized overlapping double-stranded DNA fragments. In some embodiments, all of the fragments encompassing the poxviral genome are chemically synthesized. In some embodiments, one or more of the fragments are chemically synthesized and one or more of the fragments are derived from naturally occurring DNA (e.g. by PCR amplification or by well-established recombinant DNA techniques).


In some embodiments, the terminal hairpin loops are synthesized separately and ligated onto the fragments comprising the left and right ends of the poxviral genome. In some embodiments, terminal hairpin loops may be derived from a naturally occurring template. In some embodiments, the terminal hairpins of the synthetic poxvirus are derived from VACV. In some embodiments, the terminal hairpins of the recombinant synthetic poxvirus are derived from CMLV, CPXV, ECTV, HPXV, MPXV, RPXV, raccoonpox virus, skunkpox virus, Taterapox virus, Uasin Gishu disease virus or VPV. In some embodiments, the terminal hairpins of the recombinant scHPXV are derived from VACV. In some embodiments, the terminal hairpins of the recombinant scHPXV are derived from CMLV, CPXV, ECTV, HPXV, MPXV, RPXV, raccoonpox virus, skunkpox virus, Taterapox virus, Uasin Gishu disease virus or VPV. In some embodiments, the terminal hairpins of the poxvirus are based on the terminal hairpins of any poxvirus whose genome has been completely sequenced or a natural isolate of which is available for genome sequencing.


The size of the overlapping fragments used to generate the poxvirus of the disclosure will depend on the size of the poxviral genome. It is understood that there can be wide variations in fragment sizes and various practical considerations such as the ability to chemically synthesize very large DNA fragments, will inform the choice of fragment sizes. In some embodiments, the fragments range in size is from about 2000 bp to about 50000 bp. In some embodiments, the fragments range in size is from about 3000 bp to about 45000 bp. In some embodiments, the fragments range in size is from about 4000 bp to 40000 bp. In some embodiments, the fragments range in size is from about 5000 bp to 35000 bp. In some embodiments, the largest fragments are about 20000 bp, 21000 bp, 22000 bp, 23000 bp, 24 000 bp, 25000 bp, 26000 bp, 27000 bp, 28000 bp, 29000 bp, 30000 bp, 31000 bp, 32000 bp, 33000 bp, 34000 bp, 35000 bp, 36000 bp, 37000 bp, 38000 bp, 39000 bp, 40000 bp, 41000 bp, 42000 bp, 43000 bp, 44000 bp, 45000 bp, 46000 bp, 47000 bp, 48000 bp, 49000 bp, or 50000 bp. In some embodiments, a scHPXV is reactivated from 10 chemically synthesized overlapping double-stranded DNA fragments ranging in size from about 8500 bp to about 32000 bp (Table 2).


The poxviruses of the present disclosure can be propagated in any substrate that allows the virus to grow to titers that permit the uses of the recombinant poxvirus described herein. The poxvirus of the present disclosure may be grown in cells (e.g. avian cells, bat cells, bovine cells, camel cells, canary cells, cat cells, deer cells, equine cells, fowl cells, gerbil cells, goat cells, human cells, monkey cells, pig cells, rabbit cells, raccoon cells, seal cells, sheep cells, skunk cells, vole cells, etc.) that are susceptible to infection by the poxviruses. In some embodiments, the poxvirus is grown in adherent cells. In some embodiments, the poxvirus is grown in suspension cells. In some embodiments, the poxvirus is grown in mammalian cells. Such methods are well-known to those skilled in the art. Representative mammalian cells include, but are not limited to, BHK, MRC, BGMK, BRL3A, BSC-40, CEF, CEK, CHO, COS, CVI, HaCaT, HEL, HeLa cells, HEK293, human bone osteosarcoma cell line 143B, MDCK, NIH/3T3, Vero cells, etc. For virus isolation, the recombinant poxvirus is removed from cell culture and separated from cellular components, typically by well-known clarification procedures, e.g., such as gradient centrifugation and column chromatography, and may be further purified as desired using procedures well known to those skilled in the art, e.g., plaque assays. In some embodiments, the poxvirus is grown in Vero cells. In some embodiments, the poxvirus is grown in ACE2 Knockout Vero cells. In some embodiments, the poxvirus is grown in Vero adherent cells. In other embodiments, the poxvirus is grown in Vero suspension cells. In some embodiments, the poxvirus is grown in BSC-40 cells. In some embodiments, the poxvirus is grown in BHK-21 cells. In some embodiments, the poxvirus is grown in MRC-5 cells. In some embodiments, the poxvirus is grown in MRC-5 cells in the presence of for example, 5% serum, including but not limited to fetal calf serum. In some embodiments, the poxvirus is grown in avian cells. Such methods are well-known to those skilled in the art. Representative avian cells include, but are not limited to, chicken embryo fibroblasts, DF-1 cells (see, e.g., Himly et al., Virology, (1998) 248:295-304), duck embryo-derived cells, EB66® cells (see, e.g., Leon et al. Vaccine, (2016) 34: 5878-5885), AGE1. CR cells, including but not limited to AGE1.CRpIX® cells, DF-1 cells (see, e.g., Lohr et al., Vaccine, (2009) 36:4975-4982), etc. In some embodiments, the poxvirus is grown in chicken embryo fibroblasts. In some embodiments, the poxvirus is grown in duck embryo-derived cells. In some embodiments, the poxvirus is grown in EB66® cells. In some embodiments, the poxvirus is grown in AGE1.CRpIX® cells. In some embodiments, the poxvirus is grown in DF-1 cells.


In some embodiments, the method of producing a synthetic poxvirus comprises a step of chemically synthesizing overlapping DNA fragments that correspond to substantially all of the viral genome of the poxvirus and, optionally, chemically synthesizing the terminal hairpin loops from another virus or from another strain of virus; (ii) transfecting the overlapping DNA fragments into helper virus-infected cells; (iii) culturing said cells to produce a mixture of helper virus and synthetic poxvirus particles in said cells; and (iv) plating the mixture on host cells specific to the poxvirus to recover the synthetic poxvirus.


In some embodiments, the method of producing a synthetic horsepox virus comprises a step of (i) chemically synthesizing overlapping DNA fragments that correspond to substantially all of the viral genome of the horsepox virus and chemically synthesizing the terminal hairpin loops from another poxvirus (such as VACV, strain WB or NYCBH clone ACAM 2000); (ii) transfecting the overlapping DNA fragments into helper virus-infected cells; (iii) culturing said cells to produce a mixture of helper virus and synthetic horsepox virus particles in said cells; and (iv) plating the mixture on host cells specific to the horsepox virus to recover the synthetic horsepox virus.


In some embodiments, the poxvirus is a synthetic horsepox virus. In some embodiments, the synthetic horsepox virus genome is based on the published genome sequence described for horsepox virus (GenBank accession DQ792504) and the terminal hairpins are based on the published genome sequence similar to VACV strain NYCBH clone ACAM2000 (GenBank accession MN974380). In some embodiments, the synthetic horsepox virus comprises the sequence deposited in GenBank as accession number KY349117; see US 2018/0251736, incorporated by reference herein. In some embodiments, the synthetic horsepox virus is characterized by a nucleic acid encoding a SARS-CoV-2 virus S protein comprises the sequence set forth in SEQ ID NO: 43.


In some embodiments, the poxvirus is a synthetic recombinant vaccinia virus (synVACV). In some embodiments, the synthetic vaccinia genome is based on the published genome sequence described for VACV strain NYCBH clone ACAM2000 (GenBank accession AY313847; Osborne J D et al. Vaccine. 2007; 25(52):8807-32). In some embodiments, the synthetic vaccinia genome is based on the published genome sequence similar to VACV strain NYCBH clone ACAM2000 (GenBank accession MN974380; see WO 2019/213452, incorporated by reference herein). In some embodiments, the synthetic vaccinia virus comprises the sequence deposited in GenBank as accession number MN974381 (see WO 2019/213452, incorporated by reference herein). In some embodiments, the synthetic vaccinia virus is characterized by a nucleic acid encoding a SARS-CoV-2 virus S protein comprises the sequence set forth in SEQ ID NO: 44.


Generation of the Recombinant Poxvirus Comprising a SARS-CoV-2 Protein

Any of the synthetic poxviruses disclosed in US 2018/0251736 and WO 2019/213452, may be used to generate a recombinant poxvirus comprising a SARS-CoV-2 protein, as disclosed herein.


In one aspect, the present disclosure relates to a recombinant poxvirus comprising a nucleic acid encoding a SARS-CoV-2 virus protein, wherein the SARS-CoV-2 protein is selected from the group consisting of the spike protein (S), the membrane protein (M) and the nucleocapsid protein (N), or combinations of two or more of said proteins. In some embodiments, the nucleotide sequence of the SARS-CoV-2 virus is any one of the published genome sequences, including, but not limited, to the genome sequences of the Wuhan strain, the UK strain B.1.1.7 strain, the South African B. 1.351 strain, the Brazilian B.1.1.28 strain, other emerging variants and any of their variants. In some embodiments, the nucleotide sequence of the SARS-CoV-2 virus is selected from the group consisting of GenBank accession numbers NC045512.2, LC521925.1, MN988668.1, MN985325.1, MN975262.1, MN938384.1, LR757998.1, LR757996.1, LR757995.1 and MN908947.3. In some embodiments, the nucleotide sequence of the SARS-CoV-2 virus is characterized by the sequence set forth in GenBank Accession Number MN988668.1; SEQ ID NO: 46. In some embodiments, the nucleotide sequence of the SARS-CoV-2 virus is further selected from the group consisting of GenBank accession numbers QQX99439 (e.g., B.1.1.7 United Kingdom variant), TEGALLY (e.g., B.1.351 South Africa variant), YP_009724390 (e.g., a Wuhan variant), and FARIA (e.g., B.1.1.28 Brazil variant).


The viral envelope of the SARS-CoV-2 virus is covered by characteristic spike-shaped glycoproteins (S) as well as the envelope (E) and membrane (M) proteins. The S protein mediates host cell attachment and entry. The helical nucleocapsid, comprised of the viral genome encapsidated by the nucleocapsid protein (N), resides within the viral envelope. In some embodiments, the poxvirus or synthetic poxvirus comprises a nucleic acid encoding a SARS-CoV-2 envelope protein. Non-limiting examples of such proteins are the Spike protein (S), the Membrane protein (M) and the Hemagglutinin-Esterase protein (HE). In some embodiments, the poxviruses or synthetic poxviruses comprise a nucleic acid encoding the S protein (SEQ ID NO: 9). In some embodiments, the poxviruses or synthetic poxviruses comprise a nucleic acid encoding the S protein (SEQ ID NO: 47). In some embodiments, the poxviruses or synthetic poxviruses comprise a nucleic acid encoding the M protein (SEQ ID NO: 10). In some embodiments, the poxviruses or synthetic poxviruses comprise a nucleic acid encoding the M protein (SEQ ID NO: 48). In some embodiments, the poxviruses or synthetic poxviruses comprise a nucleic acid encoding the N protein (SEQ ID NO: 11). In some embodiments, the poxviruses or synthetic poxviruses comprise a nucleic acid encoding the N protein (SEQ ID NO: 49). In some embodiments, the poxviruses or synthetic poxviruses comprise a nucleic acid encoding the HE protein (protein E or HE of Wuhan-HU-1, Accession LC521925.1; SEQ ID NO: 12). In some embodiments, the poxviruses or synthetic poxviruses comprise a combination of S protein and M protein. In some embodiments, the poxviruses or synthetic poxviruses comprise a combination of S protein and N protein. In some embodiments, the poxviruses or synthetic poxviruses comprises a combination of M protein and N protein.


In some embodiments, the SARS-CoV-2 virus is a Wuhan seafood market pneumonia virus 2019-nCoV isolate. GenBank accession number LC521925.1; SEQ ID NO: 13. In some embodiments, the SARS-CoV-2 virus is a Wuhan seafood market pneumonia virus 2019-nCoV isolate. GenBank accession number MN988668.1; SEQ ID NO: 46.


In some embodiments, the amino acid sequence of the SARS-CoV-2 virus protein is modified with reference to a wild type protein.


In some embodiments, the nucleotide sequence encoding the S protein is modified with reference to a wild type nucleotide sequence. In some embodiments, the amino acid sequence of the S protein is modified with reference to the wild type protein (protein S of Wuhan-HU-1, Accession LC521925.1; SEQ ID NO: 9). In some embodiments, the amino acid sequence of the S protein is modified with reference to the wild type protein (protein S of Wuhan-HU-1, Accession MN988668.1; SEQ ID NO: 47). In some embodiments, the amino acid sequence of the S protein is modified with reference to the wild type protein (protein S of Wuhan-Hu-1, Accession NC_045512.2; SEQ ID NO: 53) In some embodiments, the amino acid sequence of the SARS-CoV-2 virus protein is modified with reference to a wild type protein, so that the modified protein is adapted to infect mice. See Roberts et al. PLoS Pathog 3(1): e5. doi:10.1371; incorporated herein by reference in its entirety. In some embodiments, Tyrosine at position 459 is substituted by Histidine (Y459H) in the S protein with reference to the wild type protein (SEQ ID NO: 47). In some embodiments, the S protein comprises one or more mutations that enable antibody-dependent enhancement. In some embodiments, Aspartic acid at position 614 is substituted by Glycine (D614G) in the S protein with reference to the wild type protein (SEQ ID NO: 47). See Korber et al. bioRxiv 2020.04.29.069054; incorporated herein by reference in its entirety. In some embodiments, the S protein comprises one or more mutations in the fusion core of the HR1 region. In some embodiments, Serine at position 943 is substituted by Proline (S943P) in the S protein with reference to the wild type protein (SEQ ID NO: 47). In some embodiments, the S protein comprises one or more mutations that stabilize the S protein in an antigenically optimal prefusion conformation, which results in increased expression, conformational homogeneity and elicitation of potent antibody responses. In some embodiments, the mutations that stabilize the S protein in the prefusion conformation are located at the beginning of the central helix. See Pallesen et al. Proc Natl Acad Sci USA. 2017; 114(35); incorporated herein by reference in its entirety. In some embodiments, Lysine at position 986 is substituted by Proline (K986P) in the S protein with reference to the wild type protein (SEQ ID NO: 47). In some embodiments, Valine at position 987 is substituted by Proline (V987P) in the S protein with reference to the wild type protein (SEQ ID NO: 47). In some embodiments, the S protein comprises any one of substitutions Y459H, D614G, S943P, K986P and V987P, or a combination thereof, with reference to the wild type protein (SEQ ID NO: 47).


In some embodiments, the amino acid sequence of the M protein is modified with reference to the wild type protein (protein M of Wuhan-HU-1, Accession LC521925.1; SEQ ID NO: 10). In some embodiments, the amino acid sequence of the M protein is modified with reference to the wild type protein (protein M of Wuhan-HU-1, Accession MN988668.1; SEQ ID NO: 48). In some embodiments, Glutamic acid at position 11 is substituted by a Lysine in the M protein with reference to the wild type protein. In some embodiments, Glutamic acid at position 11 is substituted by a Lysine in the M protein with reference to the wild type protein (SEQ ID NO: 10). In some embodiments, Glutamic acid at position 11 is substituted by a Lysine in the M protein with reference to the wild type protein (SEQ ID NO: 48).


In some embodiments, the amino acid sequence of the N protein is modified with reference to the wild type protein (protein N of Wuhan-HU-1, Accession LC521925.1; SEQ ID NO: 11). In some embodiments, the amino acid sequence of the N protein is modified with reference to the wild type protein (protein N of Wuhan-HU-1, Accession MN988668.1; SEQ ID NO: 49).


In some embodiments, the nucleic acid sequence encoding the SARS-CoV-2 virus protein is modified with reference to the wild type protein. In some embodiments, the nucleic acid sequence encoding the SARS-CoV-2 virus protein is modified with reference to the wild type protein (SEQ ID NO: 9). In some embodiments, the nucleic acid sequence encoding the SARS-CoV-2 virus protein is modified with reference to the wild type protein (SEQ ID NO: 47). In some embodiments, the nucleic acid sequence encoding the SARS-CoV-2 virus protein is modified with reference to the wild type protein for efficient expression of transgenes in poxviruses. In some embodiments, the heterologous gene coding sequences containing the vaccinia Early Transcription Terminator Signal (ETTS) (TTTTTNT; also called T5NT (SEQ ID NO: 14)) are removed. See Earl et al. Journal of Virology, 1990; 2448-2451; incorporated herein by reference in its entirety. In some embodiments, the poxvirus genome retains two overlapping endogenous ETTS. In some embodiments, the heterologous gene coding sequences containing the vaccinia Early Transcription Terminator Signal (ETTS) (TTTTTNT; also called T5NT (SEQ ID NO: 14)) are removed with reference to the nucleic sequence encoding the S protein of the SARS-CoV-2 virus (protein S of Wuhan-HU-1, Accession MN988668.1; SEQ ID NO: 47).


In some embodiments, the nucleic acid encoding a SARS-CoV-2 virus protein is operatively linked to a promoter. In some embodiments, the promoter is a poxvirus-specific promoter. In some embodiments, the promoter is located between the left flanking arm and the ATG of the transgene expression cassette. In some embodiments, the poxvirus promoter is a vaccinia virus early promoter. In some embodiments, the poxvirus promoter is an optimized vaccinia virus early promoter (AAAATTGAAANNNTANNNNNNNNNNNNNNNNNN; SEQ ID NO: 3). In some embodiments, the poxvirus promoter is a synthetic vaccinia virus late promoter (TTTTTTTTTTTTTTTTTTTNNNNNNTAAATG; SEQ ID NO: 4). In some embodiments, the poxvirus promoter is an overlapping synthetic early/late promoter (AAAAATTGAAATTTTATTTTTTTTTTTTGGAATATAAATA; SEQ ID NO: 5). See FIG. 8. See Chakrabarti et al. BioTechniques 23:1094-1097; incorporated herein by reference in its entirety.


In some embodiments, the vaccinia virus late promoter nucleotide sequence comprises the sequence set forth in SEQ ID NO: 6 (TTTTATTTTTTTTTTTTGGAATATAAATA). In some embodiments, the vaccinia virus late promoter is the sequence set forth in SEQ ID NO: 6. In some embodiments, the vaccinia virus late promoter nucleotide sequence comprises the sequence set forth in SEQ ID NO: 7 (AAAATTGAAAAAATA). In some embodiments, the poxvirus promoter is an overlapping synthetic early/late promoter comprising the sequence set forth in SEQ ID NO: 8 (TTTTATTTTTTTTTTTTGGAATATAAATATCCGGT AAAATTGAAAAAATA). In some embodiments, the poxvirus promoter is an overlapping synthetic early/late promoter comprising a nucleic acid spacer sequence of 38-160 nucleotides 3′ of the early promoter and between the RNA start site and the ATG. In some embodiments, the spacer is 160 nucleotides long, resulting in enhanced levels of expression. See FIG. 9. See Di Pilato et al. Journal of General Virology (2015), 96, 2360-2371; incorporated herein by reference in its entirety. In some embodiments, the vaccinia virus late promoter and the spacer comprises the sequence set forth in SEQ ID NO: 39. In some embodiments, the vaccinia virus late promoter and the spacer is the sequence set forth in SEQ ID NO: 39.


In some embodiments, the protein of the SARS-CoV-2 is inserted into a non-essential gene for replication. In some embodiments, the SARS-CoV-2 protein is inserted into the Thymidine Kinase (TK) locus (Gene ID HPXV095; positions 992077-92610; SEQ ID NO: 1) of the horsepox virus or the synthetic horsepox virus. In some embodiments, the SARS-CoV-2 protein is inserted into the Thymidine Kinase (TK) locus (Gene ID synVACV_105; positions 83823-84344; SEQ ID NO: 2) of the vaccinia virus or the synthetic vaccinia virus. The TK locus provides a stable insertion site for foreign genes of interest. The TK locus also provides a selection marker to identify those clones where the nucleic acid encoding a SARS-CoV-2 protein has been inserted. The clones where the nucleic acid encoding a SARS-CoV-2 protein is inserted are not capable of growing in the presence of 5-bromo-2-deoxyuridine (BrdU), which is an analogue of the pyrimidine deoxynucleoside thymidine, due to not having the TK gene.


An exemplary method to generate a recombinant poxvirus of the disclosure comprising the S protein of SARS-CoV-2 virus comprises:

    • a) Infect cells (e.g., Vero cells or BSC-40 cells) with the poxvirus (such as horsepox virus).
    • b) Obtain an expression cassette comprising: a nucleotide fragment comprising the nucleotide sequence encoding the S protein, wherein the resulting S protein comprises any one of the amino acid substitutions (i) Y459H, so that it is adapted for infection in mice; (ii) D614G; (iii) S943P; (iv) K986P or (v) V987P, or a combination thereof; and wherein the nucleotide sequence encoding the S protein comprises the deletion of two T5NT (SEQ ID NO: 14) sequences.
    • c) Obtain a nucleotide fragment comprising the vaccinia virus early/late promoter and position it upstream of the modified S protein. This expression cassette comprising the vaccinia virus early/late promoter and the engineered S gene is called “engineered SARS-CoV-2 S gene expression cassette”.
    • d) Transfect the infected cells (e.g., Vero cells or BSC-40 cells) with a PCR generated nucleotide fragment comprising the “engineered SARS-CoV-2 S gene expression cassette”. The helper virus catalyzes the recombination between fragments sharing flanking homologous sequences (the sequence between the left and right arm). Therefore, the expression cassette will be inserted into the TK gene via recombination between the left (HPXV094) and right (HPXV096) homologous sequences (arms). The left and right arms are approximately 400 bp sequences flanking the TK locus and are specific of the poxvirus to be generated. See FIG. 10.


Methods of the Disclosure

Any of the synthetic poxviruses disclosed in US 2018/0251736 and WO 2019/213452, may be used in any of the methods disclosed herein.


Any of the recombinant poxviruses comprising a nucleic acid encoding a SARS-CoV-2 virus protein described in the present disclosure may be used in any of the methods disclosed herein.


In one aspect, the disclosure relates to a method for selecting a cell that expresses a SARS-CoV-2 virus protein, comprising infecting said cell with the recombinant poxvirus of the disclosure and selecting the infected cell expressing said SARS-CoV-2 virus protein.


In another aspect, the disclosure relates to a method of inducing an immune response against a SARS-CoV-2 virus in a subject, comprising administering to said subject an immunologically effective amount of the recombinant poxvirus of the disclosure.


In another aspect, the disclosure relates to a method of generating a recombinant poxvirus of the disclosure, the method comprising:


(a) Infecting a host cell with a poxvirus;


(b) Transfecting the infected cell of step (a) with a nucleic acid encoding a SARS-CoV-2 virus protein to generate a recombinant poxvirus; and


(c) Selecting a recombinant poxvirus, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located, upon transfection, in a region of the poxvirus that is not essential for the replication of the poxvirus.


In some embodiments, the recombinant poxvirus of the disclosure is used as a vaccine to express a SARS-CoV-2 virus protein. Methods to assess the safety, immunogenicity and protective capacity of the recombinant poxvirus are known in the art. See Kremer M et al. 2012. p 59-92. In Isaacs S N (ed), Vaccinia virus and poxvirology, vol 890. Humana Press, Totowa, N.J. In some embodiments, the immunization is via a subcutaneous route. In some embodiments, the immunization is via an intramuscular route. In some embodiments, the immunization is via an intranasal route. In some embodiments, the immunization is via scarification. In some embodiments, a range between about 104 and about 108 PFU of the recombinant poxvirus is used. In some embodiments, about 104, about 105, about 106, about about 107 or about 108 PFU of recombinant poxvirus is used for the immunization. In some embodiments, about 105 PFU of the recombinant poxvirus is used for the immunization. A physician will be able to determine the adequate PFU dosage for each subject. In some embodiments, one dose is administered to the subject. In some embodiments, more than one dose is administered to the subject.


In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against a SARS-CoV-2 virus in a subject, comprising administering to said subject an immunologically effective amount of a recombinant poxvirus or a pharmaceutical composition. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against the SARS-CoV-2 virus in a subject, wherein the immunologically effective amount of the recombinant poxvirus is administered by scarification. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against a SARS-CoV-2 virus in a subject, wherein the immune response comprises antibodies that are capable of neutralizing the SARS-CoV-2 virus. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against a SARS-CoV-2 virus in a subject, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from SARS-CoV-2 virus. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against a SARS-CoV-2 virus in a subject, wherein the immunologically effective amount of a recombinant poxvirus reduces or prevents the progression of the virus after SARS-CoV-2 infection in the subject. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against a SARS-CoV-2 virus in a subject, wherein the immune response is a T-cell immune response.


In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against a SARS-CoV-2 virus and a poxvirus comprising administering to said subject an immunologically effective amount of a recombinant poxvirus or pharmaceutical composition. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus, wherein said immune response comprises antibodies that are capable of neutralizing the SARS-CoV-2 virus and the poxvirus. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from the SARS-CoV-2 virus and the variola virus. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus, wherein the immunologically effective amount of a recombinant poxvirus reduces or prevents the progression of the SARS-CoV-2 virus infection and/or poxvirus infection in the subject. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus, wherein the immune response is a T-cell immune response. In some embodiments, the recombinant poxvirus is useful towards the method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus, wherein the poxvirus is vaccinia virus, variola, horsepox virus or monkeypox virus.


In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against a SARS-CoV-2 virus comprising administering to said subject an immunologically effective amount of a recombinant poxvirus or pharmaceutical composition. In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against the SARS-CoV-2 virus, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification. In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against the SARS-CoV-2 virus, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from SARS-CoV-2 virus. In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against the SARS-CoV-2 virus, wherein the immunologically effective amount of a recombinant poxvirus reduces or prevents the progression of the virus after SARS-CoV-2 infection in the subject.


In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against a SARS-CoV-2 virus and a poxvirus comprising administering to a subject an immunologically effective amount of the recombinant poxvirus reduces or pharmaceutical composition. In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against the SARS-CoV-2 virus and the poxvirus, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification. In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against the SARS-CoV-2 virus and the poxvirus, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from the SARS-CoV-2 virus and the poxvirus. In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against the SARS-CoV-2 virus and the poxvirus, wherein the immunologically effective amount of a recombinant poxvirus reduces or prevents the progression of the virus after SARS-CoV-2 infection and/or variola virus infection in the subject. In some embodiments, the recombinant poxvirus is useful towards the method of inducing T cell immunity against the SARS-CoV-2 virus and the poxvirus, wherein the poxvirus is vaccinia virus, variola, horsepox virus or monkeypox virus.


In some embodiments, the recombinant poxvirus is useful towards the method of reducing or preventing the progression of a SARS-CoV-2 virus infection in a subject in need or at risk thereof comprising administering to said subject an immunologically effective amount of the recombinant poxvirus or pharmaceutical composition.


In some embodiments, the recombinant poxvirus is useful towards the method of reducing or preventing the progression of a SARS-CoV-2 virus and a poxvirus infection in a subject in risk thereof comprising administering to said subject an immunologically effective amount of the recombinant poxvirus or pharmaceutical composition. In some embodiments, the recombinant poxvirus is useful towards the method of reducing or preventing the progression of the SARS-CoV-2 virus and the poxvirus infection, wherein the poxvirus is vaccinia virus, variola, horsepox virus or monkeypox virus.


In some embodiments, the recombinant poxvirus is useful for a vaccine against a SARS-CoV-2 virus comprising a recombinant virus or a pharmaceutical composition.


In some embodiments, the recombinant poxvirus is useful for a bivalent vaccine against a SARS-CoV-2 virus and a poxvirus comprising a recombinant virus or a pharmaceutical composition. In some embodiments, the recombinant poxvirus is useful for a bivalent vaccine against a SARS-CoV-2 virus, wherein the poxvirus is a vaccinia virus, variola, horsepox virus or monkeypox.









TABLE 1





Compilation of some of the sequences of the present disclosure.


















Synthetic horsepox virus
1
ATTTACGGATTCACCAATAAAAATAAACTAGAGAAACTTAGTACTAATAAGGAAC
55


comprising a nucleic acid
56
TAGAATCGTATAGTTCTAGCCCTCTTCAAGAACCCATTAGGTTAAATGATTTTCT
110


encoding a SARS-CoV-2
111
GGGACTATTGGAATGTATTAAAAAGAATATTCCTCTAACAGATATTCCGACAAAG
165


virus S protein.
166
GATTGATTACTATAAATGGAGAATGTTCCTAATGTATACTTTAATCCTGTGTTTA
220


SEQ ID NO: 43
221
TAGAGCCCACGTTTAAACATTCTTTATTAAGTGTTTATAAACACAGATTAATAGT
275



276
TTTATTTGAAGTATTCATTGTATTCATTCTAATATATGTATTTTTTAGATCTGAA
330



331
TTAAATATGTTCTTCATGCCTAAACGAAAAATACCCGATCCTATTGATAGATTAC
385



386
GACGTGCTAATCTAGCGTGTGAAGACGATAAGTTAATGATCTATGGATTACCATG
440



441
GATGACAACTCAAACATCTGCGTTATCAATAAATAGTAAACCGATAGTGTATAAA
495



496
GATTGTGCAAAGCTTTTGCGATCAATAAATGGATCACAACCAGTATCTCTTAACG
550



551
ATGTTCTTCGCAGATGATGATTCATTTTTTAAGTATTTGGCTAGTCAAGATGATG
605



606
AATCTTCATTATCTGATATATTGCAAATCACTCAATATCTAGACTTTCTGTTATT
660



661
ATTATTGATCCAATCAAAAAATAAATTAGAAGCCGTGGGTCATTGTTATGAATCT
715



716
CTTTCAGAGGAATACAGACAATTGACAAAATTCACAGACTTTCAAGATTTTAAAA
770



771
AACTGTTTAACAAGGTCCCTATTGTTACAGATGGAAGGGTCAAACTTAATAAAGG
825



826
ATATTTGTTCGACTTTGTGATTAGTTTGATGCGATTCAAAAAAGAATCCTCTCTA
880



881
GCTACCACCGCAATAGATCCTATTAGATACATAGATCCTCGTCGTGATATCGCAT
935



936
TTTCTAACGTGATGGATATATTAAAGTTGAATAAAGTGAACAATAATTAATTCTT
990



991
TATTGTCATCTTTTATTTTTTTTTTTTGGAATATAAATATCCGGTAAAATTGAAA
1045



1046
AAATATACACTAATTAGCGTCTCGTTTCAGACGCTAGCTCGAGGTTGGGAGCTCT
1100



1101
CCGGATCCAAGCTTATCGATTTCGAACCCGGGGTACCGAATTCCTCGAGGTTGGG
1155



1156
AGCTCTCCGGATCCAAGCTTATCGATTTCGAACCCGGGGTACCGAATTCCTCGAG
1210



1211
ATGTTTATTTTCTTATTATTTCTTACTCTCACTAGTGGTAGTGACCTTGACCGGT
1265



1266
GCACCACTTTTGATGATGTTCAAGCTCCTAATTACACTCAACATACTTCATCTAT
1320



1321
GAGGGGGGTTTACTATCCTGATGAAATTTTTAGATCAGACACTCTTTATTTAACT
1375



1376
CAGGATTTATTTCTTCCATTTTATTCTAATGTTACAGGGTTTCATACTATTAATC
1430



1431
ATACGTTTGGCAACCCTGTCATACCTTTTAAGGATGGTATTTATTTTGCTGCCAC
1485



1486
AGAGAAATCAAATGTTGTCCGTGGTTGGGTTTTTGGTTCTACCATGAACAACAAG
1540



1541
TCACAGTCGGTGATTATTATTAACAATTCTACTAATGTTGTTATACGAGCATGTA
1595



1596
ACTTTGAATTGTGTGACAACCCTTTCTTTGCTGTTTCTAAACCCATGGGTACACA
1650



1651
GACACATACTATGATATTCGATAATGCATTTAATTGCACTTTCGAGTACATATCT
1705



1706
GATGCCTTTTCGCTTGATGTTTCAGAAAAGTCAGGTAATTTTAAACACTTACGAG
1760



1761
AGTTTGTGTTTAAAAATAAAGATGGGTTTCTCTATGTTTATAAGGGCTATCAACC
1815



1816
TATAGATGTAGTTCGTGATCTACCTTCTGGTTTTAACACTTTGAAACCTATTTTT
1870



1871
AAGTTGCCTCTTGGTATTAACATTACAAATTTTAGAGCCATTCTTACAGCCTTTT
1925



1926
CACCTGCTCAAGACATTTGGGGCACGTCAGCTGCAGCCTATTTTGTTGGCTATTT
1980



1981
AAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGGTACAATCACAGATGCT
2035



2036
GTTGATTGTTCTCAAAATCCACTTGCTGAACTCAAATGCTCTGTTAAGAGCTTTG
2090



2091
AGATTGACAAAGGAATTTACCAGACCTCTAATTTCAGGGTTGTTCCCTCAGGAGA
2145



2146
TGTTGTGAGATTCCCTAATATTACAAACTTGTGTCCTTTTGGAGAGGTTTTTAAT
2200



2201
GCTACTAAATTCCCTTCTGTCTATGCATGGGAGAGAAAAAAAATTTCTAATTGTG
2255



2256
TTGCTGATTACTCTGTGCTCTACAACTCAACATTCTTTTCAACCTTTAAGTGCTA
2310



2311
TGGCGTTTCTGCCACTAAGTTGAATGATCTTTGCTTCTCCAATGTCTATGCAGAT
2365



2366
TCTTTTGTAGTCAAGGGAGATGATGTAAGACAAATAGCGCCAGGACAAACTGGTG
2420



2421
TTATTGCTGATTATAATTATAAATTGCCAGATGATTTCATGGGTTGTGTCCTTGC
2475



2476
TTGGAATACTAGGAACATTGATGCTACTTCAACTGGTAATCATAATTATAAATAT
2530



2531
AGGTATCTTAGACATGGCAAGCTTAGGCCCTTTGAGAGAGACATATCTAATGTGC
2585



2586
CTTTCTCCCCTGATGGCAAACCTTGCACCCCACCTGCTCTTAATTGTTATTGGCC
2640



2641
ATTAAATGATTATGGTTTTTACACCACTACTGGCATTGGCTACCAACCTTACAGA
2695



2696
GTTGTAGTACTTTCTTTTGAACTTTTAAATGCACCGGCCACGGTTTGTGGACCAA
2750



2751
AATTATCCACTGACCTTATTAAGAACCAGTGTGTCAATTTTAATTTTAATGGACT
2805



2806
CACTGGTACTGGTGTGTTAACTCCTTCTTCAAAGAGATTTCAACCATTTCAACAA
2860



2861
TTTGGCCGTGATGTTTCTGATTTCACTGATTCCGTTCGAGATCCTAAAACATCTG
2915



2916
AAATATTAGACATTTCACCTTGCTCTTTTGGGGGTGTAAGTGTAATTACACCTGG
2970



2971
AACAAATGCTTCATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGCACTGAT
3025



3026
GTTTCTACAGCAATTCATGCAGATCAACTCACACCAGCTTGGCGCATATATTCTA
3080



3081
CTGGAAACAATGTATTCCAGACTCAAGCAGGCTGTCTTATAGGAGCTGAGCATGT
3135



3136
CGACACTTCTTATGAGTGCGACATTCCTATTGGAGCTGGCATTTGTGCTAGTTAC
3190



3191
CATACAGTTTCTTTATTACGTAGTACTAGCCAAAAATCTATTGTGGCTTATACTA
3245



3246
TGTCTTTAGGTGCTGATAGTTCAATTGCTTACTCTAATAACACCATTGCTATACC
3300



3301
TACTAACTTTTCAATTAGCATTACTACAGAAGTAATGCCTGTTTCTATGGCTAAA
3355



3356
ACCTCCGTAGATTGTAATATGTACATCTGCGGAGATTCTACTGAATGTGCTAATT
3410



3411
TGCTTCTCCAATATGGTAGCTTTTGCACACAACTAAATCGTGCACTCTCAGGTAT
3465



3466
TGCTGCTGAACAGGATCGCAACACACGTGAAGTGTTCGCTCAAGTCAAACAAATG
3520



3521
TACAAAACCCCAACTTTGAAATATTTTGGTGGTTTTAATTTTTCACAAATATTAC
3575



3576
CTGACCCTCTAAAGCCAACTAAGAGGTCTTTTATTGAGGACTTGCTCTTTAATAA
3630



3631
GGTGACACTCGCTGATGCTGGCTTCATGAAGCAATATGGCGAATGCCTAGGTGAT
3685



3686
ATTAATGCTAGAGATCTCATTTGTGCGCAGAAGTTCAATGGACTTACAGTGTTGC
3740



3741
CACCTCTGCTCACTGATGATATGATTGCTGCCTACACTGCTGCTCTAGTTAGTGG
3795



3796
TACTGCCACTGCTGGATGGACATTTGGTGCTGGCGCTGCTCTTCAAATACCTTTT
3850



3851
GCTATGCAAATGGCATATAGGTTCAATGGCATTGGAGTTACCCAAAATGTTCTCT
3905



3906
ATGAGAACCAAAAACAAATCGCCAACCAATTTAACAAGGCGATTAGTCAAATTCA
3960



3961
AGAATCACTTACAACAACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAAC
4015



4016
CAGAATGCTCAAGCATTAAACACACTTGTTAAACAACTTAGCTCTAATTTTGGTG
4070



4071
CAATTTCAAGTGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAGGCGGA
4125



4126
GGTACAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCTTCAAACCTATGTA
4180



4181
ACACAACAACTAATCAGGGCTGCTGAAATCAGGGCTTCTGCTAATCTTGCTGCTA
4235



4236
CTAAAATGTCTGAGTGTGTTCTTGGACAATCAAAAAGAGTTGACTTTTGTGGAAA
4290



4291
GGGCTACCACCTTATGTCCTTCCCACAAGCAGCCCCGCATGGTGTTGTCTTCCTA
4345



4346
CATGTCACGTATGTGCCATCCCAGGAGAGGAACTTCACCACAGCGCCAGCAATTT
4400



4401
GTCATGAAGGCAAAGCATACTTCCCTCGTGAAGGTGTTTTCGTGTTTAATGGCAC
4455



4456
TTCTTGGTTTATTACACAGAGGAACTTCTTTTCTCCACAAATAATTACTACAGAC
4510



4511
AATACATTTGTCTCAGGAAATTGTGATGTCGTTATTGGCATCATTAACAACACAG
4565



4566
TTTATGATCCTCTGCAACCTGAGCTCGACTCATTCAAAGAAGAGCTGGACAAGTA
4620



4621
CTTCAAAAATCATACATCACCAGATGTTGATCTTGGCGACATTTCAGGCATTAAC
4675



4676
GCTTCTGTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTCGCTAAAA
4730



4731
ATTTAAATGAATCACTCATTGACCTTCAAGAATTGGGAAAATATGAGCAATATAT
4785



4786
TAAATGGCCTTGGTATGTTTGGCTCGGCTTCATTGCTGGACTAATTGCCATCGTC
4840



4841
ATGGTTACAATCTTGCTTTGTTGCATGACTAGTTGTTGCAGTTGCCTCAAGGGTG
4895



4896
CATGCTCTTGTGGTTCTTGCTGCAAGTTTGATGAGGATGACTCTGAGCCAGTTCT
4950



4951
CAAGGGTGTCAAATTACATTACACATAATATTATATTTTTTATCTAAAAAACTAA
5005



5006
AAATAAACATTGATTAAATTTTAATATAATACTTAAAAATGGATGTTGTGTCGTT
5060



5061
AGATAAACCGTTTATGTATTTTGAGGAAATTGATAATGAGTTAGATTACGAACCA
5115



5116
GAAAGTGCAAATGAGGTCGCAAAAAAACTACCGTATCAAGGACAGTTAAAACTAT
5170



5171
TACTAGGAGAATTATTTTTTCTTAGTAAGTTACAGCGACACGGTATATTAGATGG
5225



5226
TGCCACCGTAGTGTATATAGGATCGGCTCCTGGTACACATATACGTTATTTGAGA
5280



5281
GATCATTTCTATAATTTAGGAATGATTATCAAATGGATGCTAATTGACGGACGCC
5335



5336
ATCATGATCCTATTCTAAATGGATTGCGTGATGTGACTCTAGTGACTCGGTTCGT
5390



5391
TGATGAGGAATATCTACGATCCATCAAAAAACAACTGCATCCTTCTAAGATTATT
5445



5446
TTAATTTCTGATGTAAGATCCAAACGAGGAGGAAATGAACCTAGTACGGCGGATT
5500



5501
TACTAAGTAATTACGCTCTACAAAATGTCATGATTAGTATTTTAAACCCCGTGGC
5555



5556
ATCTAGTCTTAAATGGAGATGCCCGTTTCCAGATCAATGGATCAAGGACTTTTAT
5610



5611
ATCCCACACGGTAATAAAATGTTACAACCTTTTGCTCCTTCATATTCAGCTGAAA
5665



5666
TGAGATTATTAAGTATTTATACCGGTGAGAACATGAGACTGACTCGAGTTACCAA
5720



5721
ATTAGACGCTGTAAATTATGAAAAAAAGATGTACTACCTTAATAAGATCGTCCGT
5775



5776
AACAAAGTAGTTGTTAACTTTGATTATCCTAATCAGGAATATGACTATTTTCACA
5830



5831
TGTACTTTATGCTGAGGACCGTATACTGCAATAAAACATTTCCTACTACTAAAGC
5885



5886
AAAGGTACTATTTCTACAACAATCTATATTTCGTTTCTTAAATATTCCAACAACA
5940



5941
TCAACTGAAAAAGTTAGTCATGAACCAATACAACGTAA
5978





Synthetic vaccinia virus
1
ATTTACGGATTCACCAATAAAAATAAACTAGAGAAACTTAGTACTAATAAGGAAC
55


comprising a nucleic acid
56
TAGAATCGTATAGTTCTAGCCCTCTTCAAGAACCCATTAGGTTAAATGATTTTCT
110


encoding a SARS-CoV-2
111
GGGACTATTGGAATGTGTTAAAAAGAATATTCCTCTAACAGATATTCCGACAAAG
165


virus S protein.
166
GATTGATTACTATAAATGGAGAATGTTCCTAATGTATACTTTAATCCTGTGTTTA
220


SEQ ID NO: 44
221
TAGAGCCCACGTTTAAACATTCTTTATTAAGTGTTTATAAACACAGATTAATAGT
275



276
TTTATTTGAAGTATTCGTTGTATTCATTCTAATATATGTATTTTTTAGATCTGAA
330



331
TTAAATATGTTCTTCATGCCTAAACGAAAAATACCCGATCCTATTGATAGATTAC
385



386
GACGTGCTAATCTAGCGTGTGAAGACGATAAATTAATGATCTATGGATTACCATG
440



441
GATGACAACTCAAACATCTGCGTTATCAATAAATAGTAAACCGATAGTGTATAAA
495



496
GATTGTGCAAAGCTTTTGCGATCAATAAATGGATCACAACCAGTATCTCTTAACG
550



551
ATGTTCTTCGCAGATGATGATTCATTTTTTAAGTATTTGGCTAGTCAAGATGATG
605



606
AATCTTCATTATCTGATATATTGCAAATCACTCAATATCTAGACTTTCTGTTATT
660



661
ATTATTGATCCAATCAAAAAATAAATTAGAAGCCGTGGGTCATTGTTATGAATCT
715



716
CTTTCAGAGGAATACAGACAATTGACAAAATTCACAGACTCTCAAGATTTTAAAA
770



771
AACTGTTTAACAAGGTCCCTATTGTTACAGATGGAAGGGTCAAACTTAATAAAGG
825



826
ATATTTGTTCGACTTTGTGATTAGTTTGATGCGATTCAAAAAAGAATCAGCTCTA
880



881
GCTACCACCGCAATAGATCCTGTTAGATACATAGATCCTCGTCGCGATATCGCAT
935



936
TTTCTAACGTGATGGATATATTAAAGTCGAATAAAGTGAACAATAATTAATTCTT
990



991
TATTGTCATCTTTTATTTTTTTTTTTTGGAATATAAATATCCGGTAAAATTGAAA
1045



1046
AAATATACACTAATTAGCGTCTCGTTTCAGACGCTAGCTCGAGGTTGGGAGCTCT
1100



1101
CCGGATCCAAGCTTATCGATTTCGAACCCGGGGTACCGAATTCCTCGAGGTTGGG
1155



1156
AGCTCTCCGGATCCAAGCTTATCGATTTCGAACCCGGGGTACCGAATTCCTCGAG
1210



1211
ATGTTTATTTTCTTATTATTTCTTACTCTCACTAGTGGTAGTGACCTTGACCGGT
1265



1266
GCACCACTTTTGATGATGTTCAAGCTCCTAATTACACTCAACATACTTCATCTAT
1320



1321
GAGGGGGGTTTACTATCCTGATGAAATTTTTAGATCAGACACTCTTTATTTAACT
1375



1376
CAGGATTTATTTCTTCCATTTTATTCTAATGTTACAGGGTTTCATACTATTAATC
1430



1431
ATACGTTTGGCAACCCTGTCATACCTTTTAAGGATGGTATTTATTTTGCTGCCAC
1485



1486
AGAGAAATCAAATGTTGTCCGTGGTTGGGTTTTTGGTTCTACCATGAACAACAAG
1540



1541
TCACAGTCGGTGATTATTATTAACAATTCTACTAATGTTGTTATACGAGCATGTA
1595



1596
ACTTTGAATTGTGTGACAACCCTTTCTTTGCTGTTTCTAAACCCATGGGTACACA
1650



1651
GACACATACTATGATATTCGATAATGCATTTAATTGCACTTTCGAGTACATATCT
1705



1706
GATGCCTTTTCGCTTGATGTTTCAGAAAAGTCAGGTAATTTTAAACACTTACGAG
1760



1761
AGTTTGTGTTTAAAAATAAAGATGGGTTTCTCTATGTTTATAAGGGCTATCAACC
1815



1816
TATAGATGTAGTTCGTGATCTACCTTCTGGTTTTAACACTTTGAAACCTATTTTT
1870



1871
AAGTTGCCTCTTGGTATTAACATTACAAATTTTAGAGCCATTCTTACAGCCTTTT
1925



1926
CACCTGCTCAAGACATTTGGGGCACGTCAGCTGCAGCCTATTTTGTTGGCTATTT
1980



1981
AAAGCCAACTACATTTATGCTCAAGTATGATGAAAATGGTACAATCACAGATGCT
2035



2036
GTTGATTGTTCTCAAAATCCACTTGCTGAACTCAAATGCTCTGTTAAGAGCTTTG
2090



2091
AGATTGACAAAGGAATTTACCAGACCTCTAATTTCAGGGTTGTTCCCTCAGGAGA
2145



2146
TGTTGTGAGATTCCCTAATATTACAAACTTGTGTCCTTTTGGAGAGGTTTTTAAT
2200



2201
GCTACTAAATTCCCTTCTGTCTATGCATGGGAGAGAAAAAAAATTTCTAATTGTG
2255



2256
TTGCTGATTACTCTGTGCTCTACAACTCAACATTCTTTTCAACCTTTAAGTGCTA
2310



2311
TGGCGTTTCTGCCACTAAGTTGAATGATCTTTGCTTCTCCAATGTCTATGCAGAT
2365



2366
TCTTTTGTAGTCAAGGGAGATGATGTAAGACAAATAGCGCCAGGACAAACTGGTG
2420



2421
TTATTGCTGATTATAATTATAAATTGCCAGATGATTTCATGGGTTGTGTCCTTGC
2475



2476
TTGGAATACTAGGAACATTGATGCTACTTCAACTGGTAATCATAATTATAAATAT
2530



2531
AGGTATCTTAGACATGGCAAGCTTAGGCCCTTTGAGAGAGACATATCTAATGTGC
2585



2586
CTTTCTCCCCTGATGGCAAACCTTGCACCCCACCTGCTCTTAATTGTTATTGGCC
2640



2641
ATTAAATGATTATGGTTTTTACACCACTACTGGCATTGGCTACCAACCTTACAGA
2695



2696
GTTGTAGTACTTTCTTTTGAACTTTTAAATGCACCGGCCACGGTTTGTGGACCAA
2750



2751
AATTATCCACTGACCTTATTAAGAACCAGTGTGTCAATTTTAATTTTAATGGACT
2805



2806
CACTGGTACTGGTGTGTTAACTCCTTCTTCAAAGAGATTTCAACCATTTCAACAA
2860



2861
TTTGGCCGTGATGTTTCTGATTTCACTGATTCCGTTCGAGATCCTAAAACATCTG
2915



2916
AAATATTAGACATTTCACCTTGCTCTTTTGGGGGTGTAAGTGTAATTACACCTGG
2970



2971
AACAAATGCTTCATCTGAAGTTGCTGTTCTATATCAAGATGTTAACTGCACTGAT
3025



3026
GTTTCTACAGCAATTCATGCAGATCAACTCACACCAGCTTGGCGCATATATTCTA
3080



3081
CTGGAAACAATGTATTCCAGACTCAAGCAGGCTGTCTTATAGGAGCTGAGCATGT
3135



3136
CGACACTTCTTATGAGTGCGACATTCCTATTGGAGCTGGCATTTGTGCTAGTTAC
3190



3191
CATACAGTTTCTTTATTACGTAGTACTAGCCAAAAATCTATTGTGGCTTATACTA
3245



3246
TGTCTTTAGGTGCTGATAGTTCAATTGCTTACTCTAATAACACCATTGCTATACC
3300



3301
TACTAACTTTTCAATTAGCATTACTACAGAAGTAATGCCTGTTTCTATGGCTAAA
3355



3356
ACCTCCGTAGATTGTAATATGTACATCTGCGGAGATTCTACTGAATGTGCTAATT
3410



3411
TGCTTCTCCAATATGGTAGCTTTTGCACACAACTAAATCGTGCACTCTCAGGTAT
3465



3466
TGCTGCTGAACAGGATCGCAACACACGTGAAGTGTTCGCTCAAGTCAAACAAATG
3520



3521
TACAAAACCCCAACTTTGAAATATTTTGGTGGTTTTAATTTTTCACAAATATTAC
3575



3576
CTGACCCTCTAAAGCCAACTAAGAGGTCTTTTATTGAGGACTTGCTCTTTAATAA
3630



3631
GGTGACACTCGCTGATGCTGGCTTCATGAAGCAATATGGCGAATGCCTAGGTGAT
3685



3686
ATTAATGCTAGAGATCTCATTTGTGCGCAGAAGTTCAATGGACTTACAGTGTTGC
3740



3741
CACCTCTGCTCACTGATGATATGATTGCTGCCTACACTGCTGCTCTAGTTAGTGG
3795



3796
TACTGCCACTGCTGGATGGACATTTGGTGCTGGCGCTGCTCTTCAAATACCTTTT
3850



3851
GCTATGCAAATGGCATATAGGTTCAATGGCATTGGAGTTACCCAAAATGTTCTCT
3905



3906
ATGAGAACCAAAAACAAATCGCCAACCAATTTAACAAGGCGATTAGTCAAATTCA
3960



3961
AGAATCACTTACAACAACATCAACTGCATTGGGCAAGCTGCAAGACGTTGTTAAC
4015



4016
CAGAATGCTCAAGCATTAAACACACTTGTTAAACAACTTAGCTCTAATTTTGGTG
4070



4071
CAATTTCAAGTGTGCTAAATGATATCCTTTCGCGACTTGATAAAGTCGAGGCGGA
4125



4126
GGTACAAATTGACAGGTTAATTACAGGCAGACTTCAAAGCCTTCAAACCTATGTA
4180



4181
ACACAACAACTAATCAGGGCTGCTGAAATCAGGGCTTCTGCTAATCTTGCTGCTA
4235



4236
CTAAAATGTCTGAGTGTGTTCTTGGACAATCAAAAAGAGTTGACTTTTGTGGAAA
4290



4291
GGGCTACCACCTTATGTCCTTCCCACAAGCAGCCCCGCATGGTGTTGTCTTCCTA
4345



4346
CATGTCACGTATGTGCCATCCCAGGAGAGGAACTTCACCACAGCGCCAGCAATTT
4400



4401
GTCATGAAGGCAAAGCATACTTCCCTCGTGAAGGTGTTTTCGTGTTTAATGGCAC
4455



4456
TTCTTGGTTTATTACACAGAGGAACTTCTTTTCTCCACAAATAATTACTACAGAC
4510



4511
AATACATTTGTCTCAGGAAATTGTGATGTCGTTATTGGCATCATTAACAACACAG
4565



4566
TTTATGATCCTCTGCAACCTGAGCTCGACTCATTCAAAGAAGAGCTGGACAAGTA
4620



4621
CTTCAAAAATCATACATCACCAGATGTTGATCTTGGCGACATTTCAGGCATTAAC
4675



4676
GCTTCTGTCGTCAACATTCAAAAAGAAATTGACCGCCTCAATGAGGTCGCTAAAA
4730



4731
ATTTAAATGAATCACTCATTGACCTTCAAGAATTGGGAAAATATGAGCAATATAT
4785



4786
TAAATGGCCTTGGTATGTTTGGCTCGGCTTCATTGCTGGACTAATTGCCATCGTC
4840



4841
ATGGTTACAATCTTGCTTTGTTGCATGACTAGTTGTTGCAGTTGCCTCAAGGGTG
4895



4896
CATGCTCTTGTGGTTCTTGCTGCAAGTTTGATGAGGATGACTCTGAGCCAGTTCT
4950



4951
CAAGGGTGTCAAATTACATTACACATAATATTATATTTTTTATCTAAAAAACTAA
5005



5006
AAATAAACATTGATTAAATTTTAATATAATACTTAAAAATGGATGTTGTGTCGTT
5060



5061
AGATAAACCGTTTATGTATTTTGAGGAAATTGATAATGAGTTAGATTACGAACCA
5115



5116
GAAAGTGCAAATGAGGTCGCAAAAAAACTGCCGTATCAAGGACAGTTAAAACTAT
5170



5171
TACTAGGAGAATTATTTTTTCTTAGTAAGTTACAGCGACACGGTATATTAGATGG
5225



5226
TGCCACCGTAGTGTATATAGGATCTGCTCCCGGTACACATATACGTTATTTGAGA
5280



5281
GATCATTTCTATAATTTAGGAGTGATCATCAAATGGATGCTAATTGACGGCCGCC
5335



5336
ATCATGATCCTATTTTAAATGGATTGCGTGATGTGACTCTAGTGACTCGGTTCGT
5390



5391
TGATGAGGAATATCTACGATCCATCAAAAAACAACTGCATCCTTCTAAGATTATT
5445



5446
TTAATTTCTGATGTGAGATCCAAACGAGGAGGAAATGAACCTAGTACGGCGGATT
5500



5501
TACTAAGTAATTACGCTCTACAAAATGTCATGATTAGTATTTTAAACCCCGTGGC
5555



5556
ATCTAGTCTTAAATGGAGATGCCCGTTTCCAGATCAATGGATCAAGGACTTTTAT
5610



5611
ATCCCACACGGTAATAAAATGTTACAACCTTTTGCTCCTTCATATTCAGCTGAAA
5665



5666
TGAGATTATTAAGTATTTATACCGGTGAGAACATGAGACTGACTCGAGTTACCAA
5720



5721
ATTAGACGCTGTAAATTATGAAAAAAAGATGTACTACCTTAATAAGATCGTCCGT
5775



5776
AACAAAGTAGTTGTTAACTTTGATTATCCTAATCAGGAATATGACTATTTTCACA
5830



5831
TGTACTTTATGCTGAGGACCGTGTACTGCAATAAAACATTTCCTACTACTAAAGC
5885



5886
AAAGGTACTATTTCTACAACAATCTATATTTCGTTTCTTAAATATTCCAACAACA
5940



5941
TCAACTGAAAAAGTTAGTCATGAACCAATACAACGTAA
5978












Nucleic acid encoding S
21562
atgtttgtt tttcttgttt tattgccact agtctctagt


protein (21562-25383)
21601
cagtgtgtta atcttacaac cagaactcaa ttaccccctg catacactaa ttctttcaca


Gene Bank accession
21661
cgtggtgttt attaccctga caaagttttc agatcctcag ttttacattc aactcaggac


number MN988668 or
21721
ttgttcttac ctttcttttc caatgttact tggttccatg ctatacatgt ctctgggacc


(21579-25400) Gene Bank
21781
aatggtacta agaggtttga taaccctgtc ctaccattta atgatggtgt ttattttgct


accession number
21841
tccactgaga agtctaacat aataagaggc tggatttttg gtactacttt agattcgaag


NC_045512. SEQ ID NO: 45
21901
acccagtccc tacttattgt taataacgct actaatgttg ttattaaagt ctgtgaattt



21961
caattttgta atgatccatt tttgggtgtt tattaccaca aaaacaacaa aagttggatg



22021
gaaagtgagt tcagagttta ttctagtgcg aataattgca cttttgaata tgtctctcag



22081
ccttttctta tggaccttga aggaaaacag ggtaatttca aaaatcttag ggaatttgtg



22141
tttaagaata ttgatggtta ttttaaaata tattctaagc acacgcctat taatttagtg



22201
cgtgatctcc ctcagggttt ttcggcttta gaaccattgg tagatttgcc aataggtatt



22261
aacatcacta ggtttcaaac tttacttgct ttacatagaa gttatttgac tcctggtgat



22321
tcttcttcag gttggacagc tggtgctgca gcttattatg tgggttatct tcaacctagg



22381
acttttctat taaaatataa tgaaaatgga accattacag atgctgtaga ctgtgcactt



22441
gaccctctct cagaaacaaa gtgtacgttg aaatccttca ctgtagaaaa aggaatctat



22501
caaacttcta actttagagt ccaaccaaca gaatctattg ttagatttcc taatattaca



22561
aacttgtgcc cttttggtga agtttttaac gccaccagat ttgcatctgt ttatgcttgg



22621
aacaggaaga gaatcagcaa ctgtgttgct gattattctg tcctatataa ttccgcatca



22681
ttttccactt ttaagtgtta tggagtgtct cctactaaat taaatgatct ctgctttact



22741
aatgtctatg cagattcatt tgtaattaga ggtgatgaag tcagacaaat cgctccaggg



22801
caaactggaa agattgctga ttataattat aaattaccag atgattttac aggctgcgtt



22861
atagcttgga attctaacaa tcttgattct aaggttggtg gtaattataa ttacctgtat



22921
agattgttta ggaagtctaa tctcaaacct tttgagagag atatttcaac tgaaatctat



22981
caggccggta gcacaccttg taatggtgtt gaaggtttta attgttactt tcctttacaa



23041
tcatatggtt tccaacccac taatggtgtt ggttaccaac catacagagt agtagtactt



23101
tcttttgaac ttctacatgc accagcaact gtttgtggac ctaaaaagtc tactaatttg



23161
gttaaaaaca aatgtgtcaa tttcaacttc aatggtttaa caggcacagg tgttcttact



23221
gagtctaaca aaaagtttct gcctttccaa caatttggca gagacattgc tgacactact



23281
gatgctgtcc gtgatccaca gacacttgag attcttgaca ttacaccatg ttcttttggt



23341
ggtgtcagtg ttataacacc aggaacaaat acttctaacc aggttgctgt tctttatcag



23401
gatgttaact gcacagaagt ccctgttgct attcatgcag atcaacttac tcctacttgg



23461
cgtgtttatt ctacaggttc taatgttttt caaacacgtg caggctgttt aataggggct



23521
gaacatgtca acaactcata tgagtgtgac atacccattg gtgcaggtat atgcgctagt



23581
tatcagactc agactaattc tcctcggcgg gcacgtagtg tagctagtca atccatcatt



23641
gcctacacta tgtcacttgg tgcagaaaat tcagttgctt actctaataa ctctattgcc



23701
atacccacaa attttactat tagtgttacc acagaaattc taccagtgtc tatgaccaag



23761
acatcagtag attgtacaat gtacatttgt ggtgattcaa ctgaatgcag caatcttttg



23821
ttgcaatatg gcagtttttg tacacaatta aaccgtgctt taactggaat agctgttgaa



23881
caagacaaaa acacccaaga agtttttgca caagtcaaac aaatttacaa aacaccacca



23941
attaaagatt ttggtggttt taatttttca caaatattac cagatccatc aaaaccaagc



24001
aagaggtcat ttattgaaga tctacttttc aacaaagtga cacttgcaga tgctggcttc



24061
atcaaacaat atggtgattg ccttggtgat attgctgcta gagacctcat ttgtgcacaa



24121
aagtttaacg gccttactgt tttgccacct ttgctcacag atgaaatgat tgctcaatac



24181
acttctgcac tgttagcggg tacaatcact tctggttgga cctttggtgc aggtgctgca



24241
ttacaaatac catttgctat gcaaatggct tataggttta atggtattgg agttacacag



24301
aatgttctct atgagaacca aaaattgatt gccaaccaat ttaatagtgc tattggcaaa



24361
attcaagact cactttcttc cacagcaagt gcacttggaa aacttcaaga tgtggtcaac



24421
caaaatgcac aagctttaaa cacgcttgtt aaacaactta gctccaattt tggtgcaatt



24481
tcaagtgttt taaatgatat cctttcacgt cttgacaaag ttgaggctga agtgcaaatt



24541
gataggttga tcacaggcag acttcaaagt ttgcagacat atgtgactca acaattaatt



24601
agagctgcag aaatcagagc ttctgctaat cttgctgcta ctaaaatgtc agagtgtgta



24661
cttggacaat caaaaagagt tgatttttgt ggaaagggct atcatcttat gtccttccct



24721
cagtcagcac ctcatggtgt agtcttcttg catgtgactt atgtccctgc acaagaaaag



24781
aacttcacaa ctgctcctgc catttgtcat gatggaaaag cacactttcc tcgtgaaggt



24841
gtctttgttt caaatggcac acactggttt gtaacacaaa ggaattttta tgaaccacaa



24901
atcattacta cagacaacac atttgtgtct ggtaactgtg atgttgtaat aggaattgtc



24961
aacaacacag tttatgatcc tttgcaacct gaattagact cattcaagga ggagttagat



25021
aaatatttta agaatcatac atcaccagat gttgatttag gtgacatctc tggcattaat



25081
gcttcagttg taaacattca aaaagaaatt gaccgcctca atgaggttgc caagaattta



25141
aatgaatctc tcatcgatct ccaagaactt ggaaagtatg agcagtatat aaaatggcca



25201
tggtacattt ggctaggttt tatagctggc ttgattgcca tagtaatggt gacaattatg



25261
ctttgctgta tgaccagttg ctgtagttgt ctcaagggct gttgttcttg tggatcctgc



25321
tgcaaatttg atgaagacga ctctgagcca gtgctcaaag gagtcaaatt acattacaca



25381
taa





Nucleotide Sequence of
1
ttaaaggttt ataccttccc aggtaacaaa ccaaccaact ttcgatctct tgtagatctg


SARS-CoV2 isolate 2019-
61
ttctctaaac gaactttaaa atctgtgtgg ctgtcactcg gctgcatgct tagtgcactc


nCoV WHU01, complete
121
acgcagtata attaataact aattactgtc gttgacagga cacgagtaac tcgtctatct


genome. GenBank Accession
181
tctgcaggct gcttacggtt tcgtccgtgt tgcagccgat catcagcaca tctaggtttc


Number MN988668.1.
241
gtccgggtgt gaccgaaagg taagatggag agccttgtcc ctggtttcaa cgagaaaaca


SEQ ID NO: 46
301
cacgtccaac tcagtttgcc tgttttacag gttcgcgacg tgctcgtacg tggctttgga



361
gactccgtgg aggaggtctt atcagaggca cgtcaacatc ttaaagatgg cacttgtggc



421
ttagtagaag ttgaaaaagg cgttttgcct caacttgaac agccctatgt gttcatcaaa



481
cgttcggatg ctcgaactgc acctcatggt catgttatgg ttgagctggt agcagaactc



541
gaaggcattc agtacggtcg tagtggtgag acacttggtg tccttgtccc tcatgtgggc



601
gaaataccag tggcttaccg caaggttctt cttcgtaaga acggtaataa aggagctggt



661
ggccatagtt acggcgccga tctaaagtca tttgacttag gcgacgagct tggcactgat



721
ccttatgaag attttcaaga aaactggaac actaaacata gcagtggtgt tacccgtgaa



781
ctcatgcgtg agcttaacgg aggggcatac actcgctatg tcgataacaa cttctgtggc



841
cctgatggct accctcttga gtgcattaaa gaccttctag cacgtgctgg taaagcttca



901
tgcactttgt ccgaacaact ggactttatt gacactaaga ggggtgtata ctgctgccgt



961
gaacatgagc atgaaattgc ttggtacacg gaacgttctg aaaagagcta tgaattgcag



1021
acaccttttg aaattaaatt ggcaaagaaa tttgacacct tcaatgggga atgtccaaat



1081
tttgtatttc ccttaaattc cataatcaag actattcaac caagggttga aaagaaaaag



1141
cttgatggct ttatgggtag aattcgatct gtctatccag ttgcgtcacc aaatgaatgc



1201
aaccaaatgt gcctttcaac tctcatgaag tgtgatcatt gtggtgaaac ttcatggcag



1261
acgggcgatt ttgttaaagc cacttgcgaa ttttgtggca ctgagaattt gactaaagaa



1321
ggtgccacta cttgtggtta cttaccccaa aatgctgttg ttaaaattta ttgtccagca



1381
tgtcacaatt cagaagtagg acctgagcat agtcttgccg aataccataa tgaatctggc



1441
ttgaaaacca ttcttcgtaa gggtggtcgc actattgcct ttggaggctg tgtgttctct



1501
tatgttggtt gccataacaa gtgtgcctat tgggttccac gtgctagcgc taacataggt



1561
tgtaaccata caggtgttgt tggagaaggt tccgaaggtc ttaatgacaa ccttcttgaa



1621
atactccaaa aagagaaagt caacatcaat attgttggtg actttaaact taatgaagag



1681
atcgccatta ttttggcatc tttttctgct tccacaagtg cttttgtgga aactgtgaaa



1741
ggtttggatt ataaagcatt caaacaaatt gttgaatcct gtggtaattt taaagttaca



1801
aaaggaaaag ctaaaaaagg tgcctggaat attggtgaac agaaatcaat actgagtcct



1861
ctttatgcat ttgcatcaga ggctgctcgt gttgtacgat caattttctc ccgcactctt



1921
gaaactgctc aaaattctgt gcgtgtttta cagaaggccg ctataacaat actagatgga



1981
atttcacagt attcactgag actcattgat gctatgatgt tcacatctga tttggctact



2041
aacaatctag ttgtaatggc ctacattaca ggtggtgttg ttcagttgac ttcgcagtgg



2101
ctaactaaca tctttggcac tgtttatgaa aaactcaaac ccgtccttga ttggcttgaa



2161
gagaagttta aggaaggtgt agagtttctt agagacggtt gggaaattgt taaatttatc



2221
tcaacctgtg cttgtgaaat tgtcggtgga caaattgtca cctgtgcaaa ggaaattaag



2281
gagagtgttc agacattctt taagcttgta aataaatttt tggctttgtg tgctgactct



2341
atcattattg gtggagctaa acttaaagcc ttgaatttag gtgaaacatt tgtcacgcac



2401
tcaaagggat tgtacagaaa gtgtgttaaa tccagagaag aaactggcct actcatgcct



2461
ctaaaagccc caaaagaaat tatcttctta gagggagaaa cacttcccac agaagtgtta



2521
acagaggaag ttgtcttgaa aactggtgat ttacaaccat tagaacaacc tactagtgaa



2581
gctgttgaag ctccattggt tggtacacca gtttgtatta acgggcttat gttgctcgaa



2641
atcaaagaca cagaaaagta ctgtgccctt gcacctaata tgatggtaac aaacaatacc



2701
ttcacactca aaggcggtgc accaacaaag gttacttttg gtgatgacac tgtgatagaa



2761
gtgcaaggtt acaagagtgt gaatatcact tttgaacttg atgaaaggat tgataaagta



2821
cttaatgaga agtgctctgc ctatacagtt gaactcggta cagaagtaaa tgagttcgcc



2881
tgtgttgtgg cagatgctgt cataaaaact ttgcaaccag tatctgaatt acttacacca



2941
ctgggcattg atttagatga gtggagtatg gctacatact acttatttga tgagtctggt



3001
gagtttaaat tggcttcaca tatgtattgt tctttctacc ctccagatga ggatgaagaa



3061
gaaggtgatt gtgaagaaga agagtttgag ccatcaactc aatatgagta tggtactgaa



3121
gatgattacc aaggtaaacc tttggaattt ggtgccactt ctgctgctct tcaacctgaa



3181
gaagagcaag aagaagattg gttagatgat gatagtcaac aaactgttgg tcaacaagac



3241
ggcagtgagg acaatcagac aactactatt caaacaattg ttgaggttca acctcaatta



3301
gagatggaac ttacaccagt tgttcagact attgaagtga atagttttag tggttattta



3361
aaacttactg acaatgtata cattaaaaat gcagacattg tggaagaagc taaaaaggta



3421
aaaccaacag tggttgttaa tgcagccaat gtttacctta aacatggagg aggtgttgca



3481
ggagccttaa ataaggctac taacaatgcc atgcaagttg aatctgatga ttacatagct



3541
actaatggac cacttaaagt gggtggtagt tgtgttttaa gcggacacaa tcttgctaaa



3601
cactgtcttc atgttgtcgg cccaaatgtt aacaaaggtg aagacattca acttcttaag



3661
agtgcttatg aaaattttaa tcagcacgaa gttctacttg caccattatt atcagctggt



3721
atttttggtg ctgaccctat acattcttta agagtttgtg tagatactgt tcgcacaaat



3781
gtctacttag ctgtctttga taaaaatctc tatgacaaac ttgtttcaag ctttttggaa



3841
atgaagagtg aaaagcaagt tgaacaaaag atcgctgaga ttcctaaaga ggaagttaag



3901
ccatttataa ctgaaagtaa accttcagtt gaacagagaa aacaagatga taagaaaatc



3961
aaagcttgtg ttgaagaagt tacaacaact ctggaagaaa ctaagttcct cacagaaaac



4021
ttgttacttt atattgacat taatggcaat cttcatccag attctgccac tcttgttagt



4081
gacattgaca tcactttctt aaagaaagat gctccatata tagtgggtga tgttgttcaa



4141
gagggtgttt taactgctgt ggttatacct actaaaaagg ctggtggcac tactgaaatg



4201
ctagcgaaag ctttgagaaa agtgccaaca gacaattata taaccactta cccgggtcag



4261
ggtttaaatg gttacactgt agaggaggca aagacagtgc ttaaaaagtg taaaagtgcc



4321
ttttacattc taccatctat tatctctaat gagaagcaag aaattcttgg aactgtttct



4381
tggaatttgc gagaaatgct tgcacatgca gaagaaacac gcaaattaat gcctgtctgt



4441
gtggaaacta aagccatagt ttcaactata cagcgtaaat ataagggtat taaaatacaa



4501
gagggtgtgg ttgattatgg tgctagattt tacttttaca ccagtaaaac aactgtagcg



4561
tcacttatca acacacttaa cgatctaaat gaaactcttg ttacaatgcc acttggctat



4621
gtaacacatg gcttaaattt ggaagaagct gctcggtata tgagatctct caaagtgcca



4681
gctacagttt ctgtttcttc acctgatgct gttacagcgt ataatggtta tcttacttct



4741
tcttctaaaa cacctgaaga acattttatt gaaaccatct cacttgctgg ttcctataaa



4801
gattggtcct attctggaca atctacacaa ctaggtatag aatttcttaa gagaggtgat



4861
aaaagtgtat attacactag taatcctacc acattccacc tagatggtga agttatcacc



4921
tttgacaatc ttaagacact tctttctttg agagaagtga ggactattaa ggtgtttaca



4981
acagtagaca acattaacct ccacacgcaa gttgtggaca tgtcaatgac atatggacaa



5041
cagtttggtc caacttattt ggatggagct gatgttacta aaataaaacc tcataattca



5101
catgaaggta aaacatttta tgttttacct aatgatgaca ctctacgtgt tgaggctttt



5161
gagtactacc acacaactga tcctagtttt ctgggtaggt acatgtcagc attaaatcac



5221
actaaaaagt ggaaataccc acaagttaat ggtttaactt ctattaaatg ggcagataac



5281
aactgttatc ttgccactgc attgttaaca ctccaacaaa tagagttgaa gtttaatcca



5341
cctgctctac aagatgctta ttacagagca agggctggtg aagctgctaa cttttgtgca



5401
cttatcttag cctactgtaa taagacagta ggtgagttag gtgatgttag agaaacaatg



5461
agttacttgt ttcaacatgc caatttagat tcttgcaaaa gagtcttgaa cgtggtgtgt



5521
aaaacttgtg gacaacagca gacaaccctt aagggtgtag aagctgttat gtacatgggc



5581
acactttctt atgaacaatt taagaaaggt gttcagatac cttgtacgtg tggtaaacaa



5641
gctacaaaat atctagtaca acaggagtca ccttttgtta tgatgtcagc accacctgct



5701
cagtatgaac ttaagcatgg tacatttact tgtgctagtg agtacactgg taattaccag



5761
tgtggtcact ataaacatat aacttctaaa gaaactttgt attgcataga cggtgcttta



5821
cttacaaagt cctcagaata caaaggtcct attacggatg ttttctacaa agaaaacagt



5881
tacacaacaa ccataaaacc agttacttat aaattggatg gtgttgtttg tacagaaatt



5941
gaccctaagt tggacaatta ttataagaaa gacaattctt atttcacaga gcaaccaatt



6001
gatcttgtac caaaccaacc atatccaaac gcaagcttcg ataattttaa gtttgtatgt



6061
gataatatca aatttgctga tgatttaaac cagttaactg gttataagaa acctgcttca



6121
agagagctta aagttacatt tttccctgac ttaaatggtg atgtggtggc tattgattat



6181
aaacactaca caccctcttt taagaaagga gctaaattgt tacataaacc tattgtttgg



6241
catgttaaca atgcaactaa taaagccacg tataaaccaa atacctggtg tatacgttgt



6301
ctttggagca caaaaccagt tgaaacatca aattcgtttg atgtactgaa gtcagaggac



6361
gcgcagggaa tggataatct tgcctgcgaa gatctaaaac cagtctctga agaagtagtg



6421
gaaaatccta ccatacagaa agacgttctt gagtgtaatg tgaaaactac cgaagttgta



6481
ggagacatta tacttaaacc agcaaataat agtttaaaaa ttacagaaga ggttggccac



6541
acagatctaa tggctgctta tgtagacaat tctagtctta ctattaagaa acctaatgaa



6601
ttatctagag tattaggttt gaaaaccctt gctactcatg gtttagctgc tgttaatagt



6661
gtcccttggg atactatagc taattatgct aagccttttc ttaacaaagt tgttagtaca



6721
actactaaca tagttacacg gtgtttaaac cgtgtttgta ctaattatat gccttatttc



6781
tttactttat tgctacaatt gtgtactttt actagaagta caaattctag aattaaagca



6841
tctatgccga ctactatagc aaagaatact gttaagagtg tcggtaaatt ttgtctagag



6901
gcttcattta attatttgaa gtcacctaat ttttctaaac tgataaatat tataatttgg



6961
tttttactat taagtgtttg cctaggttct ttaatctact caaccgctgc tttaggtgtt



7021
ttaatgtcta atttaggcat gccttcttac tgtactggtt acagagaagg ctatttgaac



7081
tctactaatg tcactattgc aacctactgt actggttcta taccttgtag tgtttgtctt



7141
agtggtttag attctttaga cacctatcct tctttagaaa ctatacaaat taccatttca



7201
tcttttaaat gggatttaac tgcttttggc ttagttgcag agtggttttt ggcatatatt



7261
cttttcacta ggtttttcta tgtacttgga ttggctgcaa tcatgcaatt gtttttcagc



7321
tattttgcag tacattttat tagtaattct tggcttatgt ggttaataat taatcttgta



7381
caaatggccc cgatttcagc tatggttaga atgtacatct tctttgcatc attttattat



7441
gtatggaaaa gttatgtgca tgttgtagac ggttgtaatt catcaacttg tatgatgtgt



7501
tacaaacgta atagagcaac aagagtcgaa tgtacaacta ttgttaatgg tgttagaagg



7561
tccttttatg tctatgctaa tggaggtaaa ggcttttgca aactacacaa ttggaattgt



7621
gttaattgtg atacattctg tgctggtagt acatttatta gtgatgaagt tgcgagagac



7681
ttgtcactac agtttaaaag accaataaat cctactgacc agtcttctta catcgttgat



7741
agtgttacag tgaagaatgg ttccatccat ctttactttg ataaagctgg tcaaaagact



7801
tatgaaagac attctctctc tcattttgtt aacttagaca acctgagagc taataacact



7861
aaaggttcat tgcctattaa tgttatagtt tttgatggta aatcaaaatg tgaagaatca



7921
tctgcaaaat cagcgtctgt ttactacagt cagcttatgt gtcaacctat actgttacta



7981
gatcaggcat tagtgtctga tgttggtgat agtgcggaag ttgcagttaa aatgtttgat



8041
gcttacgtta atacgttttc atcaactttt aacgtaccaa tggaaaaact caaaacacta



8101
gttgcaactg cagaagctga acttgcaaag aatgtgtcct tagacaatgt cttatctact



8161
tttatttcag cagctcggca agggtttgtt gattcagatg tagaaactaa agatgttgtt



8221
gaatgtctta aattgtcaca tcaatctgac atagaagtta ctggcgatag ttgtaataac



8281
tatatgctca cctataacaa agttgaaaac atgacacccc gtgaccttgg tgcttgtatt



8341
gactgtagtg cgcgtcatat taatgcgcag gtagcaaaaa gtcacaacat tgctttgata



8401
tggaacgtta aagatttcat gtcattgtct gaacaactac gaaaacaaat acgtagtgct



8461
gctaaaaaga ataacttacc ttttaagttg acatgtgcaa ctactagaca agttgttaat



8521
gttgtaacaa caaagatagc acttaagggt ggtaaaattg ttaataattg gttgaagcag



8581
ttaattaaag ttacacttgt gttccttttt gttgctgcta ttttctattt aataacacct



8641
gttcatgtca tgtctaaaca tactgacttt tcaagtgaaa tcataggata caaggctatt



8701
gatggtggtg tcactcgtga catagcatct acagatactt gttttgctaa caaacatgct



8761
gattttgaca catggtttag ccagcgtggt ggtagttata ctaatgacaa agcttgccca



8821
ttgattgctg cagtcataac aagagaagtg ggttttgtcg tgcctggttt gcctggcacg



8881
atattacgca caactaatgg tgactttttg catttcttac ctagagtttt tagtgcagtt



8941
ggtaacatct gttacacacc atcaaaactt atagagtaca ctgactttgc aacatcagct



9001
tgtgttttgg ctgctgaatg tacaattttt aaagatgctt ctggtaagcc agtaccatat



9061
tgttatgata ccaatgtact agaaggttct gttgcttatg aaagtttacg ccctgacaca



9121
cgttatgtgc tcatggatgg ctctattatt caatttccta acacctacct tgaaggttct



9181
gttagagtgg taacaacttt tgattctgag tactgtaggc acggcacttg tgaaagatca



9241
gaagctggtg tttgtgtatc tactagtggt agatgggtac ttaacaatga ttattacaga



9301
tctttaccag gagttttctg tggtgtagat gctgtaaatt tacttactaa tatgtttaca



9361
ccactaattc aacctattgg tgctttggac atatcagcat ctatagtagc tggtggtatt



9421
gtagctatcg tagtaacatg ccttgcctac tattttatga ggtttagaag agcttttggt



9481
gaatacagtc atgtagttgc ctttaatact ttactattcc ttatgtcatt cactgtactc



9541
tgtttaacac cagtttactc attcttacct ggtgtttatt ctgttattta cttgtacttg



9601
acattttatc ttactaatga tgtttctttt ttagcacata ttcagtggat ggttatgttc



9661
acacctttag tacctttctg gataacaatt gcttatatca tttgtatttc cacaaagcat



9721
ttctattggt tctttagtaa ttacctaaag agacgtgtag tctttaatgg tgtttccttt



9781
agtacttttg aagaagctgc gctgtgcacc tttttgttaa ataaagaaat gtatctaaag



9841
ttgcgtagtg atgtgctatt acctcttacg caatataata gatacttagc tctttataat



9901
aagtacaagt attttagtgg agcaatggat acaactagct acagagaagc tgcttgttgt



9961
catctcgcaa aggctctcaa tgacttcagt aactcaggtt ctgatgttct ttaccaacca



10021
ccacaaacct ctatcacctc agctgttttg cagagtggtt ttagaaaaat ggcattccca



10081
tctggtaaag ttgagggttg tatggtacaa gtaacttgtg gtacaactac acttaacggt



10141
ctttggcttg atgacgtagt ttactgtcca agacatgtga tctgcacctc tgaagacatg



10201
cttaacccta attatgaaga tttactcatt cgtaagtcta atcataattt cttggtacag



10261
gctggtaatg ttcaactcag ggttattgga cattctatgc aaaattgtgt acttaagctt



10321
aaggttgata cagccaatcc taagacacct aagtataagt ttgttcgcat tcaaccagga



10381
cagacttttt cagtgttagc ttgttacaat ggttcaccat ctggtgttta ccaatgtgct



10441
atgaggccca atttcactat taagggttca ttccttaatg gttcatgtgg tagtgttggt



10501
tttaacatag attatgactg tgtctctttt tgttacatgc accatatgga attaccaact



10561
ggagttcatg ctggcacaga cttagaaggt aacttttatg gaccttttgt tgacaggcaa



10621
acagcacaag cagctggtac ggacacaact attacagtta atgttttagc ttggttgtac



10681
gctgctgtta taaatggaga caggtggttt ctcaatcgat ttaccacaac tcttaatgac



10741
tttaaccttg tggctatgaa gtacaattat gaacctctaa cacaagacca tgttgacata



10801
ctaggacctc tttctgctca aactggaatt gccgttttag atatgtgtgc ttcattaaaa



10861
gaattactgc aaaatggtat gaatggacgt accatattgg gtagtgcttt attagaagat



10921
gaatttacac cttttgatgt tgttagacaa tgctcaggtg ttactttcca aagtgcagtg



10981
aaaagaacaa tcaagggtac acaccactgg ttgttactca caattttgac ttcactttta



11041
gttttagtcc agagtactca atggtctttg ttcttttttt tgtatgaaaa tgccttttta



11101
ccttttgcta tgggtattat tgctatgtct gcttttgcaa tgatgtttgt caaacataag



11161
catgcatttc tctgtttgtt tttgttacct tctcttgcca ctgtagctta ttttaatatg



11221
gtctatatgc ctgctagttg ggtgatgcgt attatgacat ggttggatat ggttgatact



11281
agtttgtctg gttttaagct aaaagactgt gttatgtatg catcagctgt agtgttacta



11341
atccttatga cagcaagaac tgtgtatgat gatggtgcta ggagagtgtg gacacttatg



11401
aatgtcttga cactcgttta taaagtttat tatggtaatg ctttagatca agccatttcc



11461
atgtgggctc ttataatctc tgttacttct aactactcag gtgtagttac aactgtcatg



11521
tttttggcca gaggtattgt ttttatgtgt gttgagtatt gccctatttt cttcataact



11581
ggtaatacac ttcagtgtat aatgctagtt tattgtttct taggctattt ttgtacttgt



11641
tactttggcc tcttttgttt actcaaccgc tactttagac tgactcttgg tgtttatgat



11701
tacttagttt ctacacagga gtttagatat atgaattcac agggactact cccacccaag



11761
aatagcatag atgccttcaa actcaacatt aaattgttgg gtgttggtgg caaaccttgt



11821
atcaaagtag ccactgtaca gtctaaaatg tcagatgtaa agtgcacatc agtagtctta



11881
ctctcagttt tgcaacaact cagagtagaa tcatcatcta aattgtgggc tcaatgtgtc



11941
cagttacaca atgacattct cttagctaaa gatactactg aagcctttga aaaaatggtt



12001
tcactacttt ctgttttgct ttccatgcag ggtgctgtag acataaacaa gctttgtgaa



12061
gaaatgctgg acaacagggc aaccttacaa gctatagcct cagagtttag ttcccttcca



12121
tcatatgcag cttttgctac tgctcaagaa gcttatgagc aggctgttgc taatggtgat



12181
tctgaagttg ttcttaaaaa gttgaagaag tctttgaatg tggctaaatc tgaatttgac



12241
cgtgatgcag ccatgcaacg taagttggaa aagatggctg atcaagctat gacccaaatg



12301
tataaacagg ctagatctga ggacaagagg gcaaaagtta ctagtgctat gcagacaatg



12361
cttttcacta tgcttagaaa gttggataat gatgcactca acaacattat caacaatgca



12421
agagatggtt gtgttccctt gaacataata cctcttacaa cagcagccaa actaatggtt



12481
gtcataccag actataacac atataaaaat acgtgtgatg gtacaacatt tacttatgca



12541
tcagcattgt gggaaatcca acaggttgta gatgcagata gtaaaattgt tcaacttagt



12601
gaaattagta tggacaattc acctaattta gcatggcctc ttattgtaac agctttaagg



12661
gccaattctg ctgtcaaatt acagaataat gagcttagtc ctgttgcact acgacagatg



12721
tcttgtgctg ccggtactac acaaactgct tgcactgatg acaatgcgtt agcttactac



12781
aacacaacaa agggaggtag gtttgtactt gcactgttat ccgatttaca ggatttgaaa



12841
tgggctagat tccctaagag tgatggaact ggtactatct atacagaact ggaaccacct



12901
tgtaggtttg ttacagacac acctaaaggt cctaaagtga agtatttata ctttattaaa



12961
ggattaaaca acctaaatag aggtatggta cttggtagtt tagctgccac agtacgtcta



13021
caagctggta atgcaacaga agtgcctgcc aattcaactg tattatcttt ctgtgctttt



13081
gctgtagatg ctgctaaagc ttacaaagat tatctagcta gtgggggaca accaatcact



13141
aattgtgtta agatgttgtg tacacacact ggtactggtc aggcaataac agttacaccg



13201
gaagccaata tggatcaaga atcctttggt ggtgcatcgt gttgtctgta ctgccgttgc



13261
cacatagatc atccaaatcc taaaggattt tgtgacttaa aaggtaagta tgtacaaata



13321
cctacaactt gtgctaatga ccctgtgggt tttacactta aaaacacagt ctgtaccgtc



13381
tgcggtatgt ggaaaggtta tggctgtagt tgtgatcaac tccgcgaacc catgcttcag



13441
tcagctgatg cacaatcgtt tttaaacggg tttgcggtgt aagtgcagcc cgtcttacac



13501
cgtgcggcac aggcactagt actgatgtcg tatacagggc ttttgacatc tacaatgata



13561
aagtagctgg ttttgctaaa ttcctaaaaa ctaattgttg tcgcttccaa gaaaaggacg



13621
aagatgacaa tttaattgat tcttactttg tagttaagag acacactttc tctaactacc



13681
aacatgaaga aacaatttat aatttactta aggattgtcc agctgttgct aaacatgact



13741
tctttaagtt tagaatagac ggtgacatgg taccacatat atcacgtcaa cgtcttacta



13801
aatacacaat ggcagacctc gtctatgctt taaggcattt tgatgaaggt aattgtgaca



13861
cattaaaaga aatacttgtc acatacaatt gttgtgatga tgattatttc aataaaaagg



13921
actggtatga ttttgtagaa aacccagata tattacgcgt atacgccaac ttaggtgaac



13981
gtgtacgcca agctttgtta aaaacagtac aattctgtga tgccatgcga aatgctggta



14041
ttgttggtgt actgacatta gataatcaag atctcaatgg taactggtat gatttcggtg



14101
atttcataca aaccacgcca ggtagtggag ttcctgttgt agattcttat tattcattgt



14161
taatgcctat attaaccttg accagggctt taactgcaga gtcacatgtt gacactgact



14221
taacaaagcc ttacattaag tgggatttgt taaaatatga cttcacggaa gagaggttaa



14281
aactctttga ccgttatttt aaatattggg atcagacata ccacccaaat tgtgttaact



14341
gtttggatga cagatgcatt ctgcattgtg caaactttaa tgttttattc tctacagtgt



14401
tcccacctac aagttttgga ccactagtga gaaaaatatt tgttgatggt gttccatttg



14461
tagtttcaac tggataccac ttcagagagc taggtgttgt acataatcag gatgtaaact



14521
tacatagctc tagacttagt tttaaggaat tacttgtgta tgctgctgac cctgctatgc



14581
acgctgcttc tggtaatcta ttactagata aacgcactac gtgcttttca gtagctgcac



14641
ttactaacaa tgttgctttt caaactgtca aacccggtaa ttttaacaaa gacttctatg



14701
actttgctgt gtctaagggt ttctttaagg aaggaagttc tgttgaatta aaacacttct



14761
tctttgctca ggatggtaat gctgctatca gcgattatga ctactatcgt tataatctac



14821
caacaatgtg tgatatcaga caactactat ttgtagttga agttgttgat aagtactttg



14881
attgttacga tggtggctgt attaatgcta accaagtcat cgtcaacaac ctagacaaat



14941
cagctggttt tccatttaat aaatggggta aggctagact ttattatgat tcaatgagtt



15001
atgaggatca agatgcactt ttcgcatata caaaacgtaa tgtcatccct actataactc



15061
aaatgaatct taagtatgcc attagtgcaa agaatagagc tcgcaccgta gctggtgtct



15121
ctatctgtag tactatgacc aatagacagt ttcatcaaaa attattgaaa tcaatagccg



15181
ccactagagg agctactgta gtaattggaa caagcaaatt ctatggtggt tggcacaaca



15241
tgttaaaaac tgtttatagt gatgtagaaa accctcacct tatgggttgg gattatccta



15301
aatgtgatag agccatgcct aacatgctta gaattatggc ctcacttgtt cttgctcgca



15361
aacatacaac gtgttgtagc ttgtcacacc gtttctatag attagctaat gagtgtgctc



15421
aagtattgag tgaaatggtc atgtgtggcg gttcactata tgttaaacca ggtggaacct



15481
catcaggaga tgccacaact gcttatgcta atagtgtttt taacatttgt caagctgtca



15541
cggccaatgt taatgcactt ttatctactg atggtaacaa aattgccgat aagtatgtcc



15601
gcaatttaca acacagactt tatgagtgtc tctatagaaa tagagatgtt gacacagact



15661
ttgtgaatga gttttacgca tatttgcgta aacatttctc aatgatgata ctctctgacg



15721
atgctgttgt gtgtttcaat agcacttatg catctcaagg tctagtggct agcataaaga



15781
actttaagtc agttctttat tatcaaaaca atgtttttat gtctgaagca aaatgttgga



15841
ctgagactga ccttactaaa ggacctcatg aattttgctc tcaacataca atgctagtta



15901
aacagggtga tgattatgtg taccttcctt acccagatcc atcaagaatc ctaggggccg



15961
gctgttttgt agatgatatc gtaaaaacag atggtacact tatgattgaa cggttcgtgt



16021
ctttagctat agatgcttac ccacttacta aacatcctaa tcaggagtat gctgatgtct



16081
ttcatttgta cttacaatac ataagaaagc tacatgatga gttaacagga cacatgttag



16141
acatgtattc tgttatgctt actaatgata acacttcaag gtattgggaa cctgagtttt



16201
atgaggctat gtacacaccg catacagtct tacaggctgt tggggcttgt gttctttgca



16261
attcacagac ttcattaaga tgtggtgctt gcatacgtag accattctta tgttgtaaat



16321
gctgttacga ccatgtcata tcaacatcac ataaattagt cttgtctgtt aatccgtatg



16381
tttgcaatgc tccaggttgt gatgtcacag atgtgactca actttactta ggaggtatga



16441
gctattattg taaatcacat aaaccaccca ttagttttcc attgtgtgct aatggacaag



16501
tttttggttt atataaaaat acatgtgttg gtagcgataa tgttactgac tttaatgcaa



16561
ttgcaacatg tgactggaca aatgctggtg attacatttt agctaacacc tgtactgaaa



16621
gactcaagct ttttgcagca gaaacgctca aagctactga ggagacattt aaactgtctt



16681
atggtattgc tactgtacgt gaagtgctgt ctgacagaga attacatctt tcatgggaag



16741
ttggtaaacc tagaccacca cttaaccgaa attatgtctt tactggttat cgtgtaacta



16801
aaaacagtaa agtacaaata ggagagtaca cctttgaaaa aggtgactat ggtgatgctg



16861
ttgtttaccg aggtacaaca acttacaaat taaatgttgg tgattatttt gtgctgacat



16921
cacatacagt aatgccatta agtgcaccta cactagtgcc acaagagcac tatgttagaa



16981
ttactggctt atacccaaca ctcaatatct cagatgagtt ttctagcaat gttgcaaatt



17041
atcaaaaggt tggtatgcaa aagtattcta cactccaggg accacctggt actggtaaga



17101
gtcattttgc tattggccta gctctctact acccttctgc tcgcatagtg tatacagctt



17161
gctctcatgc cgctgttgat gcactatgtg agaaggcatt aaaatatttg cctatagata



17221
aatgtagtag aattatacct gcacgtgctc gtgtagagtg ttttgataaa ttcaaagtga



17281
attcaacatt agaacagtat gtcttttgta ctgtaaatgc attgcctgag acgacagcag



17341
atatagttgt ctttgatgaa atttcaatgg ccacaaatta tgatttgagt gttgtcaatg



17401
ccagattacg tgctaagcac tatgtgtaca ttggcgaccc tgctcaatta cctgcaccac



17461
gcacattgct aactaagggc acactagaac cagaatattt caattcagtg tgtagactta



17521
tgaaaactat aggtccagac atgttcctcg gaacttgtcg gcgttgtcct gctgaaattg



17581
ttgacactgt gagtgctttg gtttatgata ataagcttaa agcacataaa gacaaatcag



17641
ctcaatgctt taaaatgttt tataagggtg ttatcacgca tgatgtttca tctgcaatta



17701
acaggccaca aataggcgtg gtaagagaat tccttacacg taaccctgct tggagaaaag



17761
ctgtctttat ttcaccttat aattcacaga atgctgtagc ctcaaagatt ttgggactac



17821
caactcaaac tgttgattca tcacagggct cagaatatga ctatgtcata ttcactcaaa



17881
ccactgaaac agctcactct tgtaatgtaa acagatttaa tgttgctatt accagagcaa



17941
aagtaggcat actttgcata atgtctgata gagaccttta tgacaagttg caatttacaa



18001
gtcttgaaat tccacgtagg aatgtggcaa ctttacaagc tgaaaatgta acaggactct



18061
ttaaagattg tagtaaggta atcactgggt tacatcctac acaggcacct acacacctca



18121
gtgttgacac taaattcaaa actgaaggtt tatgtgttga catacctggc atacctaagg



18181
acatgaccta tagaagactc atctctatga tgggttttaa aatgaattat caagttaatg



18241
gttaccctaa catgtttatc acccgcgaag aagctataag acatgtacgt gcatggattg



18301
gcttcgatgt cgaggggtgt catgctacta gagaagctgt tggtaccaat ttacctttac



18361
agctaggttt ttctacaggt gttaacctag ttgctgtacc tacaggttat gttgatacac



18421
ctaataatac agatttttcc agagttagtg ctaaaccacc gcctggagat caatttaaac



18481
acctcatacc acttatgtac aaaggacttc cttggaatgt agtgcgtata aagattgtac



18541
aaatgttaag tgacacactt aaaaatctct ctgacagagt cgtatttgtc ttatgggcac



18601
atggctttga gttgacatct atgaagtatt ttgtgaaaat aggacctgag cgcacctgtt



18661
gtctatgtga tagacgtgcc acatgctttt ccactgcttc agacacttat gcctgttggc



18721
atcattctat tggatttgat tacgtctata atccgtttat gattgatgtt caacaatggg



18781
gttttacagg taacctacaa agcaaccatg atctgtattg tcaagtccat ggtaatgcac



18841
atgtagctag ttgtgatgca atcatgacta ggtgtctagc tgtccacgag tgctttgtta



18901
agcgtgttga ctggactatt gaatatccta taattggtga tgaactgaag attaatgcgg



18961
cttgtagaaa ggttcaacac atggttgtta aagctgcatt attagcagac aaattcccag



19021
ttcttcacga cattggtaac cctaaagcta ttaagtgtgt acctcaagct gatgtagaat



19081
ggaagttcta tgatgcacag ccttgtagtg acaaagctta taaaatagaa gaattattct



19141
attcttatgc cacacattct gacaaattca cagatggtgt atgcctattt tggaattgca



19201
atgtcgatag atatcctgct aattccattg tttgtagatt tgacactaga gtgctatcta



19261
accttaactt gcctggttgt gatggtggca gtttgtatgt aaataaacat gcattccaca



19321
caccagcttt tgataaaagt gcttttgtta atttaaaaca attaccattt ttctattact



19381
ctgacagtcc atgtgagtct catggaaaac aagtagtgtc agatatagat tatgtaccac



19441
taaagtctgc tacgtgtata acacgttgca atttaggtgg tgctgtctgt agacatcatg



19501
ctaatgagta cagattgtat ctcgatgctt ataacatgat gatctcagct ggctttagct



19561
tgtgggttta caaacaattt gatacttata acctctggaa cacttttaca agacttcaga



19621
gtttagaaaa tgtggctttt aatgttgtaa ataagggaca ctttgatgga caacagggtg



19681
aagtaccagt ttctatcatt aataacactg tttacacaaa agttgatggt gttgatgtag



19741
aattgtttga aaataaaaca acattacctg ttaatgtagc atttgagctt tgggctaagc



19801
gcaacattaa accagtacca gaggtgaaaa tactcaataa tttgggtgtg gacattgctg



19861
ctaatactgt gatctgggac tacaaaagag atgctccagc acatatatct actattggtg



19921
tttgttctat gactgacata gccaagaaac caactgaaac gatttgtgca ccactcactg



19981
tcttttttga tggtagagtt gatggtcaag tagacttatt tagaaatgcc cgtaatggtg



20041
ttcttattac agaaggtagt gttaaaggtt tacaaccatc tgtaggtccc aaacaagcta



20101
gtcttaatgg agtcacatta attggagaag ccgtaaaaac acagttcaat tattataaga



20161
aagttgatgg tgttgtccaa caattacctg aaacttactt tactcagagt agaaatttac



20221
aagaatttaa acccaggagt caaatggaaa ttgatttctt agaattagct atggatgaat



20281
tcattgaacg gtataaatta gaaggctatg ccttcgaaca tatcgtttat ggagatttta



20341
gtcatagtca gttaggtggt ttacatctac tgattggact agctaaacgt tttaaggaat



20401
caccttttga attagaagat tttattccta tggacagtac agttaaaaac tatttcataa



20461
cagatgcgca aacaggttca tctaagtgtg tgtgttctgt tattgattta ttacttgatg



20521
attttgttga aataataaaa tcccaagatt tatctgtagt ttctaaggtt gtcaaagtga



20581
ctattgacta tacagaaatt tcatttatgc tttggtgtaa agatggccat gtagaaacat



20641
tttacccaaa attacaatct agtcaagcgt ggcaaccggg tgttgctatg cctaatcttt



20701
acaaaatgca aagaatgcta ttagaaaagt gtgaccttca aaattatggt gatagtgcaa



20761
cattacctaa aggcataatg atgaatgtcg caaaatatac tcaactgtgt caatatttaa



20821
acacattaac attagctgta ccctataata tgagagttat acattttggt gctggttctg



20881
ataaaggagt tgcaccaggt acagctgttt taagacagtg gttgcctacg ggtacgctgc



20941
ttgtcgattc agatcttaat gactttgtct ctgatgcaga ttcaactttg attggtgatt



21001
gtgcaactgt acatacagct aataaatggg atctcattat tagtgatatg tacgacccta



21061
agactaaaaa tgttacaaaa gaaaatgact ctaaagaggg ttttttcact tacatttgtg



21121
ggtttataca acaaaagcta gctcttggag gttccgtggc tataaagata acagaacatt



21181
cttggaatgc tgatctttat aagctcatgg gacacttcgc atggtggaca gcctttgtta



21241
ctaatgtgaa tgcgtcatca tctgaagcat ttttaattgg atgtaattat cttggcaaac



21301
cacgcgaaca aatagatggt tatgtcatgc atgcaaatta catattttgg aggaatacaa



21361
atccaattca gttgtcttcc tattctttat ttgacatgag taaatttccc cttaaattaa



21421
ggggtactgc tgttatgtct ttaaaagaag gtcaaatcaa tgatatgatt ttatctcttc



21481
ttagtaaagg tagacttata attagagaaa acaacagagt tgttatttct agtgatgttc



21541
ttgttaacaa ctaaacgaac aatgtttgtt tttcttgttt tattgccact agtctctagt



21601
cagtgtgtta atcttacaac cagaactcaa ttaccccctg catacactaa ttctttcaca



21661
cgtggtgttt attaccctga caaagttttc agatcctcag ttttacattc aactcaggac



21721
ttgttcttac ctttcttttc caatgttact tggttccatg ctatacatgt ctctgggacc



21781
aatggtacta agaggtttga taaccctgtc ctaccattta atgatggtgt ttattttgct



21841
tccactgaga agtctaacat aataagaggc tggatttttg gtactacttt agattcgaag



21901
acccagtccc tacttattgt taataacgct actaatgttg ttattaaagt ctgtgaattt



21961
caattttgta atgatccatt tttgggtgtt tattaccaca aaaacaacaa aagttggatg



22021
gaaagtgagt tcagagttta ttctagtgcg aataattgca cttttgaata tgtctctcag



22081
ccttttctta tggaccttga aggaaaacag ggtaatttca aaaatcttag ggaatttgtg



22141
tttaagaata ttgatggtta ttttaaaata tattctaagc acacgcctat taatttagtg



22201
cgtgatctcc ctcagggttt ttcggcttta gaaccattgg tagatttgcc aataggtatt



22261
aacatcacta ggtttcaaac tttacttgct ttacatagaa gttatttgac tcctggtgat



22321
tcttcttcag gttggacagc tggtgctgca gcttattatg tgggttatct tcaacctagg



22381
acttttctat taaaatataa tgaaaatgga accattacag atgctgtaga ctgtgcactt



22441
gaccctctct cagaaacaaa gtgtacgttg aaatccttca ctgtagaaaa aggaatctat



22501
caaacttcta actttagagt ccaaccaaca gaatctattg ttagatttcc taatattaca



22561
aacttgtgcc cttttggtga agtttttaac gccaccagat ttgcatctgt ttatgcttgg



22621
aacaggaaga gaatcagcaa ctgtgttgct gattattctg tcctatataa ttccgcatca



22681
ttttccactt ttaagtgtta tggagtgtct cctactaaat taaatgatct ctgctttact



22741
aatgtctatg cagattcatt tgtaattaga ggtgatgaag tcagacaaat cgctccaggg



22801
caaactggaa agattgctga ttataattat aaattaccag atgattttac aggctgcgtt



22861
atagcttgga attctaacaa tcttgattct aaggttggtg gtaattataa ttacctgtat



22921
agattgttta ggaagtctaa tctcaaacct tttgagagag atatttcaac tgaaatctat



22981
caggccggta gcacaccttg taatggtgtt gaaggtttta attgttactt tcctttacaa



23041
tcatatggtt tccaacccac taatggtgtt ggttaccaac catacagagt agtagtactt



23101
tcttttgaac ttctacatgc accagcaact gtttgtggac ctaaaaagtc tactaatttg



23161
gttaaaaaca aatgtgtcaa tttcaacttc aatggtttaa caggcacagg tgttcttact



23221
gagtctaaca aaaagtttct gcctttccaa caatttggca gagacattgc tgacactact



23281
gatgctgtcc gtgatccaca gacacttgag attcttgaca ttacaccatg ttcttttggt



23341
ggtgtcagtg ttataacacc aggaacaaat acttctaacc aggttgctgt tctttatcag



23401
gatgttaact gcacagaagt ccctgttgct attcatgcag atcaacttac tcctacttgg



23461
cgtgtttatt ctacaggttc taatgttttt caaacacgtg caggctgttt aataggggct



23521
gaacatgtca acaactcata tgagtgtgac atacccattg gtgcaggtat atgcgctagt



23581
tatcagactc agactaattc tcctcggcgg gcacgtagtg tagctagtca atccatcatt



23641
gcctacacta tgtcacttgg tgcagaaaat tcagttgctt actctaataa ctctattgcc



23701
atacccacaa attttactat tagtgttacc acagaaattc taccagtgtc tatgaccaag



23761
acatcagtag attgtacaat gtacatttgt ggtgattcaa ctgaatgcag caatcttttg



23821
ttgcaatatg gcagtttttg tacacaatta aaccgtgctt taactggaat agctgttgaa



23881
caagacaaaa acacccaaga agtttttgca caagtcaaac aaatttacaa aacaccacca



23941
attaaagatt ttggtggttt taatttttca caaatattac cagatccatc aaaaccaagc



24001
aagaggtcat ttattgaaga tctacttttc aacaaagtga cacttgcaga tgctggcttc



24061
atcaaacaat atggtgattg ccttggtgat attgctgcta gagacctcat ttgtgcacaa



24121
aagtttaacg gccttactgt tttgccacct ttgctcacag atgaaatgat tgctcaatac



24181
acttctgcac tgttagcggg tacaatcact tctggttgga cctttggtgc aggtgctgca



24241
ttacaaatac catttgctat gcaaatggct tataggttta atggtattgg agttacacag



24301
aatgttctct atgagaacca aaaattgatt gccaaccaat ttaatagtgc tattggcaaa



24361
attcaagact cactttcttc cacagcaagt gcacttggaa aacttcaaga tgtggtcaac



24421
caaaatgcac aagctttaaa cacgcttgtt aaacaactta gctccaattt tggtgcaatt



24481
tcaagtgttt taaatgatat cctttcacgt cttgacaaag ttgaggctga agtgcaaatt



24541
gataggttga tcacaggcag acttcaaagt ttgcagacat atgtgactca acaattaatt



24601
agagctgcag aaatcagagc ttctgctaat cttgctgcta ctaaaatgtc agagtgtgta



24661
cttggacaat caaaaagagt tgatttttgt ggaaagggct atcatcttat gtccttccct



24721
cagtcagcac ctcatggtgt agtcttcttg catgtgactt atgtccctgc acaagaaaag



24781
aacttcacaa ctgctcctgc catttgtcat gatggaaaag cacactttcc tcgtgaaggt



24841
gtctttgttt caaatggcac acactggttt gtaacacaaa ggaattttta tgaaccacaa



24901
atcattacta cagacaacac atttgtgtct ggtaactgtg atgttgtaat aggaattgtc



24961
aacaacacag tttatgatcc tttgcaacct gaattagact cattcaagga ggagttagat



25021
aaatatttta agaatcatac atcaccagat gttgatttag gtgacatctc tggcattaat



25081
gcttcagttg taaacattca aaaagaaatt gaccgcctca atgaggttgc caagaattta



25141
aatgaatctc tcatcgatct ccaagaactt ggaaagtatg agcagtatat aaaatggcca



25201
tggtacattt ggctaggttt tatagctggc ttgattgcca tagtaatggt gacaattatg



25261
ctttgctgta tgaccagttg ctgtagttgt ctcaagggct gttgttcttg tggatcctgc



25321
tgcaaatttg atgaagacga ctctgagcca gtgctcaaag gagtcaaatt acattacaca



25381
taaacgaact tatggatttg tttatgagaa tcttcacaat tggaactgta actttgaagc



25441
aaggtgaaat caaggatgct actccttcag attttgttcg cgctactgca acgataccga



25501
tacaagcctc actccctttc ggatggctta ttgttggcgt tgcacttctt gctgtttttc



25561
agagcgcttc caaaatcata accctcaaaa agagatggca actagcactc tccaagggtg



25621
ttcactttgt ttgcaacttg ctgttgttgt ttgtaacagt ttactcacac cttttgctcg



25681
ttgctgctgg ccttgaagcc ccttttctct atctttatgc tttagtctac ttcttgcaga



25741
gtataaactt tgtaagaata ataatgaggc tttggctttg ctggaaatgc cgttccaaaa



25801
acccattact ttatgatgcc aactattttc tttgctggca tactaattgt tacgactatt



25861
gtatacctta caatagtgta acttcttcaa ttgtcattac ttcaggtgat ggcacaacaa



25921
gtcctatttc tgaacatgac taccagattg gtggttatac tgaaaaatgg gaatctggag



25981
taaaagactg tgttgtatta cacagttact tcacttcaga ctattaccag ctgtactcaa



26041
ctcaattgag tacagacact ggtgttgaac atgttacctt cttcatctac aataaaattg



26101
ttgatgagcc tgaagaacat gtccaaattc acacaatcga cggttcatcc ggagttgtta



26161
atccagtaat ggaaccaatt tatgatgaac cgacgacgac tactagcgtg cctttgtaag



26221
cacaagctga tgagtacgaa cttatgtact cattcgtttc ggaagagaca ggtacgttaa



26281
tagttaatag cgtacttctt tttcttgctt tcgtggtatt cttgctagtt acactagcca



26341
tccttactgc gcttcgattg tgtgcgtact gctgcaatat tgttaacgtg agtcttgtaa



26401
aaccttcttt ttacgtttac tctcgtgtta aaaatctgaa ttcttctaga gttcctgatc



26461
ttctggtcta aacgaactaa atattatatt agtttttctg tttggaactt taattttagc



26521
catggcagat tccaacggta ctattaccgt tgaagagctt aaaaagctcc ttgaacaatg



26581
gaacctagta ataggtttcc tattccttac atggatttgt cttctacaat ttgcctatgc



26641
caacaggaat aggtttttgt atataattaa gttaattttc ctctggctgt tatggccagt



26701
aactttagct tgttttgtgc ttgctgctgt ttacagaata aattggatca ccggtggaat



26761
tgctatcgca atggcttgtc ttgtaggctt gatgtggctc agctacttca ttgcttcttt



26821
cagactgttt gcgcgtacgc gttccatgtg gtcattcaat ccagaaacta acattcttct



26881
caacgtgcca ctccatggca ctattctgac cagaccgctt ctagaaagtg aactcgtaat



26941
cggagctgtg atccttcgtg gacatcttcg tattgctgga caccatctag gacgctgtga



27001
catcaaggac ctgcctaaag aaatcactgt tgctacatca cgaacgcttt cttattacaa



27061
attgggagct tcgcagcgtg tagcaggtga ctcaggtttt gctgcataca gtcgctacag



27121
gattggcaac tataaattaa acacagacca ttccagtagc agtgacaata ttgctttgct



27181
tgtacagtaa gtgacaacag atgtttcatc tcgttgactt tcaggttact atagcagaga



27241
tattactaat tattatgagg acttttaaag tttccatttg gaatcttgat tacatcataa



27301
acctcataat taaaaattta tctaagtcac taactgagaa taaatattct caattagatg



27361
aagagcaacc aatggagatt gattaaacga acatgaaaat tattcttttc ttggcactga



27421
taacactcgc tacttgtgag ctttatcact accaagagtg tgttagaggt acaacagtac



27481
ttttaaaaga accttgctct tctggaacat acgagggcaa ttcaccattt catcctctag



27541
ctgataacaa atttgcactg acttgcttta gcactcaatt tgcttttgct tgtcctgacg



27601
gcgtaaaaca cgtctatcag ttacgtgcca gatcagtttc acctaaactg ttcatcagac



27661
aagaggaagt tcaagaactt tactctccaa tttttcttat tgttgcggca atagtgttta



27721
taacactttg cttcacactc aaaagaaaga cagaatgatt gaactttcat taattgactt



27781
ctatttgtgc tttttagcct ttctgctatt ccttgtttta attatgctta ttatcttttg



27841
gttctcactt gaactgcaag atcataatga aacttgtcac gcctaaacga acatgaaatt



27901
tcttgttttc ttaggaatca tcacaactgt agctgcattt caccaagaat gtagtttaca



27961
gtcatgtact caacatcaac catatgtagt tgatgacccg tgtcctattc acttctattc



28021
taaatggtat attagagtag gagctagaaa atcagcacct ttaattgaat tgtgcgtgga



28081
tgaggctggt tctaaatcac ccattcagta catcgatatc ggtaattata cagtttcctg



28141
tttacctttt acaattaatt gccaggaacc taaattgggt agtcttgtag tgcgttgttc



28201
gttctatgaa gactttttag agtatcatga cgttcgtgtt gttttagatt tcatctaaac



28261
gaacaaacta aaatgtctga taatggaccc caaaatcagc gaaatgcacc ccgcattacg



28321
tttggtggac cctcagattc aactggcagt aaccagaatg gagaacgcag tggggcgcga



28381
tcaaaacaac gtcggcccca aggtttaccc aataatactg cgtcttggtt caccgctctc



28441
actcaacatg gcaaggaaga ccttaaattc cctcgaggac aaggcgttcc aattaacacc



28501
aatagcagtc cagatgacca aattggctac taccgaagag ctaccagacg aattcgtggt



28561
ggtgacggta aaatgaaaga tctcagtcca agatggtatt tctactacct aggaactggg



28621
ccagaagctg gacttcccta tggtgctaac aaagacggca tcatatgggt tgcaactgag



28681
ggagccttga atacaccaaa agatcacatt ggcacccgca atcctgctaa caatgctgca



28741
atcgtgctac aacttcctca aggaacaaca ttgccaaaag gcttctacgc agaagggagc



28801
agaggcggca gtcaagcctc ttctcgttcc tcatcacgta gtcgcaacag ttcaagaaat



28861
tcaactccag gcagcagtag gggaacttct cctgctagaa tggctggcaa tggcggtgat



28921
gctgctcttg ctttgctgct gcttgacaga ttgaaccagc ttgagagcaa aatgtctggt



28981
aaaggccaac aacaacaagg ccaaactgtc actaagaaat ctgctgctga ggcttctaag



29041
aagcctcggc aaaaacgtac tgccactaaa gcatacaatg taacacaagc tttcggcaga



29101
cgtggtccag aacaaaccca aggaaatttt ggggaccagg aactaatcag acaaggaact



29161
gattacaaac attggccgca aattgcacaa tttgccccca gcgcttcagc gttcttcgga



29221
atgtcgcgca ttggcatgga agtcacacct tcgggaacgt ggttgaccta cacaggtgcc



29281
atcaaattgg atgacaaaga tccaaatttc aaagatcaag tcattttgct gaataagcat



29341
attgacgcat acaaaacatt cccaccaaca gagcctaaaa aggacaaaaa gaagaaggct



29401
gatgaaactc aagccttacc gcagagacag aagaaacagc aaactgtgac tcttcttcct



29461
gctgcagatt tggatgattt ctccaaacaa ttgcaacaat ccatgagcag tgctgactca



29521
actcaggcct aaactcatgc agaccacaca aggcagatgg gctatataaa cgttttcgct



29581
tttccgttta cgatatatag tctactcttg tgcagaatga attctcgtaa ctacatagca



29641
caagtagatg tagttaactt taatctcaca tagcaatctt taatcagtgt gtaacattag



29701
ggaggacttg aaagagccac cacattttca ccgaggccac gcggagtacg atcgagtgta



29761
cagtgaacaa tgctagggag agctgcctat atggaagagc cctaatgtgt aaaattaatt



29821
ttagtagtgc tatccccatg tgattttaat agcttcttag gagaatgaca aaaaaaaaaa



29881
a





Amino acid sequence of 
1
MFVFLVLLPL VSSQCVNLTT RTQLPPAYTN SFTRGVYYPD KVFRSSVLHS TQDLFLPFFS NVTWFHAIHV SGTNGTKRFD


the S protein from
81
NPVLPFNDGV YFASTEKSNI IRGWIFGTTL DSKTQSLLIV NNATNVVIKV CEFQFCNDPF LGVYYHKNNK SWMESEFRVY


MN988668 Accession
161
SSANNCTFEY VSQPFLMDLE GKQGNFKNLR EFVFKNIDGY FKIYSKHTPI NLVRDLPQGF SALEPLVDLP IGINITRFQT


number. SEQ ID NO: 47
241
LLALHRSYLT PGDSSSGWTA GAAAYYVGYL QPRTFLLKYN ENGTITDAVD CALDPLSETK CTLKSFTVEK GIYQTSNFRV



321
QPTESIVRFP NITNLCPFGE VFNATRFASV YAWNRKRISN CVADYSVLYN SASFSTFKCY GVSPTKLNDL CFTNVYADSF



401
VIRGDEVRQI APGQTGKIAD YNYKLPDDFT GCVIAWNSNN LDSKVGGNYN YLYRLFRKSN LKPFERDIST EIYQAGSTPC



481
NGVEGFNCYF PLQSYGFQPT NGVGYQPYRV VVLSFELLHA PATVCGPKKS TNLVKNKCVN FNFNGLTGTG VLTESNKKFL



561
PFQQFGRDIA DTTDAVRDPQ TLEILDITPC SFGGVSVITP GTNTSNQVAV LYQDVNCTEV PVAIHADQLT PTWRVYSTGS



641
NVFQTRAGCL IGAEHVNNSY ECDIPIGAGI CASYQTQTNS PRRARSVASQ SIIAYTMSLG AENSVAYSNN SIAIPTNFTI



721
SVTTEILPVS MTKTSVDCTM YICGDSTECS NLLLQYGSFC TQLNRALTGI AVEQDKNTQE VFAQVKQIYK TPPIKDFGGF



801
NFSQILPDPS KPSKRSFIED LLFNKVTLAD AGFIKQYGDC LGDIAARDLI CAQKFNGLTV LPPLLTDEMI AQYTSALLAG



881
TITSGWTFGA GAALQIPFAM QMAYRFNGIG VTQNVLYENQ KLIANQFNSA IGKIQDSLSS TASALGKLQD VVNQNAQALN



961
TLVKQLSSNF GAISSVLNDI LSRLDKVEAE VQIDRLITGR LQSLQTYVTQ QLIRAAEIRA SANLAATKMS ECVLGQSKRV



1041
DFCGKGYHLM SFPQSAPHGV VFLHVTYVPA QEKNFTTAPA ICHDGKAHFP REGVFVSNGT HWFVTQRNFY EPQIITTDNT



1121
FVSGNCDVVI GIVNNTVYDP LQPELDSFKE ELDKYFKNHT SPDVDLGDIS GINASVVNIQ KEIDRLNEVA KNLNESLIDL



1201
QELGKYEQYI KWPWYIWLGF IAGLIAIVMV TIMLCCMTSC CSCLKGCCSC GSCCKFDEDD SEPVLKGVKL HYT











Amino acid sequence of
MADSNGTITVEELKKLLEQWNLVIGFLFLTWICLLQFAYANRNR


the M protein from
FLYIIKLIFLWLLWPVTLACFVLAAVYRINWITGGIAIAMACLVGLMWLSYFIASFRL


MN988668 Accession 
FARTRSMWSFNPETNILLNVPLHGTILTRPLLESELVIGAVILRGHLRIAGHHLGRCD


number. SEQ ID NO: 48
IKDLPKEITVATSRTLSYYKLGASQRVAGDSGFAAYSRYRIGNYKLNTDHSSSSDNIA



LLVQ





Amino acid sequence of
MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQG


the N protein from
LPNNTASWFTALTQHGKEDLKFPRGQGVPINTNSSPDDQIGYYRRATRRIRGGDGKMK


MN988668 Accession 
DLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQ


number. SEQ ID NO: 49
LPQGTTLPKGFYAEGSRGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGGDAA



LALLLLDRLNQLESKMSGKGQQQQGQTVTKKSAAEASKKPRQKRTATKAYNVTQAFGR



RGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLTYT



GAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQTV



TLLPAADLDDFSKQLQQSMSSADSTQA





Nucleotide sequence
aGCGGCCGCaaaattgaaattttattttttttttttggaatataaataATGTTCGTGTT


of SARS-CoV-2-Spike-co
CCTAGTCCTACTACCGCTAGT


(codon-optimized
CTCTTCCCAGTGTGTAAACCTAACAACGAGAACACAACTACCACCGGCGTACACCAATT


for VACV expression).
CTTTCACAAGAGGAGTATATT


SEQ ID NO: 50
ACCCGGACAAGGTGTTCAGATCCTCCGTACTACATTCTACCCAGGACCTATTCCTACCG



TTCTTCTCTAACGTAACATGG



TTCCACGCGATCCATGTCTCTGGAACAAACGGAACGAAGAGATTCGATAACCCGGTCTT



GCCGTTCAACGATGGTGTATA



CTTTGCGTCCACCGAGAAGTCCAACATCATCAGAGGATGGATCTTCGGAACCACCTTGG



ATTCTAAGACCCAGTCCTTGC



TAATCGTCAACAACGCGACCAACGTCGTCATCAAAGTCTGCGAATTCCAGTTCTGTAAC



GACCCGTTTTTGGGAGTCTAC



TACCACAAGAACAACAAGTCCTGGATGGAATCCGAGTTCAGAGTCTACTCTTCCGCGAA



CAACTGCACCTTCGAATATGT



ATCTCAGCCGTTCCTAATGGACCTAGAGGGAAAGCAGGGAAACTTCAAGAACCTAAGAG



AGTTCGTATTCAAGAACATCG



ACGGATACTTCAAGATCTACTCCAAGCACACCCCGATCAACCTAGTTAGAGATCTACCG



CAAGGATTCTCTGCGCTAGAA



CCGTTAGTAGATTTGCCGATCGGAATCAACATCACCAGATTCCAGACACTACTAGCGCT



ACACAGATCTTACCTAACGCC



GGGAGATTCTTCTTCTGGATGGACTGCTGGTGCTGCGGCTTATTATGTAGGATACCTAC



AGCCGAGAACCTTCCTATTGA



AGTACAACGAAAACGGAACCATCACCGATGCCGTAGATTGTGCTCTAGATCCGCTATCC



GAAACGAAGTGCACCCTAAAG



TCTTTCACCGTCGAGAAGGGAATCTACCAGACCTCCAACTTTAGAGTACAGCCGACCGA



ATCCATCGTCAGATTTCCGAA



CATCACGAACCTATGTCCGTTCGGAGAAGTGTTCAACGCGACAAGATTTGCGTCTGTCT



ATGCGTGGAACAGAAAAAGAA



TCAGTAACTGCGTCGCGGACTACTCCGTCCTATACAACTCTGCCTCTTTCTCCACGTTC



AAATGCTACGGTGTATCCCCG



ACAAAGCTAAACGATCTATGCTTCACCAACGTCTACGCGGACTCCTTCGTAATCAGAGG



AGATGAAGTTAGACAGATTGC



GCCGGGACAAACTGGAAAGATCGCGGATTATAACTACAAGCTACCGGACGACTTCACCG



GATGTGTAATTGCGTGGAATT



CGAACAACCTAGACTCCAAAGTCGGAGGAAACTACAACTACTTGTACAGACTATTCAGA



AAGTCCAACCTAAAGCCGTTC



GAGAGAGACATCTCCACCGAAATCTATCAGGCTGGATCTACACCGTGTAATGGTGTCGA



AGGATTCAACTGCTACTTCCC



GCTACAGTCTTACGGATTTCAACCGACAAACGGTGTAGGATATCAGCCGTACAGAGTCG



TCGTACTATCCTTCGAACTAC



TACATGCTCCGGCGACAGTATGTGGACCGAAAAAGTCTACCAACCTAGTCAAGAACAAA



TGCGTCAACTTTAACTTCAAC



GGACTAACCGGAACCGGTGTCCTAACCGAATCTAACAAGAAGTTTCTACCGTTCCAGCA



GTTCGGAAGAGATATCGCGGA



TACAACAGACGCTGTCAGAGATCCGCAAACCTTGGAGATCCTAGATATCACCCCGTGTT



CTTTCGGTGGTGTCTCTGTAA



TTACTCCGGGAACGAACACCTCCAATCAAGTAGCGGTACTATACCAGGACGTGAACTGT



ACAGAAGTACCGGTAGCTATT



CACGCGGATCAACTAACACCAACTTGGAGAGTGTACTCCACCGGATCTAACGTATTCCA



AACAAGAGCGGGATGTCTAAT



CGGAGCGGAACACGTAAACAACTCCTACGAATGTGATATCCCGATTGGAGCGGGAATCT



GTGCGTCTTACCAAACACAAA



CAAACTCCCCGAGAAGAGCGAGATCTGTAGCCTCTCAATCTATTATCGCCTACACCATG



TCCTTGGGAGCCGAAAATTCT



GTCGCGTACTCCAACAATTCTATCGCGATCCCGACAAACTTCACCATCTCTGTAACAAC



CGAGATCCTACCGGTGTCTAT



GACCAAGACATCTGTCGATTGCACCATGTACATCTGCGGAGATTCCACCGAGTGCTCCA



ACCTACTACTACAGTACGGAT



CTTTCTGTACCCAGCTAAACAGAGCGTTGACTGGAATCGCTGTAGAGCAGGATAAGAAC



ACCCAAGAGGTATTCGCGCAA



GTCAAGCAGATCTATAAGACTCCGCCGATCAAGGACTTCGGAGGTTTTAACTTCTCTCA



GATCTTGCCGGATCCGTCCAA



ACCGTCTAAGAGATCTTTCATCGAGGACCTACTATTCAACAAAGTCACCCTAGCTGACG



CGGGATTCATCAAACAATACG



GAGATTGCTTGGGAGACATTGCGGCGAGAGATCTAATTTGCGCGCAGAAGTTTAACGGA



TTGACAGTACTACCGCCGCTA



CTAACCGATGAGATGATTGCGCAGTACACGTCTGCTCTATTGGCGGGAACAATTACAAG



TGGATGGACATTTGGAGCCGG



TGCCGCTCTACAAATTCCGTTTGCTATGCAAATGGCGTACAGATTCAACGGAATCGGAG



TAACCCAGAACGTCTTGTACG



AGAACCAGAAGCTAATCGCGAACCAGTTCAATTCCGCGATCGGAAAGATCCAGGACAGT



CTATCTTCTACTGCTTCGGCG



TTGGGAAAGCTACAGGATGTAGTAAATCAAAACGCGCAGGCGCTAAACACCTTGGTCAA



GCAACTATCCTCTAACTTCGG



AGCGATCTCGTCCGTCCTAAACGACATCTTATCCAGACTAGATAAGGTCGAAGCGGAGG



TCCAGATCGATAGACTAATCA



CTGGAAGATTGCAGTCCCTACAGACCTACGTAACACAGCAACTAATTAGAGCGGCGGAG



ATTAGAGCCTCTGCTAATCTA



GCTGCGACCAAGATGTCCGAATGTGTCTTGGGACAATCCAAGAGAGTCGACTTTTGCGG



AAAGGGATACCACCTAATGTC



TTTTCCACAATCTGCGCCGCATGGTGTCGTATTCCTACATGTAACATATGTGCCGGCGC



AAGAAAAGAACTTTACAACAG



CTCCAGCGATCTGCCATGATGGAAAAGCTCATTTTCCGAGAGAGGGAGTCTTTGTCTCT



AACGGAACTCATTGGTTCGTC



ACCCAGAGAAACTTTTACGAGCCGCAGATCATCACCACCGACAACACATTTGTTTCGGG



AAACTGCGACGTGGTCATCGG



AATCGTAAACAATACCGTCTACGATCCGTTGCAGCCGGAACTAGACTCCTTCAAAGAAG



AGTTGGACAAGTACTTTAAGA



ACCACACCTCTCCGGATGTCGACTTGGGAGATATTTCTGGAATCAACGCGTCCGTCGTC



AACATCCAGAAAGAAATCGAT



AGATTGAACGAGGTCGCGAAGAACTTGAACGAGTCCCTAATCGACCTACAAGAGCTAGG



AAAATACGAGCAGTACATCAA



GTGGCCGTGGTACATTTGGCTAGGATTCATTGCTGGACTAATTGCGATCGTCATGGTCA



CCATCATGCTATGCTGTATGA



CCTCCTGTTGCTCCTGTCTAAAGGGATGTTGTTCCTGCGGATCCTGTTGCAAGTTCGAT



GAAGATGATAGTGAACCGGTC



CTAAAGGGTGTCAAGCTACACTACACATAAAAGCTT





Nucleotide sequence of
tttggctagtcaagatgatgaatcttcattatctgatatattgcaaatcactcaatatc


HPXV095 gene locus target
tagactttctgttattattat


for SARS-CoV-2 Spike
tgatccaatcaaaaaataaattagaagccgtgggtcattgttatgaatctctttcagag


insertion. SEQ ID NO: 51
gaatacagacaattgacaaaa



ttcacagactttcaagattttaaaaaactgtttaacaaggtccctattgttacagatgg



aagggtcaaacttaataaagg



atatttgttcgactttgtgattagtttgatgcgattcaaaaaagaatcctctctagcta



ccaccgcaatagatcctatta



gatacatagatcctcgtcgtgatatcgcattttctaacgtgatggatatattaaagttg



aataaagtgaacaataattaa



ttctttattgtcatcGGATCCCACgatGTGctaGACtctctcGTCtacGCGGCCGCaAc



tgagagaccAAGCTTGTCGAC



tattatattttttatctaaaaaactaaaaataaacattgattaaattttaatataatac



ttaaaaatggatgttgtgtcg



ttagataaaccgtttatgtattttgaggaaattgataatgagttagattacgaaccaga



aagtgcaaatgaggtcgcaaa



aaaactaccgtatcaaggacagttaaaactattactaggagaattattttttcttagta



agttacagcgacacggtatat



tagatggtgccaccgtagtgtatataggatcggctcctggtacacatatacgttatttg



agagatcatttctataattta



ggaatgattatcaaatggatgctaattgacggacgccatcatgatcctattctaaatgg



attgcgtgatgtgactctagt





Nucleotide sequence of
gagtattctaggtgtttctatagaatgtaagaagtcAtcgacattacttacttttttga


HPXV200 gene locus target
ccgtgcgtaaaatgacCcgag


for SARS-COV-2 Spike
tatttaatagatttccagatatggcttattatcgaggagactgtttaaaagccgtttat


insertion. SEQ ID NO: 52
gtaacaatgacttataaaaat



actaaaactggagagactgattacacgtacctctctaatgggggttgcctgcatactat



cgtaatggggtcgatggttga



ttattgattagtatattccttattctttttattcacacaaaaagaacatttttataaac



atgaaaccactgtctaaatgt



aattatgatcttgatttatagatgaagatcagcctttagaggattttaaccagtatgtt



taatatgaaaaaaataaacat



aacatattttgagattaagcgctattgtgcttaattattttgctctataaactgaatat



atagccacaattattgacggg



cttgtttatgaccggcaatcGGATCCCACgatGTGctaGACtctctcGTCtacGCGGCC



GCaActgagagaccAAGCTTG



TCGACtaaaatagtttaactcttttaaaaccagtttggtactggaatttcagttcatta



ctcgttgagaaattgatgatt



tttttaaaatgatattacttttatatgcttgcatcgcagaatgatattcacaagtatta



ttaaaaatgagtatcggtagt



tacattaccatatcatccatgctcatatggatctccatccattatataatcaatgatac



atgtattaaaatactttccga



ataagtcttttaaatattgtattaattatgaaaaactatgctatgcgagtatgatgcaa



agatgtttaatgatacgatac



tagattttatctctagcgagagatgtcgttagaatcatttatcataactacgtttaata



ataattcatcaacgaatatcg



ataacatgtgtcatttatactttaaatacgttaaagtctgtccgtcttctctattgttt



agactgtttgtagaatgctgt



gatataaacaaactagtagaaggta












Nucleotide sequence of
1
attaaaggtt tataccttcc caggtaacaa accaaccaac tttcgatctc ttgtagatct


SARS-CoV-2 Wuhan-Hu-1
61
gttctctaaa cgaactttaa aatctgtgtg gctgtcactc ggctgcatgc ttagtgcact


(Accession NC_045512.2).
121
cacgcagtat aattaataac taattactgt cgttgacagg acacgagtaa ctcgtctatc


SEQ ID NO: 53
181
ttctgcaggc tgcttacggt ttcgtccgtg ttgcagccga tcatcagcac atctaggttt



241
cgtccgggtg tgaccgaaag gtaagatgga gagccttgtc cctggtttca acgagaaaac



301
acacgtccaa ctcagtttgc ctgttttaca ggttcgcgac gtgctcgtac gtggctttgg



361
agactccgtg gaggaggtct tatcagaggc acgtcaacat cttaaagatg gcacttgtgg



421
cttagtagaa gttgaaaaag gcgttttgcc tcaacttgaa cagccctatg tgttcatcaa



481
acgttcggat gctcgaactg cacctcatgg tcatgttatg gttgagctgg tagcagaact



541
cgaaggcatt cagtacggtc gtagtggtga gacacttggt gtccttgtcc ctcatgtggg



601
cgaaatacca gtggcttacc gcaaggttct tcttcgtaag aacggtaata aaggagctgg



661
tggccatagt tacggcgccg atctaaagtc atttgactta ggcgacgagc ttggcactga



721
tccttatgaa gattttcaag aaaactggaa cactaaacat agcagtggtg ttacccgtga



781
actcatgcgt gagcttaacg gaggggcata cactcgctat gtcgataaca acttctgtgg



841
ccctgatggc taccctcttg agtgcattaa agaccttcta gcacgtgctg gtaaagcttc



901
atgcactttg tccgaacaac tggactttat tgacactaag aggggtgtat actgctgccg



961
tgaacatgag catgaaattg cttggtacac ggaacgttct gaaaagagct atgaattgca



1021
gacacctttt gaaattaaat tggcaaagaa atttgacacc ttcaatgggg aatgtccaaa



1081
ttttgtattt cccttaaatt ccataatcaa gactattcaa ccaagggttg aaaagaaaaa



1141
gcttgatggc tttatgggta gaattcgatc tgtctatcca gttgcgtcac caaatgaatg



1201
caaccaaatg tgcctttcaa ctctcatgaa gtgtgatcat tgtggtgaaa cttcatggca



1261
gacgggcgat tttgttaaag ccacttgcga attttgtggc actgagaatt tgactaaaga



1321
aggtgccact acttgtggtt acttacccca aaatgctgtt gttaaaattt attgtccagc



1381
atgtcacaat tcagaagtag gacctgagca tagtcttgcc gaataccata atgaatctgg



1441
cttgaaaacc attcttcgta agggtggtcg cactattgcc tttggaggct gtgtgttctc



1501
ttatgttggt tgccataaca agtgtgccta ttgggttcca cgtgctagcg ctaacatagg



1561
ttgtaaccat acaggtgttg ttggagaagg ttccgaaggt cttaatgaca accttcttga



1621
aatactccaa aaagagaaag tcaacatcaa tattgttggt gactttaaac ttaatgaaga



1681
gatcgccatt attttggcat ctttttctgc ttccacaagt gcttttgtgg aaactgtgaa



1741
aggtttggat tataaagcat tcaaacaaat tgttgaatcc tgtggtaatt ttaaagttac



1801
aaaaggaaaa gctaaaaaag gtgcctggaa tattggtgaa cagaaatcaa tactgagtcc



1861
tctttatgca tttgcatcag aggctgctcg tgttgtacga tcaattttct cccgcactct



1921
tgaaactgct caaaattctg tgcgtgtttt acagaaggcc gctataacaa tactagatgg



1981
aatttcacag tattcactga gactcattga tgctatgatg ttcacatctg atttggctac



2041
taacaatcta gttgtaatgg cctacattac aggtggtgtt gttcagttga cttcgcagtg



2101
gctaactaac atctttggca ctgtttatga aaaactcaaa cccgtccttg attggcttga



2161
agagaagttt aaggaaggtg tagagtttct tagagacggt tgggaaattg ttaaatttat



2221
ctcaacctgt gcttgtgaaa ttgtcggtgg acaaattgtc acctgtgcaa aggaaattaa



2281
ggagagtgtt cagacattct ttaagcttgt aaataaattt ttggctttgt gtgctgactc



2341
tatcattatt ggtggagcta aacttaaagc cttgaattta ggtgaaacat ttgtcacgca



2401
ctcaaaggga ttgtacagaa agtgtgttaa atccagagaa gaaactggcc tactcatgcc



2461
tctaaaagcc ccaaaagaaa ttatcttctt agagggagaa acacttccca cagaagtgtt



2521
aacagaggaa gttgtcttga aaactggtga tttacaacca ttagaacaac ctactagtga



2581
agctgttgaa gctccattgg ttggtacacc agtttgtatt aacgggctta tgttgctcga



2641
aatcaaagac acagaaaagt actgtgccct tgcacctaat atgatggtaa caaacaatac



2701
cttcacactc aaaggcggtg caccaacaaa ggttactttt ggtgatgaca ctgtgataga



2761
agtgcaaggt tacaagagtg tgaatatcac ttttgaactt gatgaaagga ttgataaagt



2821
acttaatgag aagtgctctg cctatacagt tgaactcggt acagaagtaa atgagttcgc



2881
ctgtgttgtg gcagatgctg tcataaaaac tttgcaacca gtatctgaat tacttacacc



2941
actgggcatt gatttagatg agtggagtat ggctacatac tacttatttg atgagtctgg



3001
tgagtttaaa ttggcttcac atatgtattg ttctttctac cctccagatg aggatgaaga



3061
agaaggtgat tgtgaagaag aagagtttga gccatcaact caatatgagt atggtactga



3121
agatgattac caaggtaaac ctttggaatt tggtgccact tctgctgctc ttcaacctga



3181
agaagagcaa gaagaagatt ggttagatga tgatagtcaa caaactgttg gtcaacaaga



3241
cggcagtgag gacaatcaga caactactat tcaaacaatt gttgaggttc aacctcaatt



3301
agagatggaa cttacaccag ttgttcagac tattgaagtg aatagtttta gtggttattt



3361
aaaacttact gacaatgtat acattaaaaa tgcagacatt gtggaagaag ctaaaaaggt



3421
aaaaccaaca gtggttgtta atgcagccaa tgtttacctt aaacatggag gaggtgttgc



3481
aggagcctta aataaggcta ctaacaatgc catgcaagtt gaatctgatg attacatagc



3541
tactaatgga ccacttaaag tgggtggtag ttgtgtttta agcggacaca atcttgctaa



3601
acactgtctt catgttgtcg gcccaaatgt taacaaaggt gaagacattc aacttcttaa



3661
gagtgcttat gaaaatttta atcagcacga agttctactt gcaccattat tatcagctgg



3721
tatttttggt gctgacccta tacattcttt aagagtttgt gtagatactg ttcgcacaaa



3781
tgtctactta gctgtctttg ataaaaatct ctatgacaaa cttgtttcaa gctttttgga



3841
aatgaagagt gaaaagcaag ttgaacaaaa gatcgctgag attcctaaag aggaagttaa



3901
gccatttata actgaaagta aaccttcagt tgaacagaga aaacaagatg ataagaaaat



3961
caaagcttgt gttgaagaag ttacaacaac tctggaagaa actaagttcc tcacagaaaa



4021
cttgttactt tatattgaca ttaatggcaa tcttcatcca gattctgcca ctcttgttag



4081
tgacattgac atcactttct taaagaaaga tgctccatat atagtgggtg atgttgttca



4141
agagggtgtt ttaactgctg tggttatacc tactaaaaag gctggtggca ctactgaaat



4201
gctagcgaaa gctttgagaa aagtgccaac agacaattat ataaccactt acccgggtca



4261
gggtttaaat ggttacactg tagaggaggc aaagacagtg cttaaaaagt gtaaaagtgc



4321
cttttacatt ctaccatcta ttatctctaa tgagaagcaa gaaattcttg gaactgtttc



4381
ttggaatttg cgagaaatgc ttgcacatgc agaagaaaca cgcaaattaa tgcctgtctg



4441
tgtggaaact aaagccatag tttcaactat acagcgtaaa tataagggta ttaaaataca



4501
agagggtgtg gttgattatg gtgctagatt ttacttttac accagtaaaa caactgtagc



4561
gtcacttatc aacacactta acgatctaaa tgaaactctt gttacaatgc cacttggcta



4621
tgtaacacat ggcttaaatt tggaagaagc tgctcggtat atgagatctc tcaaagtgcc



4681
agctacagtt tctgtttctt cacctgatgc tgttacagcg tataatggtt atcttacttc



4741
ttcttctaaa acacctgaag aacattttat tgaaaccatc tcacttgctg gttcctataa



4801
agattggtcc tattctggac aatctacaca actaggtata gaatttctta agagaggtga



4861
taaaagtgta tattacacta gtaatcctac cacattccac ctagatggtg aagttatcac



4921
ctttgacaat cttaagacac ttctttcttt gagagaagtg aggactatta aggtgtttac



4981
aacagtagac aacattaacc tccacacgca agttgtggac atgtcaatga catatggaca



5041
acagtttggt ccaacttatt tggatggagc tgatgttact aaaataaaac ctcataattc



5101
acatgaaggt aaaacatttt atgttttacc taatgatgac actctacgtg ttgaggcttt



5161
tgagtactac cacacaactg atcctagttt tctgggtagg tacatgtcag cattaaatca



5221
cactaaaaag tggaaatacc cacaagttaa tggtttaact tctattaaat gggcagataa



5281
caactgttat cttgccactg cattgttaac actccaacaa atagagttga agtttaatcc



5341
acctgctcta caagatgctt attacagagc aagggctggt gaagctgcta acttttgtgc



5401
acttatctta gcctactgta ataagacagt aggtgagtta ggtgatgtta gagaaacaat



5461
gagttacttg tttcaacatg ccaatttaga ttcttgcaaa agagtcttga acgtggtgtg



5521
taaaacttgt ggacaacagc agacaaccct taagggtgta gaagctgtta tgtacatggg



5581
cacactttct tatgaacaat ttaagaaagg tgttcagata ccttgtacgt gtggtaaaca



5641
agctacaaaa tatctagtac aacaggagtc accttttgtt atgatgtcag caccacctgc



5701
tcagtatgaa cttaagcatg gtacatttac ttgtgctagt gagtacactg gtaattacca



5761
gtgtggtcac tataaacata taacttctaa agaaactttg tattgcatag acggtgcttt



5821
acttacaaag tcctcagaat acaaaggtcc tattacggat gttttctaca aagaaaacag



5881
ttacacaaca accataaaac cagttactta taaattggat ggtgttgttt gtacagaaat



5941
tgaccctaag ttggacaatt attataagaa agacaattct tatttcacag agcaaccaat



6001
tgatcttgta ccaaaccaac catatccaaa cgcaagcttc gataatttta agtttgtatg



6061
tgataatatc aaatttgctg atgatttaaa ccagttaact ggttataaga aacctgcttc



6121
aagagagctt aaagttacat ttttccctga cttaaatggt gatgtggtgg ctattgatta



6181
taaacactac acaccctctt ttaagaaagg agctaaattg ttacataaac ctattgtttg



6241
gcatgttaac aatgcaacta ataaagccac gtataaacca aatacctggt gtatacgttg



6301
tctttggagc acaaaaccag ttgaaacatc aaattcgttt gatgtactga agtcagagga



6361
cgcgcaggga atggataatc ttgcctgcga agatctaaaa ccagtctctg aagaagtagt



6421
ggaaaatcct accatacaga aagacgttct tgagtgtaat gtgaaaacta ccgaagttgt



6481
aggagacatt atacttaaac cagcaaataa tagtttaaaa attacagaag aggttggcca



6541
cacagatcta atggctgctt atgtagacaa ttctagtctt actattaaga aacctaatga



6601
attatctaga gtattaggtt tgaaaaccct tgctactcat ggtttagctg ctgttaatag



6661
tgtcccttgg gatactatag ctaattatgc taagcctttt cttaacaaag ttgttagtac



6721
aactactaac atagttacac ggtgtttaaa ccgtgtttgt actaattata tgccttattt



6781
ctttacttta ttgctacaat tgtgtacttt tactagaagt acaaattcta gaattaaagc



6841
atctatgccg actactatag caaagaatac tgttaagagt gtcggtaaat tttgtctaga



6901
ggcttcattt aattatttga agtcacctaa tttttctaaa ctgataaata ttataatttg



6961
gtttttacta ttaagtgttt gcctaggttc tttaatctac tcaaccgctg ctttaggtgt



7021
tttaatgtct aatttaggca tgccttctta ctgtactggt tacagagaag gctatttgaa



7081
ctctactaat gtcactattg caacctactg tactggttct ataccttgta gtgtttgtct



7141
tagtggttta gattctttag acacctatcc ttctttagaa actatacaaa ttaccatttc



7201
atcttttaaa tgggatttaa ctgcttttgg cttagttgca gagtggtttt tggcatatat



7261
tcttttcact aggtttttct atgtacttgg attggctgca atcatgcaat tgtttttcag



7321
ctattttgca gtacatttta ttagtaattc ttggcttatg tggttaataa ttaatcttgt



7381
acaaatggcc ccgatttcag ctatggttag aatgtacatc ttctttgcat cattttatta



7441
tgtatggaaa agttatgtgc atgttgtaga cggttgtaat tcatcaactt gtatgatgtg



7501
ttacaaacgt aatagagcaa caagagtcga atgtacaact attgttaatg gtgttagaag



7561
gtccttttat gtctatgcta atggaggtaa aggcttttgc aaactacaca attggaattg



7621
tgttaattgt gatacattct gtgctggtag tacatttatt agtgatgaag ttgcgagaga



7681
cttgtcacta cagtttaaaa gaccaataaa tcctactgac cagtcttctt acatcgttga



7741
tagtgttaca gtgaagaatg gttccatcca tctttacttt gataaagctg gtcaaaagac



7801
ttatgaaaga cattctctct ctcattttgt taacttagac aacctgagag ctaataacac



7861
taaaggttca ttgcctatta atgttatagt ttttgatggt aaatcaaaat gtgaagaatc



7921
atctgcaaaa tcagcgtctg tttactacag tcagcttatg tgtcaaccta tactgttact



7981
agatcaggca ttagtgtctg atgttggtga tagtgcggaa gttgcagtta aaatgtttga



8041
tgcttacgtt aatacgtttt catcaacttt taacgtacca atggaaaaac tcaaaacact



8101
agttgcaact gcagaagctg aacttgcaaa gaatgtgtcc ttagacaatg tcttatctac



8161
ttttatttca gcagctcggc aagggtttgt tgattcagat gtagaaacta aagatgttgt



8221
tgaatgtctt aaattgtcac atcaatctga catagaagtt actggcgata gttgtaataa



8281
ctatatgctc acctataaca aagttgaaaa catgacaccc cgtgaccttg gtgcttgtat



8341
tgactgtagt gcgcgtcata ttaatgcgca ggtagcaaaa agtcacaaca ttgctttgat



8401
atggaacgtt aaagatttca tgtcattgtc tgaacaacta cgaaaacaaa tacgtagtgc



8461
tgctaaaaag aataacttac cttttaagtt gacatgtgca actactagac aagttgttaa



8521
tgttgtaaca acaaagatag cacttaaggg tggtaaaatt gttaataatt ggttgaagca



8581
gttaattaaa gttacacttg tgttcctttt tgttgctgct attttctatt taataacacc



8641
tgttcatgtc atgtctaaac atactgactt ttcaagtgaa atcataggat acaaggctat



8701
tgatggtggt gtcactcgtg acatagcatc tacagatact tgttttgcta acaaacatgc



8761
tgattttgac acatggttta gccagcgtgg tggtagttat actaatgaca aagcttgccc



8821
attgattgct gcagtcataa caagagaagt gggttttgtc gtgcctggtt tgcctggcac



8881
gatattacgc acaactaatg gtgacttttt gcatttctta cctagagttt ttagtgcagt



8941
tggtaacatc tgttacacac catcaaaact tatagagtac actgactttg caacatcagc



9001
ttgtgttttg gctgctgaat gtacaatttt taaagatgct tctggtaagc cagtaccata



9061
ttgttatgat accaatgtac tagaaggttc tgttgcttat gaaagtttac gccctgacac



9121
acgttatgtg ctcatggatg gctctattat tcaatttcct aacacctacc ttgaaggttc



9181
tgttagagtg gtaacaactt ttgattctga gtactgtagg cacggcactt gtgaaagatc



9241
agaagctggt gtttgtgtat ctactagtgg tagatgggta cttaacaatg attattacag



9301
atctttacca ggagttttct gtggtgtaga tgctgtaaat ttacttacta atatgtttac



9361
accactaatt caacctattg gtgctttgga catatcagca tctatagtag ctggtggtat



9421
tgtagctatc gtagtaacat gccttgccta ctattttatg aggtttagaa gagcttttgg



9481
tgaatacagt catgtagttg cctttaatac tttactattc cttatgtcat tcactgtact



9541
ctgtttaaca ccagtttact cattcttacc tggtgtttat tctgttattt acttgtactt



9601
gacattttat cttactaatg atgtttcttt tttagcacat attcagtgga tggttatgtt



9661
cacaccttta gtacctttct ggataacaat tgcttatatc atttgtattt ccacaaagca



9721
tttctattgg ttctttagta attacctaaa gagacgtgta gtctttaatg gtgtttcctt



9781
tagtactttt gaagaagctg cgctgtgcac ctttttgtta aataaagaaa tgtatctaaa



9841
gttgcgtagt gatgtgctat tacctcttac gcaatataat agatacttag ctctttataa



9901
taagtacaag tattttagtg gagcaatgga tacaactagc tacagagaag ctgcttgttg



9961
tcatctcgca aaggctctca atgacttcag taactcaggt tctgatgttc tttaccaacc



10021
accacaaacc tctatcacct cagctgtttt gcagagtggt tttagaaaaa tggcattccc



10081
atctggtaaa gttgagggtt gtatggtaca agtaacttgt ggtacaacta cacttaacgg



10141
tctttggctt gatgacgtag tttactgtcc aagacatgtg atctgcacct ctgaagacat



10201
gcttaaccct aattatgaag atttactcat tcgtaagtct aatcataatt tcttggtaca



10261
ggctggtaat gttcaactca gggttattgg acattctatg caaaattgtg tacttaagct



10321
taaggttgat acagccaatc ctaagacacc taagtataag tttgttcgca ttcaaccagg



10381
acagactttt tcagtgttag cttgttacaa tggttcacca tctggtgttt accaatgtgc



10441
tatgaggccc aatttcacta ttaagggttc attccttaat ggttcatgtg gtagtgttgg



10501
ttttaacata gattatgact gtgtctcttt ttgttacatg caccatatgg aattaccaac



10561
tggagttcat gctggcacag acttagaagg taacttttat ggaccttttg ttgacaggca



10621
aacagcacaa gcagctggta cggacacaac tattacagtt aatgttttag cttggttgta



10681
cgctgctgtt ataaatggag acaggtggtt tctcaatcga tttaccacaa ctcttaatga



10741
ctttaacctt gtggctatga agtacaatta tgaacctcta acacaagacc atgttgacat



10801
actaggacct ctttctgctc aaactggaat tgccgtttta gatatgtgtg cttcattaaa



10861
agaattactg caaaatggta tgaatggacg taccatattg ggtagtgctt tattagaaga



10921
tgaatttaca ccttttgatg ttgttagaca atgctcaggt gttactttcc aaagtgcagt



10981
gaaaagaaca atcaagggta cacaccactg gttgttactc acaattttga cttcactttt



11041
agttttagtc cagagtactc aatggtcttt gttctttttt ttgtatgaaa atgccttttt



11101
accttttgct atgggtatta ttgctatgtc tgcttttgca atgatgtttg tcaaacataa



11161
gcatgcattt ctctgtttgt ttttgttacc ttctcttgcc actgtagctt attttaatat



11221
ggtctatatg cctgctagtt gggtgatgcg tattatgaca tggttggata tggttgatac



11281
tagtttgtct ggttttaagc taaaagactg tgttatgtat gcatcagctg tagtgttact



11341
aatccttatg acagcaagaa ctgtgtatga tgatggtgct aggagagtgt ggacacttat



11401
gaatgtcttg acactcgttt ataaagttta ttatggtaat gctttagatc aagccatttc



11461
catgtgggct cttataatct ctgttacttc taactactca ggtgtagtta caactgtcat



11521
gtttttggcc agaggtattg tttttatgtg tgttgagtat tgccctattt tcttcataac



11581
tggtaataca cttcagtgta taatgctagt ttattgtttc ttaggctatt tttgtacttg



11641
ttactttggc ctcttttgtt tactcaaccg ctactttaga ctgactcttg gtgtttatga



11701
ttacttagtt tctacacagg agtttagata tatgaattca cagggactac tcccacccaa



11761
gaatagcata gatgccttca aactcaacat taaattgttg ggtgttggtg gcaaaccttg



11821
tatcaaagta gccactgtac agtctaaaat gtcagatgta aagtgcacat cagtagtctt



11881
actctcagtt ttgcaacaac tcagagtaga atcatcatct aaattgtggg ctcaatgtgt



11941
ccagttacac aatgacattc tcttagctaa agatactact gaagcctttg aaaaaatggt



12001
ttcactactt tctgttttgc tttccatgca gggtgctgta gacataaaca agctttgtga



12061
agaaatgctg gacaacaggg caaccttaca agctatagcc tcagagttta gttcccttcc



12121
atcatatgca gcttttgcta ctgctcaaga agcttatgag caggctgttg ctaatggtga



12181
ttctgaagtt gttcttaaaa agttgaagaa gtctttgaat gtggctaaat ctgaatttga



12241
ccgtgatgca gccatgcaac gtaagttgga aaagatggct gatcaagcta tgacccaaat



12301
gtataaacag gctagatctg aggacaagag ggcaaaagtt actagtgcta tgcagacaat



12361
gcttttcact atgcttagaa agttggataa tgatgcactc aacaacatta tcaacaatgc



12421
aagagatggt tgtgttccct tgaacataat acctcttaca acagcagcca aactaatggt



12481
tgtcatacca gactataaca catataaaaa tacgtgtgat ggtacaacat ttacttatgc



12541
atcagcattg tgggaaatcc aacaggttgt agatgcagat agtaaaattg ttcaacttag



12601
tgaaattagt atggacaatt cacctaattt agcatggcct cttattgtaa cagctttaag



12661
ggccaattct gctgtcaaat tacagaataa tgagcttagt cctgttgcac tacgacagat



12721
gtcttgtgct gccggtacta cacaaactgc ttgcactgat gacaatgcgt tagcttacta



12781
caacacaaca aagggaggta ggtttgtact tgcactgtta tccgatttac aggatttgaa



12841
atgggctaga ttccctaaga gtgatggaac tggtactatc tatacagaac tggaaccacc



12901
ttgtaggttt gttacagaca cacctaaagg tcctaaagtg aagtatttat actttattaa



12961
aggattaaac aacctaaata gaggtatggt acttggtagt ttagctgcca cagtacgtct



13021
acaagctggt aatgcaacag aagtgcctgc caattcaact gtattatctt tctgtgcttt



13081
tgctgtagat gctgctaaag cttacaaaga ttatctagct agtgggggac aaccaatcac



13141
taattgtgtt aagatgttgt gtacacacac tggtactggt caggcaataa cagttacacc



13201
ggaagccaat atggatcaag aatcctttgg tggtgcatcg tgttgtctgt actgccgttg



13261
ccacatagat catccaaatc ctaaaggatt ttgtgactta aaaggtaagt atgtacaaat



13321
acctacaact tgtgctaatg accctgtggg ttttacactt aaaaacacag tctgtaccgt



13381
ctgcggtatg tggaaaggtt atggctgtag ttgtgatcaa ctccgcgaac ccatgcttca



13441
gtcagctgat gcacaatcgt ttttaaacgg gtttgcggtg taagtgcagc ccgtcttaca



13501
ccgtgcggca caggcactag tactgatgtc gtatacaggg cttttgacat ctacaatgat



13561
aaagtagctg gttttgctaa attcctaaaa actaattgtt gtcgcttcca agaaaaggac



13621
gaagatgaca atttaattga ttcttacttt gtagttaaga gacacacttt ctctaactac



13681
caacatgaag aaacaattta taatttactt aaggattgtc cagctgttgc taaacatgac



13741
ttctttaagt ttagaataga cggtgacatg gtaccacata tatcacgtca acgtcttact



13801
aaatacacaa tggcagacct cgtctatgct ttaaggcatt ttgatgaagg taattgtgac



13861
acattaaaag aaatacttgt cacatacaat tgttgtgatg atgattattt caataaaaag



13921
gactggtatg attttgtaga aaacccagat atattacgcg tatacgccaa cttaggtgaa



13981
cgtgtacgcc aagctttgtt aaaaacagta caattctgtg atgccatgcg aaatgctggt



14041
attgttggtg tactgacatt agataatcaa gatctcaatg gtaactggta tgatttcggt



14101
gatttcatac aaaccacgcc aggtagtgga gttcctgttg tagattctta ttattcattg



14161
ttaatgccta tattaacctt gaccagggct ttaactgcag agtcacatgt tgacactgac



14221
ttaacaaagc cttacattaa gtgggatttg ttaaaatatg acttcacgga agagaggtta



14281
aaactctttg accgttattt taaatattgg gatcagacat accacccaaa ttgtgttaac



14341
tgtttggatg acagatgcat tctgcattgt gcaaacttta atgttttatt ctctacagtg



14401
ttcccaccta caagttttgg accactagtg agaaaaatat ttgttgatgg tgttccattt



14461
gtagtttcaa ctggatacca cttcagagag ctaggtgttg tacataatca ggatgtaaac



14521
ttacatagct ctagacttag ttttaaggaa ttacttgtgt atgctgctga ccctgctatg



14581
cacgctgctt ctggtaatct attactagat aaacgcacta cgtgcttttc agtagctgca



14641
cttactaaca atgttgcttt tcaaactgtc aaacccggta attttaacaa agacttctat



14701
gactttgctg tgtctaaggg tttctttaag gaaggaagtt ctgttgaatt aaaacacttc



14761
ttctttgctc aggatggtaa tgctgctatc agcgattatg actactatcg ttataatcta



14821
ccaacaatgt gtgatatcag acaactacta tttgtagttg aagttgttga taagtacttt



14881
gattgttacg atggtggctg tattaatgct aaccaagtca tcgtcaacaa cctagacaaa



14941
tcagctggtt ttccatttaa taaatggggt aaggctagac tttattatga ttcaatgagt



15001
tatgaggatc aagatgcact tttcgcatat acaaaacgta atgtcatccc tactataact



15061
caaatgaatc ttaagtatgc cattagtgca aagaatagag ctcgcaccgt agctggtgtc



15121
tctatctgta gtactatgac caatagacag tttcatcaaa aattattgaa atcaatagcc



15181
gccactagag gagctactgt agtaattgga acaagcaaat tctatggtgg ttggcacaac



15241
atgttaaaaa ctgtttatag tgatgtagaa aaccctcacc ttatgggttg ggattatcct



15301
aaatgtgata gagccatgcc taacatgctt agaattatgg cctcacttgt tcttgctcgc



15361
aaacatacaa cgtgttgtag cttgtcacac cgtttctata gattagctaa tgagtgtgct



15421
caagtattga gtgaaatggt catgtgtggc ggttcactat atgttaaacc aggtggaacc



15481
tcatcaggag atgccacaac tgcttatgct aatagtgttt ttaacatttg tcaagctgtc



15541
acggccaatg ttaatgcact tttatctact gatggtaaca aaattgccga taagtatgtc



15601
cgcaatttac aacacagact ttatgagtgt ctctatagaa atagagatgt tgacacagac



15661
tttgtgaatg agttttacgc atatttgcgt aaacatttct caatgatgat actctctgac



15721
gatgctgttg tgtgtttcaa tagcacttat gcatctcaag gtctagtggc tagcataaag



15781
aactttaagt cagttcttta ttatcaaaac aatgttttta tgtctgaagc aaaatgttgg



15841
actgagactg accttactaa aggacctcat gaattttgct ctcaacatac aatgctagtt



15901
aaacagggtg atgattatgt gtaccttcct tacccagatc catcaagaat cctaggggcc



15961
ggctgttttg tagatgatat cgtaaaaaca gatggtacac ttatgattga acggttcgtg



16021
tctttagcta tagatgctta cccacttact aaacatccta atcaggagta tgctgatgtc



16081
tttcatttgt acttacaata cataagaaag ctacatgatg agttaacagg acacatgtta



16141
gacatgtatt ctgttatgct tactaatgat aacacttcaa ggtattggga acctgagttt



16201
tatgaggcta tgtacacacc gcatacagtc ttacaggctg ttggggcttg tgttctttgc



16261
aattcacaga cttcattaag atgtggtgct tgcatacgta gaccattctt atgttgtaaa



16321
tgctgttacg accatgtcat atcaacatca cataaattag tcttgtctgt taatccgtat



16381
gtttgcaatg ctccaggttg tgatgtcaca gatgtgactc aactttactt aggaggtatg



16441
agctattatt gtaaatcaca taaaccaccc attagttttc cattgtgtgc taatggacaa



16501
gtttttggtt tatataaaaa tacatgtgtt ggtagcgata atgttactga ctttaatgca



16561
attgcaacat gtgactggac aaatgctggt gattacattt tagctaacac ctgtactgaa



16621
agactcaagc tttttgcagc agaaacgctc aaagctactg aggagacatt taaactgtct



16681
tatggtattg ctactgtacg tgaagtgctg tctgacagag aattacatct ttcatgggaa



16741
gttggtaaac ctagaccacc acttaaccga aattatgtct ttactggtta tcgtgtaact



16801
aaaaacagta aagtacaaat aggagagtac acctttgaaa aaggtgacta tggtgatgct



16861
gttgtttacc gaggtacaac aacttacaaa ttaaatgttg gtgattattt tgtgctgaca



16921
tcacatacag taatgccatt aagtgcacct acactagtgc cacaagagca ctatgttaga



16981
attactggct tatacccaac actcaatatc tcagatgagt tttctagcaa tgttgcaaat



17041
tatcaaaagg ttggtatgca aaagtattct acactccagg gaccacctgg tactggtaag



17101
agtcattttg ctattggcct agctctctac tacccttctg ctcgcatagt gtatacagct



17161
tgctctcatg ccgctgttga tgcactatgt gagaaggcat taaaatattt gcctatagat



17221
aaatgtagta gaattatacc tgcacgtgct cgtgtagagt gttttgataa attcaaagtg



17281
aattcaacat tagaacagta tgtcttttgt actgtaaatg cattgcctga gacgacagca



17341
gatatagttg tctttgatga aatttcaatg gccacaaatt atgatttgag tgttgtcaat



17401
gccagattac gtgctaagca ctatgtgtac attggcgacc ctgctcaatt acctgcacca



17461
cgcacattgc taactaaggg cacactagaa ccagaatatt tcaattcagt gtgtagactt



17521
atgaaaacta taggtccaga catgttcctc ggaacttgtc ggcgttgtcc tgctgaaatt



17581
gttgacactg tgagtgcttt ggtttatgat aataagctta aagcacataa agacaaatca



17641
gctcaatgct ttaaaatgtt ttataagggt gttatcacgc atgatgtttc atctgcaatt



17701
aacaggccac aaataggcgt ggtaagagaa ttccttacac gtaaccctgc ttggagaaaa



17761
gctgtcttta tttcacctta taattcacag aatgctgtag cctcaaagat tttgggacta



17821
ccaactcaaa ctgttgattc atcacagggc tcagaatatg actatgtcat attcactcaa



17881
accactgaaa cagctcactc ttgtaatgta aacagattta atgttgctat taccagagca



17941
aaagtaggca tactttgcat aatgtctgat agagaccttt atgacaagtt gcaatttaca



18001
agtcttgaaa ttccacgtag gaatgtggca actttacaag ctgaaaatgt aacaggactc



18061
tttaaagatt gtagtaaggt aatcactggg ttacatccta cacaggcacc tacacacctc



18121
agtgttgaca ctaaattcaa aactgaaggt ttatgtgttg acatacctgg catacctaag



18181
gacatgacct atagaagact catctctatg atgggtttta aaatgaatta tcaagttaat



18241
ggttacccta acatgtttat cacccgcgaa gaagctataa gacatgtacg tgcatggatt



18301
ggcttcgatg tcgaggggtg tcatgctact agagaagctg ttggtaccaa tttaccttta



18361
cagctaggtt tttctacagg tgttaaccta gttgctgtac ctacaggtta tgttgataca



18421
cctaataata cagatttttc cagagttagt gctaaaccac cgcctggaga tcaatttaaa



18481
cacctcatac cacttatgta caaaggactt ccttggaatg tagtgcgtat aaagattgta



18541
caaatgttaa gtgacacact taaaaatctc tctgacagag tcgtatttgt cttatgggca



18601
catggctttg agttgacatc tatgaagtat tttgtgaaaa taggacctga gcgcacctgt



18661
tgtctatgtg atagacgtgc cacatgcttt tccactgctt cagacactta tgcctgttgg



18721
catcattcta ttggatttga ttacgtctat aatccgttta tgattgatgt tcaacaatgg



18781
ggttttacag gtaacctaca aagcaaccat gatctgtatt gtcaagtcca tggtaatgca



18841
catgtagcta gttgtgatgc aatcatgact aggtgtctag ctgtccacga gtgctttgtt



18901
aagcgtgttg actggactat tgaatatcct ataattggtg atgaactgaa gattaatgcg



18961
gcttgtagaa aggttcaaca catggttgtt aaagctgcat tattagcaga caaattccca



19021
gttcttcacg acattggtaa ccctaaagct attaagtgtg tacctcaagc tgatgtagaa



19081
tggaagttct atgatgcaca gccttgtagt gacaaagctt ataaaataga agaattattc



19141
tattcttatg ccacacattc tgacaaattc acagatggtg tatgcctatt ttggaattgc



19201
aatgtcgata gatatcctgc taattccatt gtttgtagat ttgacactag agtgctatct



19261
aaccttaact tgcctggttg tgatggtggc agtttgtatg taaataaaca tgcattccac



19321
acaccagctt ttgataaaag tgcttttgtt aatttaaaac aattaccatt tttctattac



19381
tctgacagtc catgtgagtc tcatggaaaa caagtagtgt cagatataga ttatgtacca



19441
ctaaagtctg ctacgtgtat aacacgttgc aatttaggtg gtgctgtctg tagacatcat



19501
gctaatgagt acagattgta tctcgatgct tataacatga tgatctcagc tggctttagc



19561
ttgtgggttt acaaacaatt tgatacttat aacctctgga acacttttac aagacttcag



19621
agtttagaaa atgtggcttt taatgttgta aataagggac actttgatgg acaacagggt



19681
gaagtaccag tttctatcat taataacact gtttacacaa aagttgatgg tgttgatgta



19741
gaattgtttg aaaataaaac aacattacct gttaatgtag catttgagct ttgggctaag



19801
cgcaacatta aaccagtacc agaggtgaaa atactcaata atttgggtgt ggacattgct



19861
gctaatactg tgatctggga ctacaaaaga gatgctccag cacatatatc tactattggt



19921
gtttgttcta tgactgacat agccaagaaa ccaactgaaa cgatttgtgc accactcact



19981
gtcttttttg atggtagagt tgatggtcaa gtagacttat ttagaaatgc ccgtaatggt



20041
gttcttatta cagaaggtag tgttaaaggt ttacaaccat ctgtaggtcc caaacaagct



20101
agtcttaatg gagtcacatt aattggagaa gccgtaaaaa cacagttcaa ttattataag



20161
aaagttgatg gtgttgtcca acaattacct gaaacttact ttactcagag tagaaattta



20221
caagaattta aacccaggag tcaaatggaa attgatttct tagaattagc tatggatgaa



20281
ttcattgaac ggtataaatt agaaggctat gccttcgaac atatcgttta tggagatttt



20341
agtcatagtc agttaggtgg tttacatcta ctgattggac tagctaaacg ttttaaggaa



20401
tcaccttttg aattagaaga ttttattcct atggacagta cagttaaaaa ctatttcata



20461
acagatgcgc aaacaggttc atctaagtgt gtgtgttctg ttattgattt attacttgat



20521
gattttgttg aaataataaa atcccaagat ttatctgtag tttctaaggt tgtcaaagtg



20581
actattgact atacagaaat ttcatttatg ctttggtgta aagatggcca tgtagaaaca



20641
ttttacccaa aattacaatc tagtcaagcg tggcaaccgg gtgttgctat gcctaatctt



20701
tacaaaatgc aaagaatgct attagaaaag tgtgaccttc aaaattatgg tgatagtgca



20761
acattaccta aaggcataat gatgaatgtc gcaaaatata ctcaactgtg tcaatattta



20821
aacacattaa cattagctgt accctataat atgagagtta tacattttgg tgctggttct



20881
gataaaggag ttgcaccagg tacagctgtt ttaagacagt ggttgcctac gggtacgctg



20941
cttgtcgatt cagatcttaa tgactttgtc tctgatgcag attcaacttt gattggtgat



21001
tgtgcaactg tacatacagc taataaatgg gatctcatta ttagtgatat gtacgaccct



21061
aagactaaaa atgttacaaa agaaaatgac tctaaagagg gttttttcac ttacatttgt



21121
gggtttatac aacaaaagct agctcttgga ggttccgtgg ctataaagat aacagaacat



21181
tcttggaatg ctgatcttta taagctcatg ggacacttcg catggtggac agcctttgtt



21241
actaatgtga atgcgtcatc atctgaagca tttttaattg gatgtaatta tcttggcaaa



21301
ccacgcgaac aaatagatgg ttatgtcatg catgcaaatt acatattttg gaggaataca



21361
aatccaattc agttgtcttc ctattcttta tttgacatga gtaaatttcc ccttaaatta



21421
aggggtactg ctgttatgtc tttaaaagaa ggtcaaatca atgatatgat tttatctctt



21481
cttagtaaag gtagacttat aattagagaa aacaacagag ttgttatttc tagtgatgtt



21541
cttgttaaca actaaacgaa caatgtttgt ttttcttgtt ttattgccac tagtctctag



21601
tcagtgtgtt aatcttacaa ccagaactca attaccccct gcatacacta attctttcac



21661
acgtggtgtt tattaccctg acaaagtttt cagatcctca gttttacatt caactcagga



21721
cttgttctta cctttctttt ccaatgttac ttggttccat gctatacatg tctctgggac



21781
caatggtact aagaggtttg ataaccctgt cctaccattt aatgatggtg tttattttgc



21841
ttccactgag aagtctaaca taataagagg ctggattttt ggtactactt tagattcgaa



21901
gacccagtcc ctacttattg ttaataacgc tactaatgtt gttattaaag tctgtgaatt



21961
tcaattttgt aatgatccat ttttgggtgt ttattaccac aaaaacaaca aaagttggat



22021
ggaaagtgag ttcagagttt attctagtgc gaataattgc acttttgaat atgtctctca



22081
gccttttctt atggaccttg aaggaaaaca gggtaatttc aaaaatctta gggaatttgt



22141
gtttaagaat attgatggtt attttaaaat atattctaag cacacgccta ttaatttagt



22201
gcgtgatctc cctcagggtt tttcggcttt agaaccattg gtagatttgc caataggtat



22261
taacatcact aggtttcaaa ctttacttgc tttacataga agttatttga ctcctggtga



22321
ttcttcttca ggttggacag ctggtgctgc agcttattat gtgggttatc ttcaacctag



22381
gacttttcta ttaaaatata atgaaaatgg aaccattaca gatgctgtag actgtgcact



22441
tgaccctctc tcagaaacaa agtgtacgtt gaaatccttc actgtagaaa aaggaatcta



22501
tcaaacttct aactttagag tccaaccaac agaatctatt gttagatttc ctaatattac



22561
aaacttgtgc ccttttggtg aagtttttaa cgccaccaga tttgcatctg tttatgcttg



22621
gaacaggaag agaatcagca actgtgttgc tgattattct gtcctatata attccgcatc



22681
attttccact tttaagtgtt atggagtgtc tcctactaaa ttaaatgatc tctgctttac



22741
taatgtctat gcagattcat ttgtaattag aggtgatgaa gtcagacaaa tcgctccagg



22801
gcaaactgga aagattgctg attataatta taaattacca gatgatttta caggctgcgt



22861
tatagcttgg aattctaaca atcttgattc taaggttggt ggtaattata attacctgta



22921
tagattgttt aggaagtcta atctcaaacc ttttgagaga gatatttcaa ctgaaatcta



22981
tcaggccggt agcacacctt gtaatggtgt tgaaggtttt aattgttact ttcctttaca



23041
atcatatggt ttccaaccca ctaatggtgt tggttaccaa ccatacagag tagtagtact



23101
ttcttttgaa cttctacatg caccagcaac tgtttgtgga cctaaaaagt ctactaattt



23161
ggttaaaaac aaatgtgtca atttcaactt caatggttta acaggcacag gtgttcttac



23221
tgagtctaac aaaaagtttc tgcctttcca acaatttggc agagacattg ctgacactac



23281
tgatgctgtc cgtgatccac agacacttga gattcttgac attacaccat gttcttttgg



23341
tggtgtcagt gttataacac caggaacaaa tacttctaac caggttgctg ttctttatca



23401
ggatgttaac tgcacagaag tccctgttgc tattcatgca gatcaactta ctcctacttg



23461
gcgtgtttat tctacaggtt ctaatgtttt tcaaacacgt gcaggctgtt taataggggc



23521
tgaacatgtc aacaactcat atgagtgtga catacccatt ggtgcaggta tatgcgctag



23581
ttatcagact cagactaatt ctcctcggcg ggcacgtagt gtagctagtc aatccatcat



23641
tgcctacact atgtcacttg gtgcagaaaa ttcagttgct tactctaata actctattgc



23701
catacccaca aattttacta ttagtgttac cacagaaatt ctaccagtgt ctatgaccaa



23761
gacatcagta gattgtacaa tgtacatttg tggtgattca actgaatgca gcaatctttt



23821
gttgcaatat ggcagttttt gtacacaatt aaaccgtgct ttaactggaa tagctgttga



23881
acaagacaaa aacacccaag aagtttttgc acaagtcaaa caaatttaca aaacaccacc



23941
aattaaagat tttggtggtt ttaatttttc acaaatatta ccagatccat caaaaccaag



24001
caagaggtca tttattgaag atctactttt caacaaagtg acacttgcag atgctggctt



24061
catcaaacaa tatggtgatt gccttggtga tattgctgct agagacctca tttgtgcaca



24121
aaagtttaac ggccttactg ttttgccacc tttgctcaca gatgaaatga ttgctcaata



24181
cacttctgca ctgttagcgg gtacaatcac ttctggttgg acctttggtg caggtgctgc



24241
attacaaata ccatttgcta tgcaaatggc ttataggttt aatggtattg gagttacaca



24301
gaatgttctc tatgagaacc aaaaattgat tgccaaccaa tttaatagtg ctattggcaa



24361
aattcaagac tcactttctt ccacagcaag tgcacttgga aaacttcaag atgtggtcaa



24421
ccaaaatgca caagctttaa acacgcttgt taaacaactt agctccaatt ttggtgcaat



24481
ttcaagtgtt ttaaatgata tcctttcacg tcttgacaaa gttgaggctg aagtgcaaat



24541
tgataggttg atcacaggca gacttcaaag tttgcagaca tatgtgactc aacaattaat



24601
tagagctgca gaaatcagag cttctgctaa tcttgctgct actaaaatgt cagagtgtgt



24661
acttggacaa tcaaaaagag ttgatttttg tggaaagggc tatcatctta tgtccttccc



24721
tcagtcagca cctcatggtg tagtcttctt gcatgtgact tatgtccctg cacaagaaaa



24781
gaacttcaca actgctcctg ccatttgtca tgatggaaaa gcacactttc ctcgtgaagg



24841
tgtctttgtt tcaaatggca cacactggtt tgtaacacaa aggaattttt atgaaccaca



24901
aatcattact acagacaaca catttgtgtc tggtaactgt gatgttgtaa taggaattgt



24961
caacaacaca gtttatgatc ctttgcaacc tgaattagac tcattcaagg aggagttaga



25021
taaatatttt aagaatcata catcaccaga tgttgattta ggtgacatct ctggcattaa



25081
tgcttcagtt gtaaacattc aaaaagaaat tgaccgcctc aatgaggttg ccaagaattt



25141
aaatgaatct ctcatcgatc tccaagaact tggaaagtat gagcagtata taaaatggcc



25201
atggtacatt tggctaggtt ttatagctgg cttgattgcc atagtaatgg tgacaattat



25261
gctttgctgt atgaccagtt gctgtagttg tctcaagggc tgttgttctt gtggatcctg



25321
ctgcaaattt gatgaagacg actctgagcc agtgctcaaa ggagtcaaat tacattacac



25381
ataaacgaac ttatggattt gtttatgaga atcttcacaa ttggaactgt aactttgaag



25441
caaggtgaaa tcaaggatgc tactccttca gattttgttc gcgctactgc aacgataccg



25501
atacaagcct cactcccttt cggatggctt attgttggcg ttgcacttct tgctgttttt



25561
cagagcgctt ccaaaatcat aaccctcaaa aagagatggc aactagcact ctccaagggt



25621
gttcactttg tttgcaactt gctgttgttg tttgtaacag tttactcaca ccttttgctc



25681
gttgctgctg gccttgaagc cccttttctc tatctttatg ctttagtcta cttcttgcag



25741
agtataaact ttgtaagaat aataatgagg ctttggcttt gctggaaatg ccgttccaaa



25801
aacccattac tttatgatgc caactatttt ctttgctggc atactaattg ttacgactat



25861
tgtatacctt acaatagtgt aacttcttca attgtcatta cttcaggtga tggcacaaca



25921
agtcctattt ctgaacatga ctaccagatt ggtggttata ctgaaaaatg ggaatctgga



25981
gtaaaagact gtgttgtatt acacagttac ttcacttcag actattacca gctgtactca



26041
actcaattga gtacagacac tggtgttgaa catgttacct tcttcatcta caataaaatt



26101
gttgatgagc ctgaagaaca tgtccaaatt cacacaatcg acggttcatc cggagttgtt



26161
aatccagtaa tggaaccaat ttatgatgaa ccgacgacga ctactagcgt gcctttgtaa



26221
gcacaagctg atgagtacga acttatgtac tcattcgttt cggaagagac aggtacgtta



26281
atagttaata gcgtacttct ttttcttgct ttcgtggtat tcttgctagt tacactagcc



26341
atccttactg cgcttcgatt gtgtgcgtac tgctgcaata ttgttaacgt gagtcttgta



26401
aaaccttctt tttacgttta ctctcgtgtt aaaaatctga attcttctag agttcctgat



26461
cttctggtct aaacgaacta aatattatat tagtttttct gtttggaact ttaattttag



26521
ccatggcaga ttccaacggt actattaccg ttgaagagct taaaaagctc cttgaacaat



26581
ggaacctagt aataggtttc ctattcctta catggatttg tcttctacaa tttgcctatg



26641
ccaacaggaa taggtttttg tatataatta agttaatttt cctctggctg ttatggccag



26701
taactttagc ttgttttgtg cttgctgctg tttacagaat aaattggatc accggtggaa



26761
ttgctatcgc aatggcttgt cttgtaggct tgatgtggct cagctacttc attgcttctt



26821
tcagactgtt tgcgcgtacg cgttccatgt ggtcattcaa tccagaaact aacattcttc



26881
tcaacgtgcc actccatggc actattctga ccagaccgct tctagaaagt gaactcgtaa



26941
tcggagctgt gatccttcgt ggacatcttc gtattgctgg acaccatcta ggacgctgtg



27001
acatcaagga cctgcctaaa gaaatcactg ttgctacatc acgaacgctt tcttattaca



27061
aattgggagc ttcgcagcgt gtagcaggtg actcaggttt tgctgcatac agtcgctaca



27121
ggattggcaa ctataaatta aacacagacc attccagtag cagtgacaat attgctttgc



27181
ttgtacagta agtgacaaca gatgtttcat ctcgttgact ttcaggttac tatagcagag



27241
atattactaa ttattatgag gacttttaaa gtttccattt ggaatcttga ttacatcata



27301
aacctcataa ttaaaaattt atctaagtca ctaactgaga ataaatattc tcaattagat



27361
gaagagcaac caatggagat tgattaaacg aacatgaaaa ttattctttt cttggcactg



27421
ataacactcg ctacttgtga gctttatcac taccaagagt gtgttagagg tacaacagta



27481
cttttaaaag aaccttgctc ttctggaaca tacgagggca attcaccatt tcatcctcta



27541
gctgataaca aatttgcact gacttgcttt agcactcaat ttgcttttgc ttgtcctgac



27601
ggcgtaaaac acgtctatca gttacgtgcc agatcagttt cacctaaact gttcatcaga



27661
caagaggaag ttcaagaact ttactctcca atttttctta ttgttgcggc aatagtgttt



27721
ataacacttt gcttcacact caaaagaaag acagaatgat tgaactttca ttaattgact



27781
tctatttgtg ctttttagcc tttctgctat tccttgtttt aattatgctt attatctttt



27841
ggttctcact tgaactgcaa gatcataatg aaacttgtca cgcctaaacg aacatgaaat



27901
ttcttgtttt cttaggaatc atcacaactg tagctgcatt tcaccaagaa tgtagtttac



27961
agtcatgtac tcaacatcaa ccatatgtag ttgatgaccc gtgtcctatt cacttctatt



28021
ctaaatggta tattagagta ggagctagaa aatcagcacc tttaattgaa ttgtgcgtgg



28081
atgaggctgg ttctaaatca cccattcagt acatcgatat cggtaattat acagtttcct



28141
gtttaccttt tacaattaat tgccaggaac ctaaattggg tagtcttgta gtgcgttgtt



28201
cgttctatga agacttttta gagtatcatg acgttcgtgt tgttttagat ttcatctaaa



28261
cgaacaaact aaaatgtctg ataatggacc ccaaaatcag cgaaatgcac cccgcattac



28321
gtttggtgga ccctcagatt caactggcag taaccagaat ggagaacgca gtggggcgcg



28381
atcaaaacaa cgtcggcccc aaggtttacc caataatact gcgtcttggt tcaccgctct



28441
cactcaacat ggcaaggaag accttaaatt ccctcgagga caaggcgttc caattaacac



28501
caatagcagt ccagatgacc aaattggcta ctaccgaaga gctaccagac gaattcgtgg



28561
tggtgacggt aaaatgaaag atctcagtcc aagatggtat ttctactacc taggaactgg



28621
gccagaagct ggacttccct atggtgctaa caaagacggc atcatatggg ttgcaactga



28681
gggagccttg aatacaccaa aagatcacat tggcacccgc aatcctgcta acaatgctgc



28741
aatcgtgcta caacttcctc aaggaacaac attgccaaaa ggcttctacg cagaagggag



28801
cagaggcggc agtcaagcct cttctcgttc ctcatcacgt agtcgcaaca gttcaagaaa



28861
ttcaactcca ggcagcagta ggggaacttc tcctgctaga atggctggca atggcggtga



28921
tgctgctctt gctttgctgc tgcttgacag attgaaccag cttgagagca aaatgtctgg



28981
taaaggccaa caacaacaag gccaaactgt cactaagaaa tctgctgctg aggcttctaa



29041
gaagcctcgg caaaaacgta ctgccactaa agcatacaat gtaacacaag ctttcggcag



29101
acgtggtcca gaacaaaccc aaggaaattt tggggaccag gaactaatca gacaaggaac



29161
tgattacaaa cattggccgc aaattgcaca atttgccccc agcgcttcag cgttcttcgg



29221
aatgtcgcgc attggcatgg aagtcacacc ttcgggaacg tggttgacct acacaggtgc



29281
catcaaattg gatgacaaag atccaaattt caaagatcaa gtcattttgc tgaataagca



29341
tattgacgca tacaaaacat tcccaccaac agagcctaaa aaggacaaaa agaagaaggc



29401
tgatgaaact caagccttac cgcagagaca gaagaaacag caaactgtga ctcttcttcc



29461
tgctgcagat ttggatgatt tctccaaaca attgcaacaa tccatgagca gtgctgactc



29521
aactcaggcc taaactcatg cagaccacac aaggcagatg ggctatataa acgttttcgc



29581
ttttccgttt acgatatata gtctactctt gtgcagaatg aattctcgta actacatagc



29641
acaagtagat gtagttaact ttaatctcac atagcaatct ttaatcagtg tgtaacatta



29701
gggaggactt gaaagagcca ccacattttc accgaggcca cgcggagtac gatcgagtgt



29761
acagtgaaca atgctaggga gagctgccta tatggaagag ccctaatgtg taaaattaat



29821
tttagtagtg ctatccccat gtgattttaa tagcttctta ggagaatgac aaaaaaaaaa



29881
aaaaaaaaaa aaaaaaaaaa aaa





Nucleotide sequence 
1
ttggctagtc aagatgatga atcttcatta tctgatatat tgcaaatcac tcaatatcta


of SARS-CoV-2 Spike 
61
gactttctgt tattattatt gatccaatca aaaaataaat tagaagccgt gggtcattgt


protein in the TK locus.
121
tatgaatctc tttcagagga atacagacaa ttgacaaaat tcacagactt tcaagatttt


SEQ ID NO: 54
181
aaaaaactgt ttaacaaggt ccctattgtt acagatggaa gggtcaaact taataaagga



241
tatttgttcg actttgtgat tagtttgatg cgattcaaaa aagaatcctc tctagctacc



301
accgcaatag atcctattag atacatagat cctcgtcgtg atatcgcatt ttctaacgtg



361
atggatatat taaagttgaa taaagtgaac aataattaat tctttattgt catcggatcc



421
cacgatgtgc tagactctct cgtctacgcg gccgcaaaaa ttgaaatttt attttttttt



481
tttggaatat aaataatgtt cgtgttccta gtcctactac cgctagtctc ttcccagtgt



541
gtaaacctaa caacgagaac acaactacca ccggcgtaca ccaattcttt cacaagagga



601
gtatattacc cggacaaggt gttcagatcc tccgtactac attctaccca ggacctattc



661
ctaccgttct tctctaacgt aacatggttc cacgcgatcc atgtctctgg aacaaacgga



721
acgaagagat tcgataaccc ggtcttgccg ttcaacgatg gtgtatactt tgcgtccacc



781
gagaagtcca acatcatcag aggatggatc ttcggaacca ccttggattc taagacccag



841
tccttgctaa tcgtcaacaa cgcgaccaac gtcgtcatca aagtctgcga attccagttc



901
tgtaacgacc cgtttttggg agtctactac cacaagaaca acaagtcctg gatggaatcc



961
gagttcagag tctactcttc cgcgaacaac tgcaccttcg aatatgtatc tcagccgttc



1021
ctaatggacc tagagggaaa gcagggaaac ttcaagaacc taagagagtt cgtattcaag



1081
aacatcgacg gatacttcaa gatctactcc aagcacaccc cgatcaacct agttagagat



1141
ctaccgcaag gattctctgc gctagaaccg ttagtagatt tgccgatcgg aatcaacatc



1201
accagattcc agacactact agcgctacac agatcttacc taacgccggg agattcttct



1261
tctggatgga ctgctggtgc tgcggcttat tatgtaggat acctacagcc gagaaccttc



1321
ctattgaagt acaacgaaaa cggaaccatc accgatgccg tagattgtgc tctagatccg



1381
ctatccgaaa cgaagtgcac cctaaagtct ttcaccgtcg agaagggaat ctaccagacc



1441
tccaacttta gagtacagcc gaccgaatcc atcgtcagat ttccgaacat cacgaaccta



1501
tgtccgttcg gagaagtgtt caacgcgaca agatttgcgt ctgtctatgc gtggaacaga



1561
aaaagaatca gtaactgcgt cgcggactac tccgtcctat acaactctgc ctctttctcc



1621
acgttcaaat gctacggtgt atccccgaca aagctaaacg atctatgctt caccaacgtc



1681
tacgcggact ccttcgtaat cagaggagat gaagttagac agattgcgcc gggacaaact



1741
ggaaagatcg cggattataa ctacaagcta ccggacgact tcaccggatg tgtaattgcg



1801
tggaattcga acaacctaga ctccaaagtc ggaggaaact acaactactt gtacagacta



1861
ttcagaaagt ccaacctaaa gccgttcgag agagacatct ccaccgaaat ctatcaggct



1921
ggatctacac cgtgtaatgg tgtcgaagga ttcaactgct acttcccgct acagtcttac



1981
ggatttcaac cgacaaacgg tgtaggatat cagccgtaca gagtcgtcgt actatccttc



2041
gaactactac atgctccggc gacagtatgt ggaccgaaaa agtctaccaa cctagtcaag



2101
aacaaatgcg tcaactttaa cttcaacgga ctaaccggaa ccggtgtcct aaccgaatct



2161
aacaagaagt ttctaccgtt ccagcagttc ggaagagata tcgcggatac aacagacgct



2221
gtcagagatc cgcaaacctt ggagatccta gatatcaccc cgtgttcttt cggtggtgtc



2281
tctgtaatta ctccgggaac gaacacctcc aatcaagtag cggtactata ccaggacgtg



2341
aactgtacag aagtaccggt agctattcac gcggatcaac taacaccaac ttggagagtg



2401
tactccaccg gatctaacgt attccaaaca agagcgggat gtctaatcgg agcggaacac



2461
gtaaacaact cctacgaatg tgatatcccg attggagcgg gaatctgtgc gtcttaccaa



2521
acacaaacaa actccccgag aagagcgaga tctgtagcct ctcaatctat tatcgcctac



2581
accatgtcct tgggagccga aaattctgtc gcgtactcca acaattctat cgcgatcccg



2641
acaaacttca ccatctctgt aacaaccgag atcctaccgg tgtctatgac caagacatct



2701
gtcgattgca ccatgtacat ctgcggagat tccaccgagt gctccaacct actactacag



2761
tacggatctt tctgtaccca gctaaacaga gcgttgactg gaatcgctgt agagcaggat



2821
aagaacaccc aagaggtatt cgcgcaagtc aagcagatct ataagactcc gccgatcaag



2881
gacttcggag gttttaactt ctctcagatc ttgccggatc cgtccaaacc gtctaagaga



2941
tctttcatcg aggacctact attcaacaaa gtcaccctag ctgacgcggg attcatcaaa



3001
caatacggag attgcttggg agacattgcg gcgagagatc taatttgcgc gcagaagttt



3061
aacggattga cagtactacc gccgctacta accgatgaga tgattgcgca gtacacgtct



3121
gctctattgg cgggaacaat tacaagtgga tggacatttg gagccggtgc cgctctacaa



3181
attccgtttg ctatgcaaat ggcgtacaga ttcaacggaa tcggagtaac ccagaacgtc



3241
ttgtacgaga accagaagct aatcgcgaac cagttcaatt ccgcgatcgg aaagatccag



3301
gacagtctat cttctactgc ttcggcgttg ggaaagctac aggatgtagt aaatcaaaac



3361
gcgcaggcgc taaacacctt ggtcaagcaa ctatcctcta acttcggagc gatctcgtcc



3421
gtcctaaacg acatcttatc cagactagat aaggtcgaag cggaggtcca gatcgataga



3481
ctaatcactg gaagattgca gtccctacag acctacgtaa cacagcaact aattagagcg



3541
gcggagatta gagcctctgc taatctagct gcgaccaaga tgtccgaatg tgtcttggga



3601
caatccaaga gagtcgactt ttgcggaaag ggataccacc taatgtcttt tccacaatct



3661
gcgccgcatg gtgtcgtatt cctacatgta acatatgtgc cggcgcaaga aaagaacttt



3721
acaacagctc cagcgatctg ccatgatgga aaagctcatt ttccgagaga gggagtcttt



3781
gtctctaacg gaactcattg gttcgtcacc cagagaaact tttacgagcc gcagatcatc



3841
accaccgaca acacatttgt ttcgggaaac tgcgacgtgg tcatcggaat cgtaaacaat



3901
accgtctacg atccgttgca gccggaacta gactccttca aagaagagtt ggacaagtac



3961
tttaagaacc acacctctcc ggatgtcgac ttgggagata tttctggaat caacgcgtcc



4021
gtcgtcaaca tccagaaaga aatcgataga ttgaacgagg tcgcgaagaa cttgaacgag



4081
tccctaatcg acctacaaga gctaggaaaa tacgagcagt acatcaagtg gccgtggtac



4141
atttggctag gattcattgc tggactaatt gcgatcgtca tggtcaccat catgctatgc



4201
tgtatgacct cctgttgctc ctgtctaaag ggatgttgtt cctgcggatc ctgttgcaag



4261
ttcgatgaag atgatagtga accggtccta aagggtgtca agctacacta cacataaaag



4321
cttgtcgact attatatttt ttatctaaaa aactaaaaat aaacattgat taaattttaa



4381
tataatactt aaaaatggat gttgtgtcgt tagataaacc gtttatgtat tttgaggaaa



4441
ttgataatga gttagattac gaaccagaaa gtgcaaatga ggtcgcaaaa aaactaccgt



4501
atcaaggaca gttaaaacta ttactaggag aattattttt tcttagtaag ttacagcgac



4561
acggtatatt agatggtgcc accgtagtgt atataggatc ggctcctggt acacatatac



4621
gttatttgag agatcatttc tataatttag gaatgattat caaatggatg ctaattgacg



4681
gacgccatca tgatcctatt ctaaatggat tgcgtgatgt gactctagta tggtcatag





Nucleotide sequence 
1
gagtattcta ggtgtttcta tagaatgtaa gaagtcatcg acattactta cttttttgac


of SARS-CoV-2 Spike
61
cgtgcgtaaa atgacccgag tatttaatag atttccagat atggcttatt atcgaggaga


protein in the HPXV200
121
ctgtttaaaa gccgtttatg taacaatgac ttataaaaat actaaaactg gagagactga


(B22R) locus.
181
ttacacgtac ctctctaatg ggggttgcct gcatactatc gtaatggggt cgatggttga


SEQ ID NO: 55
241
ttattgatta gtatattcct tattcttttt attcacacaa aaagaacatt tttataaaca



301
tgaaaccact gtctaaatgt aattatgatc ttgatttata gatgaagatc agcctttaga



361
ggattttaac cagtatgttt aatatgaaaa aaataaacat aacatatttt gagattaagc



421
gctattgtgc ttaattattt tgctctataa actgaatata tagccacaat tattgacggg



481
cttgtttatg accggcaatc ggatcccacg atgtgctaga ctctctcgtc tacgcggccg



541
caaaaattga aattttattt tttttttttg gaatataaat aatgttcgtg ttcctagtcc



601
tactaccgct agtctcttcc cagtgtgtaa acctaacaac gagaacacaa ctaccaccgg



661
cgtacaccaa ttctttcaca agaggagtat attacccgga caaggtgttc agatcctccg



721
tactacattc tacccaggac ctattcctac cgttcttctc taacgtaaca tggttccacg



781
cgatccatgt ctctggaaca aacggaacga agagattcga taacccggtc ttgccgttca



841
acgatggtgt atactttgcg tccaccgaga agtccaacat catcagagga tggatcttcg



901
gaaccacctt ggattctaag acccagtcct tgctaatcgt caacaacgcg accaacgtcg



961
tcatcaaagt ctgcgaattc cagttctgta acgacccgtt tttgggagtc tactaccaca



1021
agaacaacaa gtcctggatg gaatccgagt tcagagtcta ctcttccgcg aacaactgca



1081
ccttcgaata tgtatctcag ccgttcctaa tggacctaga gggaaagcag ggaaacttca



1141
agaacctaag agagttcgta ttcaagaaca tcgacggata cttcaagatc tactccaagc



1201
acaccccgat caacctagtt agagatctac cgcaaggatt ctctgcgcta gaaccgttag



1261
tagatttgcc gatcggaatc aacatcacca gattccagac actactagcg ctacacagat



1321
cttacctaac gccgggagat tcttcttctg gatggactgc tggtgctgcg gcttattatg



1381
taggatacct acagccgaga accttcctat tgaagtacaa cgaaaacgga accatcaccg



1441
atgccgtaga ttgtgctcta gatccgctat ccgaaacgaa gtgcacccta aagtctttca



1501
ccgtcgagaa gggaatctac cagacctcca actttagagt acagccgacc gaatccatcg



1561
tcagatttcc gaacatcacg aacctatgtc cgttcggaga agtgttcaac gcgacaagat



1621
ttgcgtctgt ctatgcgtgg aacagaaaaa gaatcagtaa ctgcgtcgcg gactactccg



1681
tcctatacaa ctctgcctct ttctccacgt tcaaatgcta cggtgtatcc ccgacaaagc



1741
taaacgatct atgcttcacc aacgtctacg cggactcctt cgtaatcaga ggagatgaag



1801
ttagacagat tgcgccggga caaactggaa agatcgcgga ttataactac aagctaccgg



1861
acgacttcac cggatgtgta attgcgtgga attcgaacaa cctagactcc aaagtcggag



1921
gaaactacaa ctacttgtac agactattca gaaagtccaa cctaaagccg ttcgagagag



1981
acatctccac cgaaatctat caggctggat ctacaccgtg taatggtgtc gaaggattca



2041
actgctactt cccgctacag tcttacggat ttcaaccgac aaacggtgta ggatatcagc



2101
cgtacagagt cgtcgtacta tccttcgaac tactacatgc tccggcgaca gtatgtggac



2161
cgaaaaagtc taccaaccta gtcaagaaca aatgcgtcaa ctttaacttc aacggactaa



2221
ccggaaccgg tgtcctaacc gaatctaaca agaagtttct accgttccag cagttcggaa



2281
gagatatcgc ggatacaaca gacgctgtca gagatccgca aaccttggag atcctagata



2341
tcaccccgtg ttctttcggt ggtgtctctg taattactcc gggaacgaac acctccaatc



2401
aagtagcggt actataccag gacgtgaact gtacagaagt accggtagct attcacgcgg



2461
atcaactaac accaacttgg agagtgtact ccaccggatc taacgtattc caaacaagag



2521
cgggatgtct aatcggagcg gaacacgtaa acaactccta cgaatgtgat atcccgattg



2581
gagcgggaat ctgtgcgtct taccaaacac aaacaaactc cccgagaaga gcgagatctg



2641
tagcctctca atctattatc gcctacacca tgtccttggg agccgaaaat tctgtcgcgt



2701
actccaacaa ttctatcgcg atcccgacaa acttcaccat ctctgtaaca accgagatcc



2761
taccggtgtc tatgaccaag acatctgtcg attgcaccat gtacatctgc ggagattcca



2821
ccgagtgctc caacctacta ctacagtacg gatctttctg tacccagcta aacagagcgt



2881
tgactggaat cgctgtagag caggataaga acacccaaga ggtattcgcg caagtcaagc



2941
agatctataa gactccgccg atcaaggact tcggaggttt taacttctct cagatcttgc



3001
cggatccgtc caaaccgtct aagagatctt tcatcgagga cctactattc aacaaagtca



3061
ccctagctga cgcgggattc atcaaacaat acggagattg cttgggagac attgcggcga



3121
gagatctaat ttgcgcgcag aagtttaacg gattgacagt actaccgccg ctactaaccg



3181
atgagatgat tgcgcagtac acgtctgctc tattggcggg aacaattaca agtggatgga



3241
catttggagc cggtgccgct ctacaaattc cgtttgctat gcaaatggcg tacagattca



3301
acggaatcgg agtaacccag aacgtcttgt acgagaacca gaagctaatc gcgaaccagt



3361
tcaattccgc gatcggaaag atccaggaca gtctatcttc tactgcttcg gcgttgggaa



3421
agctacagga tgtagtaaat caaaacgcgc aggcgctaaa caccttggtc aagcaactat



3481
cctctaactt cggagcgatc tcgtccgtcc taaacgacat cttatccaga ctagataagg



3541
tcgaagcgga ggtccagatc gatagactaa tcactggaag attgcagtcc ctacagacct



3601
acgtaacaca gcaactaatt agagcggcgg agattagagc ctctgctaat ctagctgcga



3661
ccaagatgtc cgaatgtgtc ttgggacaat ccaagagagt cgacttttgc ggaaagggat



3721
accacctaat gtcttttcca caatctgcgc cgcatggtgt cgtattccta catgtaacat



3781
atgtgccggc gcaagaaaag aactttacaa cagctccagc gatctgccat gatggaaaag



3841
ctcattttcc gagagaggga gtctttgtct ctaacggaac tcattggttc gtcacccaga



3901
gaaactttta cgagccgcag atcatcacca ccgacaacac atttgtttcg ggaaactgcg



3961
acgtggtcat cggaatcgta aacaataccg tctacgatcc gttgcagccg gaactagact



4021
ccttcaaaga agagttggac aagtacttta agaaccacac ctctccggat gtcgacttgg



4081
gagatatttc tggaatcaac gcgtccgtcg tcaacatcca gaaagaaatc gatagattga



4141
acgaggtcgc gaagaacttg aacgagtccc taatcgacct acaagagcta ggaaaatacg



4201
agcagtacat caagtggccg tggtacattt ggctaggatt cattgctgga ctaattgcga



4261
tcgtcatggt caccatcatg ctatgctgta tgacctcctg ttgctcctgt ctaaagggat



4321
gttgttcctg cggatcctgt tgcaagttcg atgaagatga tagtgaaccg gtcctaaagg



4381
gtgtcaagct acactacaca taaaagcttg tcgactaaaa tagtttaact cttttaaaac



4441
cagtttggta ctggaatttc agttcattac tcgttgagaa attgatgatt tttttaaaat



4501
gatattactt ttatatgctt gcatcgcaga atgatattca caagtattat taaaaatgag



4561
tatcggtagt tacattacca tatcatccat gctcatatgg atctccatcc attatataat



4621
caatgataca tgtattaaaa tactttccga ataagtcttt taaatattgt attaattatg



4681
aaaaactatg ctatgcgagt atgatgcaaa gatgtttaat gatacgatac tagattttat



4741
ctctagcgag agatgtcgtt agaatcattt atcataacta cgtttaataa taattcatca



4801
acgaatatcg ataacatgtg tcatttatac tttaaatacg ttaaagtctg tccgtcttct



4861
ctattgttta gactgtttgt agaatgctgt gatataaaca aactagtaga aggta





Nucleotide sequence 
1
atttacggat tcaccaataa aaataaacta gagaaactta gtactaataa ggaactagaa


of HPXV Delta TK 
61
tcgtatagtt ctagccctct tcaagaaccc attaggttaa atgattttct gggactattg


Left Arm and Right Arm
121
gaatgtatta aaaagaatat tcctctaaca gatattccga caaaggattg attactataa


(SEQ ID NO: 62)
181
atggagaatg ttcctaatgt atactttaat cctgtgttta tagagcccac gtttaaacat



241
tctttattaa gtgtttataa acacagatta atagttttat ttgaagtatt cattgtattc



301
attctaatat atgtattttt tagatctgaa ttaaatatgt tcttcatgcc taaacgaaaa



361
atacccgatc ctattgatag attacgacgt gctaatctag cgtgtgaaga cgataagtta



421
atgatctatg gattaccatg gatgacaact caaacatctg cgttatcaat aaatagtaaa



481
ccgatagtgt ataaagattg tgcaaagctt ttgcgatcaa taaatggatc acaaccagta



541
tctcttaacg atgttcttcg cagatgatga ttcatttttt aagtatttgg ctagtcaaga



601
tgatgaatct tcattatctg atatattgca aatcactcaa tatctagact ttctgttatt



661
attattgatc caatcaaaaa ataaattaga agccgtgggt cattgttatg aatctctttc



721
agaggaatac agacaattga caaaattcac agactttcaa gattttaaaa aactgtttaa



781
caaggtccct attgttacag atggaagggt caaacttaat aaaggatatt tgttcgactt



841
tgtgattagt ttgatgcgat tcaaaaaaga atcctctcta gctaccaccg caatagatcc



901
tattagatac atagatcctc gtcgtgatat cgcattttct aacgtgatgg atatattaaa



961
gttgaataaa gtgaacaata attaattctt tattgtcatc tattatattt tttatctaaa



1021
aaactaaaaa taaacattga ttaaatttta atataatact taaaaatgga tgttgtgtcg



1081
ttagataaac cgtttatgta ttttgaggaa attgataatg agttagatta cgaaccagaa



1141
agtgcaaatg aggtcgcaaa aaaactaccg tatcaaggac agttaaaact attactagga



1201
gaattatttt ttcttagtaa gttacagcga cacggtatat tagatggtgc caccgtagtg



1261
tatataggat cggctcctgg tacacatata cgttatttga gagatcattt ctataattta



1321
ggaatgatta tcaaatggat gctaattgac ggacgccatc atgatcctat tctaaatgga



1381
ttgcgtgatg tgactctagt gactcggttc gttgatgagg aatatctacg atccatcaaa



1441
aaacaactgc atccttctaa gattatttta atttctgatg taagatccaa acgaggagga



1501
aatgaaccta gtacggcgga tttactaagt aattacgctc tacaaaatgt catgattagt



1561
attttaaacc ccgtggcatc tagtcttaaa tggagatgcc cgtttccaga tcaatggatc



1621
aaggactttt atatcccaca cggtaataaa atgttacaac cttttgctcc ttcatattca



1681
gctgaaatga gattattaag tatttatacc ggtgagaaca tgagactgac tcgagttacc



1741
aaattagacg ctgtaaatta tgaaaaaaag atgtactacc ttaataagat cgtccgtaac



1801
aaagtagttg ttaactttga ttatcctaat caggaatatg actattttca catgtacttt



1861
atgctgagga ccgtatactg caataaaaca tttcctacta ctaaagcaaa ggtactattt



1921
ctacaacaat ctatatttcg tttcttaaat attccaacaa catcaactga aaaagttagt



1981
catgaaccaa tacaacgtaa





Nucleotide sequence of
1
atttacggat tcaccaataa aaataaacta gagaaactta gtactaataa ggaactagaa


HPXV_COVID-
61
tcgtatagtt ctagccctct tcaagaaccc attaggttaa atgattttct gggactattg


19_Spike_Delta_T5NT
121
gaatgtatta aaaagaatat tcctctaaca gatattccga caaaggattg attactataa


(SEQ ID NO: 63)
181
atggagaatg ttcctaatgt atactttaat cctgtgttta tagagcccac gtttaaacat



241
tctttattaa gtgtttataa acacagatta atagttttat ttgaagtatt cattgtattc



301
attctaatat atgtattttt tagatctgaa ttaaatatgt tcttcatgcc taaacgaaaa



361
atacccgatc ctattgatag attacgacgt gctaatctag cgtgtgaaga cgataagtta



421
atgatctatg gattaccatg gatgacaact caaacatctg cgttatcaat aaatagtaaa



481
ccgatagtgt ataaagattg tgcaaagctt ttgcgatcaa taaatggatc acaaccagta



541
tctcttaacg atgttcttcg cagatgatga ttcatttttt aagtatttgg ctagtcaaga



601
tgatgaatct tcattatctg atatattgca aatcactcaa tatctagact ttctgttatt



661
attattgatc caatcaaaaa ataaattaga agccgtgggt cattgttatg aatctctttc



721
agaggaatac agacaattga caaaattcac agactttcaa gattttaaaa aactgtttaa



781
caaggtccct attgttacag atggaagggt caaacttaat aaaggatatt tgttcgactt



841
tgtgattagt ttgatgcgat tcaaaaaaga atcctctcta gctaccaccg caatagatcc



901
tattagatac atagatcctc gtcgtgatat cgcattttct aacgtgatgg atatattaaa



961
gttgaataaa gtgaacaata attaattctt tattgtcatc ttttattttt tttttttgga



1021
atataaatat ccggtaaaat tgaaaaaata tacactaatt agcgtctcgt ttcagacgct



1081
agctcgaggt tgggagctct ccggatccaa gcttatcgat ttcgaacccg gggtaccgaa



1141
ttcctcgagg ttgggagctc tccggatcca agcttatcga tttcgaaccc ggggtaccga



1201
attcctcgag atgtttgttt tccttgtttt attgccacta gtctctagtc agtgtgttaa



1261
tcttacaacc agaactcaat taccccctgc atacactaat tctttcacac gtggtgttta



1321
ttaccctgac aaagttttca gatcctcagt tttacattca actcaggact tgttcttacc



1381
tttcttttcc aatgttactt ggttccatgc tatacatgtc tctgggacca atggtactaa



1441
gaggtttgat aaccctgtcc taccatttaa tgatggtgtt tattttgctt ccactgagaa



1501
gtctaacata ataagaggct ggatttttgg tactacttta gattcgaaga cccagtccct



1561
acttattgtt aataacgcta ctaatgttgt tattaaagtc tgtgaatttc aattttgtaa



1621
tgatccattt ttgggtgttt attaccacaa aaacaacaaa agttggatgg aaagtgagtt



1681
cagagtttat tctagtgcga ataattgcac ttttgaatat gtctctcagc cttttcttat



1741
ggaccttgaa ggaaaacagg gtaatttcaa aaatcttagg gaatttgtgt ttaagaatat



1801
tgatggttat tttaaaatat attctaagca cacgcctatt aatttagtgc gtgatctccc



1861
tcagggtttt tcggctttag aaccattggt agatttgcca ataggtatta acatcactag



1921
gtttcaaact ttacttgctt tacatagaag ttatttgact cctggtgatt cttcttcagg



1981
ttggacagct ggtgctgcag cttattatgt gggttatctt caacctagga cttttctatt



2041
aaaatataat gaaaatggaa ccattacaga tgctgtagac tgtgcacttg accctctctc



2101
agaaacaaag tgtacgttga aatccttcac tgtagaaaaa ggaatctatc aaacttctaa



2161
ctttagagtc caaccaacag aatctattgt tagatttcct aatattacaa acttgtgccc



2221
ttttggtgaa gtttttaacg ccaccagatt tgcatctgtt tatgcttgga acaggaagag



2281
aatcagcaac tgtgttgctg attattctgt cctatataat tccgcatcat tttccacttt



2341
taagtgttat ggagtgtctc ctactaaatt aaatgatctc tgctttacta atgtctatgc



2401
agattcattt gtaattagag gtgatgaagt cagacaaatc gctccagggc aaactggaaa



2461
gattgctgat tataattata aattaccaga tgattttaca ggctgcgtta tagcttggaa



2521
ttctaacaat cttgattcta aggttggtgg taattataat tacctgtata gattgtttag



2581
gaagtctaat ctcaaacctt ttgagagaga tatttcaact gaaatctatc aggccggtag



2641
cacaccttgt aatggtgttg aaggttttaa ttgttacttt cctttacaat catatggttt



2701
ccaacccact aatggtgttg gttaccaacc atacagagta gtagtacttt cttttgaact



2761
tctacatgca ccagcaactg tttgtggacc taaaaagtct actaatttgg ttaaaaacaa



2821
atgtgtcaat ttcaacttca atggtttaac aggcacaggt gttcttactg agtctaacaa



2881
aaagtttctg cctttccaac aatttggcag agacattgct gacactactg atgctgtccg



2941
tgatccacag acacttgaga ttcttgacat tacaccatgt tcttttggtg gtgtcagtgt



3001
tataacacca ggaacaaata cttctaacca ggttgctgtt ctttatcagg atgttaactg



3061
cacagaagtc cctgttgcta ttcatgcaga tcaacttact cctacttggc gtgtttattc



3121
tacaggttct aatgtttttc aaacacgtgc aggctgttta ataggggctg aacatgtcaa



3181
caactcatat gagtgtgaca tacccattgg tgcaggtata tgcgctagtt atcagactca



3241
gactaattct cctcggcggg cacgtagtgt agctagtcaa tccatcattg cctacactat



3301
gtcacttggt gcagaaaatt cagttgctta ctctaataac tctattgcca tacccacaaa



3361
ttttactatt agtgttacca cagaaattct accagtgtct atgaccaaga catcagtaga



3421
ttgtacaatg tacatttgtg gtgattcaac tgaatgcagc aatcttttgt tgcaatatgg



3481
cagtttctgt acacaattaa accgtgcttt aactggaata gctgttgaac aagacaaaaa



3541
cacccaagaa gtttttgcac aagtcaaaca aatttacaaa acaccaccaa ttaaagattt



3601
tggtggtttt aatttttcac aaatattacc agatccatca aaaccaagca agaggtcatt



3661
tattgaagat ctacttttca acaaagtgac acttgcagat gctggcttca tcaaacaata



3721
tggtgattgc cttggtgata ttgctgctag agacctcatt tgtgcacaaa agtttaacgg



3781
ccttactgtt ttgccacctt tgctcacaga tgaaatgatt gctcaataca cttctgcact



3841
gttagcgggt acaatcactt ctggttggac ctttggtgca ggtgctgcat tacaaatacc



3901
atttgctatg caaatggctt ataggtttaa tggtattgga gttacacaga atgttctcta



3961
tgagaaccaa aaattgattg ccaaccaatt taatagtgct attggcaaaa ttcaagactc



4021
actttcttcc acagcaagtg cacttggaaa acttcaagat gtggtcaacc aaaatgcaca



4081
agctttaaac acgcttgtta aacaacttag ctccaatttt ggtgcaattt caagtgtttt



4141
aaatgatatc ctttcacgtc ttgacaaagt tgaggctgaa gtgcaaattg ataggttgat



4201
cacaggcaga cttcaaagtt tgcagacata tgtgactcaa caattaatta gagctgcaga



4261
aatcagagct tctgctaatc ttgctgctac taaaatgtca gagtgtgtac ttggacaatc



4321
aaaaagagtt gatttctgtg gaaagggcta tcatcttatg tccttccctc agtcagcacc



4381
tcatggtgta gtcttcttgc atgtgactta tgtccctgca caagaaaaga acttcacaac



4441
tgctcctgcc atttgtcatg atggaaaagc acactttcct cgtgaaggtg tctttgtttc



4501
aaatggcaca cactggtttg taacacaaag gaacttttat gaaccacaaa tcattactac



4561
agacaacaca tttgtgtctg gtaactgtga tgttgtaata ggaattgtca acaacacagt



4621
ttatgatcct ttgcaacctg aattagactc attcaaggag gagttagata aatattttaa



4681
gaatcataca tcaccagatg ttgatttagg tgacatctct ggcattaatg cttcagttgt



4741
aaacattcaa aaagaaattg accgcctcaa tgaggttgcc aagaatttaa atgaatctct



4801
catcgatctc caagaacttg gaaagtatga gcagtatata aaatggccat ggtacatttg



4861
gctaggtttt atagctggct tgattgccat agtaatggtg acaattatgc tttgctgtat



4921
gaccagttgc tgtagttgtc tcaagggctg ttgttcttgt ggatcctgct gcaaatttga



4981
tgaagacgac tctgagccag tgctcaaagg agtcaaatta cattacacat aatattatat



5041
tttttatcta aaaaactaaa aataaacatt gattaaattt taatataata cttaaaaatg



5101
gatgttgtgt cgttagataa accgtttatg tattttgagg aaattgataa tgagttagat



5161
tacgaaccag aaagtgcaaa tgaggtcgca aaaaaactac cgtatcaagg acagttaaaa



5221
ctattactag gagaattatt ttttcttagt aagttacagc gacacggtat attagatggt



5281
gccaccgtag tgtatatagg atcggctcct ggtacacata tacgttattt gagagatcat



5341
ttctataatt taggaatgat tatcaaatgg atgctaattg acggacgcca tcatgatcct



5401
attctaaatg gattgcgtga tgtgactcta gtgactcggt tcgttgatga ggaatatcta



5461
cgatccatca aaaaacaact gcatccttct aagattattt taatttctga tgtaagatcc



5521
aaacgaggag gaaatgaacc tagtacggcg gatttactaa gtaattacgc tctacaaaat



5581
gtcatgatta gtattttaaa ccccgtggca tctagtctta aatggagatg cccgtttcca



5641
gatcaatgga tcaaggactt ttatatccca cacggtaata aaatgttaca accttttgct



5701
ccttcatatt cagctgaaat gagattatta agtatttata ccggtgagaa catgagactg



5761
actcgagtta ccaaattaga cgctgtaaat tatgaaaaaa agatgtacta ccttaataag



5821
atcgtccgta acaaagtagt tgttaacttt gattatccta atcaggaata tgactatttt



5881
cacatgtact ttatgctgag gaccgtatac tgcaataaaa catttcctac tactaaagca



5941
aaggtactat ttctacaaca atctatattt cgtttcttaa atattccaac aacatcaact



6001
gaaaaagtta gtcatgaacc aatacaacgt aa





Nucleotide sequence of
1
atttacggat tcaccaataa aaataaacta gagaaactta gtactaataa ggaactagaa


HPXV_SARS_Ad_Spike_Delta_T5NT
61
tcgtatagtt ctagccctct tcaagaaccc attaggttaa atgattttct gggactattg


(SEQ ID NO: 64)
121
gaatgtatta aaaagaatat tcctctaaca gatattccga caaaggattg attactataa



181
atggagaatg ttcctaatgt atactttaat cctgtgttta tagagcccac gtttaaacat



241
tctttattaa gtgtttataa acacagatta atagttttat ttgaagtatt cattgtattc



301
attctaatat atgtattttt tagatctgaa ttaaatatgt tcttcatgcc taaacgaaaa



361
atacccgatc ctattgatag attacgacgt gctaatctag cgtgtgaaga cgataagtta



421
atgatctatg gattaccatg gatgacaact caaacatctg cgttatcaat aaatagtaaa



481
ccgatagtgt ataaagattg tgcaaagctt ttgcgatcaa taaatggatc acaaccagta



541
tctcttaacg atgttcttcg cagatgatga ttcatttttt aagtatttgg ctagtcaaga



601
tgatgaatct tcattatctg atatattgca aatcactcaa tatctagact ttctgttatt



661
attattgatc caatcaaaaa ataaattaga agccgtgggt cattgttatg aatctctttc



721
agaggaatac agacaattga caaaattcac agactttcaa gattttaaaa aactgtttaa



781
caaggtccct attgttacag atggaagggt caaacttaat aaaggatatt tgttcgactt



841
tgtgattagt ttgatgcgat tcaaaaaaga atcctctcta gctaccaccg caatagatcc



901
tattagatac atagatcctc gtcgtgatat cgcattttct aacgtgatgg atatattaaa



961
gttgaataaa gtgaacaata attaattctt tattgtcatc ttttattttt tttttttgga



1021
atataaatat ccggtaaaat tgaaaaaata tacactaatt agcgtctcgt ttcagacgct



1081
agctcgaggt tgggagctct ccggatccaa gcttatcgat ttcgaacccg gggtaccgaa



1141
ttcctcgagg ttgggagctc tccggatcca agcttatcga tttcgaaccc ggggtaccga



1201
attcctcgag atgtttattt tcttattatt tcttactctc actagtggta gtgaccttga



1261
ccggtgcacc acttttgatg atgttcaagc tcctaattac actcaacata cttcatctat



1321
gaggggggtt tactatcctg atgaaatttt tagatcagac actctttatt taactcagga



1381
tttatttctt ccattttatt ctaatgttac agggtttcat actattaatc atacgtttgg



1441
caaccctgtc atacctttta aggatggtat ttattttgct gccacagaga aatcaaatgt



1501
tgtccgtggt tgggtttttg gttctaccat gaacaacaag tcacagtcgg tgattattat



1561
taacaattct actaatgttg ttatacgagc atgtaacttt gaattgtgtg acaacccttt



1621
ctttgctgtt tctaaaccca tgggtacaca gacacatact atgatattcg ataatgcatt



1681
taattgcact ttcgagtaca tatctgatgc cttttcgctt gatgtttcag aaaagtcagg



1741
taattttaaa cacttacgag agtttgtgtt taaaaataaa gatgggtttc tctatgttta



1801
taagggctat caacctatag atgtagttcg tgatctacct tctggtttta acactttgaa



1861
acctattttt aagttgcctc ttggtattaa cattacaaat tttagagcca ttcttacagc



1921
cttttcacct gctcaagaca tttggggcac gtcagctgca gcctattttg ttggctattt



1981
aaagccaact acatttatgc tcaagtatga tgaaaatggt acaatcacag atgctgttga



2041
ttgttctcaa aatccacttg ctgaactcaa atgctctgtt aagagctttg agattgacaa



2101
aggaatttac cagacctcta atttcagggt tgttccctca ggagatgttg tgagattccc



2161
taatattaca aacttgtgtc cttttggaga ggtttttaat gctactaaat tcccttctgt



2221
ctatgcatgg gagagaaaaa aaatttctaa ttgtgttgct gattactctg tgctctacaa



2281
ctcaacattc ttttcaacct ttaagtgcta tggcgtttct gccactaagt tgaatgatct



2341
ttgcttctcc aatgtctatg cagattcttt tgtagtcaag ggagatgatg taagacaaat



2401
agcgccagga caaactggtg ttattgctga ttataattat aaattgccag atgatttcat



2461
gggttgtgtc cttgcttgga atactaggaa cattgatgct acttcaactg gtaatcataa



2521
ttataaatat aggtatctta gacatggcaa gcttaggccc tttgagagag acatatctaa



2581
tgtgcctttc tcccctgatg gcaaaccttg caccccacct gctcttaatt gttattggcc



2641
attaaatgat tatggttttt acaccactac tggcattggc taccaacctt acagagttgt



2701
agtactttct tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac



2761
tgaccttatt aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt



2821
gttaactcct tcttcaaaga gatttcaacc atttcaacaa tttggccgtg atgtttctga



2881
tttcactgat tccgttcgag atcctaaaac atctgaaata ttagacattt caccttgctc



2941
ttttgggggt gtaagtgtaa ttacacctgg aacaaatgct tcatctgaag ttgctgttct



3001
atatcaagat gttaactgca ctgatgtttc tacagcaatt catgcagatc aactcacacc



3061
agcttggcgc atatattcta ctggaaacaa tgtattccag actcaagcag gctgtcttat



3121
aggagctgag catgtcgaca cttcttatga gtgcgacatt cctattggag ctggcatttg



3181
tgctagttac catacagttt ctttattacg tagtactagc caaaaatcta ttgtggctta



3241
tactatgtct ttaggtgctg atagttcaat tgcttactct aataacacca ttgctatacc



3301
tactaacttt tcaattagca ttactacaga agtaatgcct gtttctatgg ctaaaacctc



3361
cgtagattgt aatatgtaca tctgcggaga ttctactgaa tgtgctaatt tgcttctcca



3421
atatggtagc ttttgcacac aactaaatcg tgcactctca ggtattgctg ctgaacagga



3481
tcgcaacaca cgtgaagtgt tcgctcaagt caaacaaatg tacaaaaccc caactttgaa



3541
atattttggt ggttttaatt tttcacaaat attacctgac cctctaaagc caactaagag



3601
gtcttttatt gaggacttgc tctttaataa ggtgacactc gctgatgctg gcttcatgaa



3661
gcaatatggc gaatgcctag gtgatattaa tgctagagat ctcatttgtg cgcagaagtt



3721
caatggactt acagtgttgc cacctctgct cactgatgat atgattgctg cctacactgc



3781
tgctctagtt agtggtactg ccactgctgg atggacattt ggtgctggcg ctgctcttca



3841
aatacctttt gctatgcaaa tggcatatag gttcaatggc attggagtta cccaaaatgt



3901
tctctatgag aaccaaaaac aaatcgccaa ccaatttaac aaggcgatta gtcaaattca



3961
agaatcactt acaacaacat caactgcatt gggcaagctg caagacgttg ttaaccagaa



4021
tgctcaagca ttaaacacac ttgttaaaca acttagctct aattttggtg caatttcaag



4081
tgtgctaaat gatatccttt cgcgacttga taaagtcgag gcggaggtac aaattgacag



4141
gttaattaca ggcagacttc aaagccttca aacctatgta acacaacaac taatcagggc



4201
tgctgaaatc agggcttctg ctaatcttgc tgctactaaa atgtctgagt gtgttcttgg



4261
acaatcaaaa agagttgact tttgtggaaa gggctaccac cttatgtcct tcccacaagc



4321
agccccgcat ggtgttgtct tcctacatgt cacgtatgtg ccatcccagg agaggaactt



4381
caccacagcg ccagcaattt gtcatgaagg caaagcatac ttccctcgtg aaggtgtttt



4441
cgtgtttaat ggcacttctt ggtttattac acagaggaac ttcttttctc cacaaataat



4501
tactacagac aatacatttg tctcaggaaa ttgtgatgtc gttattggca tcattaacaa



4561
cacagtttat gatcctctgc aacctgagct cgactcattc aaagaagagc tggacaagta



4621
cttcaaaaat catacatcac cagatgttga tcttggcgac atttcaggca ttaacgcttc



4681
tgtcgtcaac attcaaaaag aaattgaccg cctcaatgag gtcgctaaaa atttaaatga



4741
atcactcatt gaccttcaag aattgggaaa atatgagcaa tatattaaat ggccttggta



4801
tgtttggctc ggcttcattg ctggactaat tgccatcgtc atggttacaa tcttgctttg



4861
ttgcatgact agttgttgca gttgcctcaa gggtgcatgc tcttgtggtt cttgctgcaa



4921
gtttgatgag gatgactctg agccagttct caagggtgtc aaattacatt acacataata



4981
ttatattttt tatctaaaaa actaaaaata aacattgatt aaattttaat ataatactta



5041
aaaatggatg ttgtgtcgtt agataaaccg tttatgtatt ttgaggaaat tgataatgag



5101
ttagattacg aaccagaaag tgcaaatgag gtcgcaaaaa aactaccgta tcaaggacag



5161
ttaaaactat tactaggaga attatttttt cttagtaagt tacagcgaca cggtatatta



5221
gatggtgcca ccgtagtgta tataggatcg gctcctggta cacatatacg ttatttgaga



5281
gatcatttct ataatttagg aatgattatc aaatggatgc taattgacgg acgccatcat



5341
gatcctattc taaatggatt gcgtgatgtg actctagtga ctcggttcgt tgatgaggaa



5401
tatctacgat ccatcaaaaa acaactgcat ccttctaaga ttattttaat ttctgatgta



5461
agatccaaac gaggaggaaa tgaacctagt acggcggatt tactaagtaa ttacgctcta



5521
caaaatgtca tgattagtat tttaaacccc gtggcatcta gtcttaaatg gagatgcccg



5581
tttccagatc aatggatcaa ggacttttat atcccacacg gtaataaaat gttacaacct



5641
tttgctcctt catattcagc tgaaatgaga ttattaagta tttataccgg tgagaacatg



5701
agactgactc gagttaccaa attagacgct gtaaattatg aaaaaaagat gtactacctt



5761
aataagatcg tccgtaacaa agtagttgtt aactttgatt atcctaatca ggaatatgac



5821
tattttcaca tgtactttat gctgaggacc gtatactgca ataaaacatt tcctactact



5881
aaagcaaagg tactatttct acaacaatct atatttcgtt tcttaaatat tccaacaaca



5941
tcaactgaaa aagttagtca tgaaccaata caacgtaa





Nucleotide sequence of
1
atttacggat tcaccaataa aaataaacta gagaaactta gtactaataa ggaactagaa


synVACV_SARS_Ad_Spike_deltaT5NT
61
tcgtatagtt ctagccctct tcaagaaccc attaggttaa atgattttct gggactattg


(SEQ ID NO: 65)
121
gaatgtgtta aaaagaatat tcctctaaca gatattccga caaaggattg attactataa



181
atggagaatg ttcctaatgt atactttaat cctgtgttta tagagcccac gtttaaacat



241
tctttattaa gtgtttataa acacagatta atagttttat ttgaagtatt cgttgtattc



301
attctaatat atgtattttt tagatctgaa ttaaatatgt tcttcatgcc taaacgaaaa



361
atacccgatc ctattgatag attacgacgt gctaatctag cgtgtgaaga cgataaatta



421
atgatctatg gattaccatg gatgacaact caaacatctg cgttatcaat aaatagtaaa



481
ccgatagtgt ataaagattg tgcaaagctt ttgcgatcaa taaatggatc acaaccagta



541
tctcttaacg atgttcttcg cagatgatga ttcatttttt aagtatttgg ctagtcaaga



601
tgatgaatct tcattatctg atatattgca aatcactcaa tatctagact ttctgttatt



661
attattgatc caatcaaaaa ataaattaga agccgtgggt cattgttatg aatctctttc



721
agaggaatac agacaattga caaaattcac agactctcaa gattttaaaa aactgtttaa



781
caaggtccct attgttacag atggaagggt caaacttaat aaaggatatt tgttcgactt



841
tgtgattagt ttgatgcgat tcaaaaaaga atcagctcta gctaccaccg caatagatcc



901
tgttagatac atagatcctc gtcgcgatat cgcattttct aacgtgatgg atatattaaa



961
gtcgaataaa gtgaacaata attaattctt tattgtcatc ttttattttt tttttttgga



1021
atataaatat ccggtaaaat tgaaaaaata tacactaatt agcgtctcgt ttcagacgct



1081
agctcgaggt tgggagctct ccggatccaa gcttatcgat ttcgaacccg gggtaccgaa



1141
ttcctcgagg ttgggagctc tccggatcca agcttatcga tttcgaaccc ggggtaccga



1201
attcctcgag atgtttattt tcttattatt tcttactctc actagtggta gtgaccttga



1261
ccggtgcacc acttttgatg atgttcaagc tcctaattac actcaacata cttcatctat



1321
gaggggggtt tactatcctg atgaaatttt tagatcagac actctttatt taactcagga



1381
tttatttctt ccattttatt ctaatgttac agggtttcat actattaatc atacgtttgg



1441
caaccctgtc atacctttta aggatggtat ttattttgct gccacagaga aatcaaatgt



1501
tgtccgtggt tgggtttttg gttctaccat gaacaacaag tcacagtcgg tgattattat



1561
taacaattct actaatgttg ttatacgagc atgtaacttt gaattgtgtg acaacccttt



1621
ctttgctgtt tctaaaccca tgggtacaca gacacatact atgatattcg ataatgcatt



1681
taattgcact ttcgagtaca tatctgatgc cttttcgctt gatgtttcag aaaagtcagg



1741
taattttaaa cacttacgag agtttgtgtt taaaaataaa gatgggtttc tctatgttta



1801
taagggctat caacctatag atgtagttcg tgatctacct tctggtttta acactttgaa



1861
acctattttt aagttgcctc ttggtattaa cattacaaat tttagagcca ttcttacagc



1921
cttttcacct gctcaagaca tttggggcac gtcagctgca gcctattttg ttggctattt



1981
aaagccaact acatttatgc tcaagtatga tgaaaatggt acaatcacag atgctgttga



2041
ttgttctcaa aatccacttg ctgaactcaa atgctctgtt aagagctttg agattgacaa



2101
aggaatttac cagacctcta atttcagggt tgttccctca ggagatgttg tgagattccc



2161
taatattaca aacttgtgtc cttttggaga ggtttttaat gctactaaat tcccttctgt



2221
ctatgcatgg gagagaaaaa aaatttctaa ttgtgttgct gattactctg tgctctacaa



2281
ctcaacattc ttttcaacct ttaagtgcta tggcgtttct gccactaagt tgaatgatct



2341
ttgcttctcc aatgtctatg cagattcttt tgtagtcaag ggagatgatg taagacaaat



2401
agcgccagga caaactggtg ttattgctga ttataattat aaattgccag atgatttcat



2461
gggttgtgtc cttgcttgga atactaggaa cattgatgct acttcaactg gtaatcataa



2521
ttataaatat aggtatctta gacatggcaa gcttaggccc tttgagagag acatatctaa



2581
tgtgcctttc tcccctgatg gcaaaccttg caccccacct gctcttaatt gttattggcc



2641
attaaatgat tatggttttt acaccactac tggcattggc taccaacctt acagagttgt



2701
agtactttct tttgaacttt taaatgcacc ggccacggtt tgtggaccaa aattatccac



2761
tgaccttatt aagaaccagt gtgtcaattt taattttaat ggactcactg gtactggtgt



2821
gttaactcct tcttcaaaga gatttcaacc atttcaacaa tttggccgtg atgtttctga



2881
tttcactgat tccgttcgag atcctaaaac atctgaaata ttagacattt caccttgctc



2941
ttttgggggt gtaagtgtaa ttacacctgg aacaaatgct tcatctgaag ttgctgttct



3001
atatcaagat gttaactgca ctgatgtttc tacagcaatt catgcagatc aactcacacc



3061
agcttggcgc atatattcta ctggaaacaa tgtattccag actcaagcag gctgtcttat



3121
aggagctgag catgtcgaca cttcttatga gtgcgacatt cctattggag ctggcatttg



3181
tgctagttac catacagttt ctttattacg tagtactagc caaaaatcta ttgtggctta



3241
tactatgtct ttaggtgctg atagttcaat tgcttactct aataacacca ttgctatacc



3301
tactaacttt tcaattagca ttactacaga agtaatgcct gtttctatgg ctaaaacctc



3361
cgtagattgt aatatgtaca tctgcggaga ttctactgaa tgtgctaatt tgcttctcca



3421
atatggtagc ttttgcacac aactaaatcg tgcactctca ggtattgctg ctgaacagga



3481
tcgcaacaca cgtgaagtgt tcgctcaagt caaacaaatg tacaaaaccc caactttgaa



3541
atattttggt ggttttaatt tttcacaaat attacctgac cctctaaagc caactaagag



3601
gtcttttatt gaggacttgc tctttaataa ggtgacactc gctgatgctg gcttcatgaa



3661
gcaatatggc gaatgcctag gtgatattaa tgctagagat ctcatttgtg cgcagaagtt



3721
caatggactt acagtgttgc cacctctgct cactgatgat atgattgctg cctacactgc



3781
tgctctagtt agtggtactg ccactgctgg atggacattt ggtgctggcg ctgctcttca



3841
aatacctttt gctatgcaaa tggcatatag gttcaatggc attggagtta cccaaaatgt



3901
tctctatgag aaccaaaaac aaatcgccaa ccaatttaac aaggcgatta gtcaaattca



3961
agaatcactt acaacaacat caactgcatt gggcaagctg caagacgttg ttaaccagaa



4021
tgctcaagca ttaaacacac ttgttaaaca acttagctct aattttggtg caatttcaag



4081
tgtgctaaat gatatccttt cgcgacttga taaagtcgag gcggaggtac aaattgacag



4141
gttaattaca ggcagacttc aaagccttca aacctatgta acacaacaac taatcagggc



4201
tgctgaaatc agggcttctg ctaatcttgc tgctactaaa atgtctgagt gtgttcttgg



4261
acaatcaaaa agagttgact tttgtggaaa gggctaccac cttatgtcct tcccacaagc



4321
agccccgcat ggtgttgtct tcctacatgt cacgtatgtg ccatcccagg agaggaactt



4381
caccacagcg ccagcaattt gtcatgaagg caaagcatac ttccctcgtg aaggtgtttt



4441
cgtgtttaat ggcacttctt ggtttattac acagaggaac ttcttttctc cacaaataat



4501
tactacagac aatacatttg tctcaggaaa ttgtgatgtc gttattggca tcattaacaa



4561
cacagtttat gatcctctgc aacctgagct cgactcattc aaagaagagc tggacaagta



4621
cttcaaaaat catacatcac cagatgttga tcttggcgac atttcaggca ttaacgcttc



4681
tgtcgtcaac attcaaaaag aaattgaccg cctcaatgag gtcgctaaaa atttaaatga



4741
atcactcatt gaccttcaag aattgggaaa atatgagcaa tatattaaat ggccttggta



4801
tgtttggctc ggcttcattg ctggactaat tgccatcgtc atggttacaa tcttgctttg



4861
ttgcatgact agttgttgca gttgcctcaa gggtgcatgc tcttgtggtt cttgctgcaa



4921
gtttgatgag gatgactctg agccagttct caagggtgtc aaattacatt acacataata



4981
ttatattttt tatctaaaaa actaaaaata aacattgatt aaattttaat ataatactta



5041
aaaatggatg ttgtgtcgtt agataaaccg tttatgtatt ttgaggaaat tgataatgag



5101
ttagattacg aaccagaaag tgcaaatgag gtcgcaaaaa aactgccgta tcaaggacag



5161
ttaaaactat tactaggaga attatttttt cttagtaagt tacagcgaca cggtatatta



5221
gatggtgcca ccgtagtgta tataggatct gctcccggta cacatatacg ttatttgaga



5281
gatcatttct ataatttagg agtgatcatc aaatggatgc taattgacgg ccgccatcat



5341
gatcctattt taaatggatt gcgtgatgtg actctagtga ctcggttcgt tgatgaggaa



5401
tatctacgat ccatcaaaaa acaactgcat ccttctaaga ttattttaat ttctgatgtg



5461
agatccaaac gaggaggaaa tgaacctagt acggcggatt tactaagtaa ttacgctcta



5521
caaaatgtca tgattagtat tttaaacccc gtggcatcta gtcttaaatg gagatgcccg



5581
tttccagatc aatggatcaa ggacttttat atcccacacg gtaataaaat gttacaacct



5641
tttgctcctt catattcagc tgaaatgaga ttattaagta tttataccgg tgagaacatg



5701
agactgactc gagttaccaa attagacgct gtaaattatg aaaaaaagat gtactacctt



5761
aataagatcg tccgtaacaa agtagttgtt aactttgatt atcctaatca ggaatatgac



5821
tattttcaca tgtactttat gctgaggacc gtgtactgca ataaaacatt tcctactact



5881
aaagcaaagg tactatttct acaacaatct atatttcgtt tcttaaatat tccaacaaca



5941
tcaactgaaa aagttagtca tgaaccaata caacgtaa









Examples
Example 1. Generation of the Synthetic Horsepox Virus

The synthetic horsepox virus (scHPXV) is generated following the methods disclosed in US 2018/0251736, incorporated herein by reference in its entirety.


The design of the synthetic HPXV genome is based on the previously described genome sequence for HPXV (strain MNR-76; GenBank accession DQ792504) (Tulman E R, Delhon G, Afonso C L, Lu Z, Zsak L, Sandybaev N T, et al. Genome of horsepox virus. Journal of virology. 2006; 80(18):9244-58). The 212,633 bp genome is divided into 10 overlapping fragments. These fragments are designed so that they shared at least 1.0 kbp of overlapping sequence (i.e. homology) with each adjacent fragment, to provide sites where homologous recombination will drive the assembly of full-length genomes. The fragments generated are shown in Table 2. These overlapping sequences will provide sufficient homology to accurately carry out recombination between the co-transfected fragments









TABLE 2







HPXV genome fragments for use to generate the


synthetic HPXV. The size of each fragment and


location within the HPXV genome are indicated.











Location within




HPXV [DQ792504]


Fragment Name
Size (bp)
(bp)












GA_Left ITR (SEQ ID NO: 15)
10,095
   41-10,135


GA_Fragment 1A (SEQ ID NO: 16)
16,257

8505-24,761



GA_Fragment 1B (SEQ ID NO: 17)
16,287
 23764-40,050


GA_Fragment 2 (SEQ ID NO: 18)
31,946
38,705-70,650


GA_Fragment 3 (SEQ ID NO: 19)
25,566
68,608-94,173


GA_Fragment 4 (SEQ ID NO: 20)
28,662
 92,587-121,248


GA_Fragment 5 (SEQ ID NO: 21)
30,252
119,577-149,828


GA_Fragment 6 (SEQ ID NO: 22)
30,000
147,651-177,650


GA_Fragment 7 (SEQ ID NO: 23)
28,754
176,412-205,165


GA_Right ITR (SEQ ID NO: 24)
8,484
204,110-212,593









The resulting synthetic HPXV has been deposited in GenBank as accession number KY349117.


A yfp/gpt cassette under the control of a poxvirus early late promoter is introduced into the HPXV095/J2R locus within GA_Fragment_3, so that reactivation of HPXV (scHPXV YFP-gpt::095) will be easy to visualize under a fluorescence microscope. SFV-catalyzed recombination and reactivation of poxvirus DNA to assemble recombinant poxviruses has previously been described (Yao X D et al. Journal of virology. 2003; 77(13):7281-90; and Yao X D et al. Methods Mol Biol. 2004; 269:51-64; the entire disclosures of each are incorporated by reference herein). Several biological features make this an attractive model system. First, SFV has a narrow host range, productively infecting rabbit cells and certain monkey cell lines, like BGMK. It can infect, but grows very poorly on cells like BSC-40. Second, it grows more slowly compared to Orthopoxviruses, taking approximately 4-5 days to form transformed “foci” in monolayers of cells, a characteristic that is very different from Orthopoxviruses, which produce plaques within 1-2 days in culture. This difference in growth between Leporipoxviruses and Orthopoxviruses allows differentiation of these viruses by performing the reactivation assays in BGMK cells and plating the progeny on BSC-40 cells. In some embodiments, other helper viruses (such as, but not limited to, fowlpox virus) may be used. In some embodiments, different cell combinations may be used.


BGMK cells are infected with SFV at a MOI of 0.5 and then transfected with 5 μg of digested GA_HPXV fragments 2 h later. Five days post transfection, all of the infectious particles are recovered by cell lysis and re-plated on BSC-40 cells, which only efficiently support growth of HPXV. The resulting reactivated scHPXV YFP-gpt::095 plaques are visualized under a fluorescence microscope. The visualization is enabled by the yfp/gpt selectable marker in the HPXV095/J2R locus within Frag_3. Virus plaques are detected in BSC-40 monolayers within 48 h of transfection. The efficiency of recovering scHPXV YFP-gpt::095 is dependent on a number of factors, including DNA transfection efficiency, but ranges up to a few PFU/μg of DNA transfected.


A yfp/gpt cassette under the control of a poxvirus early late promoter is also introduced into the HPXV200 locus within GA_Fragment_7, so that reactivation of HPXV (scHPXV YFP-gpt::200) will be easy to visualize under a fluorescence microscope. SFV-catalyzed recombination and reactivation of poxvirus DNA to assemble recombinant poxviruses has previously been described (Yao X D et al. Journal of virology. 2003; 77(13):7281-90; and Yao X D et al. Methods Mol Biol. 2004; 269:51-64; the entire disclosures of each are incorporated by reference herein). Several biological features make this an attractive model system. First, SFV has a narrow host range, productively infecting rabbit cells and certain monkey cell lines, like BGMK. It can infect, but grows very poorly on cells like BSC-40. Second, it grows more slowly compared to Orthopoxviruses, taking approximately 4-5 days to form transformed “foci” in monolayers of cells, a characteristic that is very different from Orthopoxviruses, which produce plaques within 1-2 days in culture. This difference in growth between Leporipoxviruses and Orthopoxviruses allows differentiation of these viruses by performing the reactivation assays in BGMK cells and plating the progeny on BSC-40 cells. In some embodiments, other helper viruses (such as, but not limited to, fowlpox virus) may be used. In some embodiments, different cell combinations may be used.


BGMK cells are infected with SFV at a MOI of 0.5 and then transfected with 5 μg of digested GA_HPXV fragments 2 hours later. Five days post transfection, all of the infectious particles are recovered by cell lysis and re-plated on BSC-40 cells, which only efficiently support growth of HPXV. The resulting reactivated scHPXV YFP-gpt::200 plaques are visualized under a fluorescence microscope. The visualization is enabled by the yfp/gpt selectable marker in the HPXV200 locus within Frag_7. Virus plaques are detected in BSC-40 monolayers within 48 hours of transfection. The efficiency of recovering scHPXV YFP-gpt::200 is dependent on a number of factors, including DNA transfection efficiency, but ranges up to a few PFU/μg of DNA transfected.


Example 2. Generation of the Synthetic Vaccinia Virus, Strain ACAM2000

The synthetic vaccinia virus ACAM2000 was generated using the methods disclosed in WO 2019/213452, incorporated herein by reference in its entirety.


The design of the synthetic VACV (synVACV) genome was based on the previously described genome sequence for VACV ACAM2000 (GenBank accession AY313847) (Osborne J D et al. Vaccine. 2007; 25(52):8807-32). The genome was divided into 9 overlapping fragments (FIG. 1). These fragments were designed so that they shared at least 1.0 kbp of overlapping sequence (i.e. homology) with each adjacent fragment, to provide sites where homologous recombination will drive the assembly of full-length genomes (Table 3). These overlapping sequences provided sufficient homology to accurately carry out recombination between the co-transfected fragments (Yao X D, Evans D H. Journal of Virology. 2003; 77(13):7281-90).









TABLE 3







The VACV ACAM2000 genome fragments used in this study.


The size and the sequence within the VACV ACAM2000


genome [GenBank Accession AY313847] are described.











Fragment Name
Size (bp)
Sequence







GA_LITR
18,525
SEQ ID NO: 25



ACAM2000



GA_FRAG_1
24,931
SEQ ID NO: 26



ACAM2000



GA_FRAG_2
23,333
SEQ ID NO: 27



ACAM2000



GA_FRAG_3
26,445
SEQ ID NO: 28



ACAM2000



GA_FRAG_4
26,077
SEQ ID NO: 29



ACAM2000



GA_FRAG_5
24,671
SEQ ID NO: 30



ACAM2000



GA_FRAG_6
25,970
SEQ ID NO: 31



ACAM2000



GA_FRAG_7
28,837
SEQ ID NO: 32



ACAM2000



GA_RITR
17,641
SEQ ID NO: 33



ACAM2000










The resulting synthetic VACV, ACAM 2000 has been deposited in GenBank as accession number MN974381.


Example 3. Generation of the Engineered SARS-CoV-2 S Protein

The nucleotide sequence alignment of the synthetic HPXV (Accession number KY349117) and the synthetic VACV (Accession number MN974381) indicates a nucleotide sequence identity of 99% throughout the 4 Kb TK gene locus and a co-linearity (Start and Stop) of the TK gene sequences, which were used for the construction of the ΔTK insertion locus or knockout TK locus. See FIG. 3.


The TK gene is non-essential for viral replication in tissue culture. It also provides a stable insertion site for foreign gene(s) of interest and a selection marker (TK−) in the presence of the nucleotide analog 5-Bromodeoxyuridine (5-BrdU).


Because of the high level of sequence identity between the synthetic HPXV and the synthetic VACV, the PCR sequence manipulations used for the generation of the expression cassette containing the promoter/gene sequences allow for the use of the same expression cassette with the two different rescue viruses. For the rescue of the transfected PCR fragment comprising the engineered SARS-CoV-2 S protein, virus specific sequences (recombination left and right flanking arms, corresponding to HPXV094 and HPXV096, respectively) allows the recombination of the expression cassette into the viral TK locus. See FIG. 2 and FIG. 5.


A nucleotide sequence alignment of the Spike (S) gene of different SARS-CoV-2 isolates is performed. The viral isolates aligned are the ones published under the following accession numbers NC045512.2, LC521925.1, MN988668.1, MN985325.1, MN975262.1, MN938384.1, LR757998.1, LR757996.1, LR757995.1 and MN908947.3. The alignment of the S genes indicates 100% homology at the nucleotide level between the S gene of the different viral isolates. All viral isolates sequences are isolates with complete genome sequence entries from China, Japan and the US. Early indications from isolate sequence analysis seems to indicate little viral drift. However, if drift is ultimately observed, the same techniques can be used with the modified virus and its proteins and nucleic acid sequences.


The nucleotide sequence encoding the S protein of the SARS-CoV-2 comprises the nucleotide sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 47. The SARS-CoV-2 is not well adapted for infection in mice. Therefore, genomic adaptative mutations are introduced to adapt the virus for infection in mice. In particular, a mutation in the nucleotide sequence is introduced, the mutation resulting in a S protein comprising a Y459H substitution. Table 4 shows genomic adaptative mutations in SARS-CoV virus, that can be adapted and introduced into other regions of the SARS-CoV-2 virus. See Roberts A et al. PLoS Pathog. 2007 January; 3(1): e5. doi: 10.1371.


The six mutations found in a SARS-CoV virus resulting from fifteen passages (and the resulting virus called MA15) and that are lethal for mice following intranasal inoculation are listed in Table 4. The labels in Table 4 are as follows: ORFa: open reading frame; CDSb coding sequence, sequence of nucleotides that corresponds with the sequence of amino acids in a protein (location includes start and stop codon); nspc; non-structural protein, cleavage product of ORF lab; Mainpro: main 3C-like protease; Hel: helicase; RBMd: receptor binding motif (amino acids 424-494).









TABLE 4







Genomic adaptive mutations in SARS-CoV virus









Mutations found in MA15 compared to SARS-CoV (Urbani)










ORFa
CDSb
Nucleotide change
Amino acid change in SARS-CoV protein





1a
 265-13413
10384 C−>T
H133Y nsp5 (Mainpro)c




10793 A−>C
E269A nsp5 (Mainpro)c




12814 A−>G
T67A nsp9c


1b
13398-21485
16177 C−>T
A4V nsp13 (Hel)c


S
21492-25259
22797 T−>C
Y436H Spike protein-RBMd


M
26398-27063
26428 G−>A
E11K M protein









For efficient expression of transgenes from poxvirus vectors, heterologous gene coding sequences containing the vaccinia Early Transcription Terminator Signal (ETTS) should be removed, in one embodiment of this disclosure, through coding silent mutagenesis to generate full length transcripts during the early phase of the infection. These sequences have the following sequence: TTTTTNT (T5NT); SEQ ID NO: 14. Removing the ETTS in the S protein coding sequence can positively impact the generation of robust immune responses. See Earl P L et al. J Virol. 1990 May; 64(5):2448-51.


Examples of other mutations introduced in the S protein (SEQ ID NO: 47) in other embodiments of this disclosure are the following: D614G, S943P, K986P and V987P. One or more of these mutations can be introduced in the S protein in those embodiments.


Poxvirus replication occurs in the cytoplasm of the infected cell. The viruses do not enter the nucleus of the infected cell during the replication cycle, and therefore do not utilize the host cell transcriptional apparatus. Because of the cytoplasmic location of replication, poxviruses encode their own transcriptional machinery including the viral RNA polymerase and their own regulatory promoter recognition signals. Therefore, for efficient high-level expression from eukaryotic transgene expression has to be driven from poxvirus promoters. Poxvirus gene expression is controlled by early, intermediate and late promoters and can be defined as early (8 Hours before infection) and late (8 hours post-infection). DNA synthesis occurs 8 hours post infection and is referred to as the temporal boundary for the initiation of late gene expression. Highest levels of transgene antigenic load have usually been achieved through the use of a combination of Early and Late Promoter signals. The promoter used to control transcription of the S protein is an overlapping synthetic early/late promoter comprising the sequence (TTTTATTTTTTTTTTTTGGAATATAAATATCCGGTAAAATTGAAAAAATA SEQ ID NO: 8) including a 160 nucleotides long spacer 3′ of the early promoter and between the RNA start site and the ATG (SEQ ID NO: 42). See FIG. 9. See Di Pilato et al. Journal of General Virology (2015), 96, 2360-2371; incorporated herein by reference in its entirety. It seems that spacers with more than 50 nt would offer greater space to the transcription machinery, possibly accelerating gene expression, and spacers with more than 99 nt offer advantages to early gene expression.


The expression cassette generated comprises the engineered SARS-CoV-2 S protein adapted for mouse infection and where the ETTS sequences have been removed and controlled under the transcription of the overlapping tandem early/late promoter.


Example 4. Generation of the Recombinant Poxvirus Comprising the Engineered SARS-CoV-2 S Protein

An exemplary method to generate a recombinant horsepox comprising the S protein of SARS-CoV-2 virus is shown in FIGS. 6 and 7 and comprises:

    • (a) Infection of cells (e.g., Vero cells or BSC-40 cells) with the rescue synthetic horsepox virus and the rescue synthetic VACV, as described above.
    • (b) The transfection of the infected cells (e.g., Vero cells or BSC-40 cells) with a PCR generated nucleotide fragment comprising the “engineered SARS-CoV-2 S gene expression cassette” is performed 24 hours post-infection. Recombination of the expression cassette occurs through the left and right flanking arms and the expression cassette is inserted into the TK gene locus. Accordingly, HPXV-095 TK locus is knocked-out and the expression cassette is inserted in the TK gene locus. After 30 min at 25° C., 7.2 ml of Eagle medium containing 8% fetal bovine serum was added and the monolayer was incubated for 3.5 hr at 37° C. The culture medium was then removed and replaced by 8 ml fresh Eagle medium containing 8% fetal bovine serum and the incubation was continued at 37° C. for two days. Cells were scraped from the bottles, pelleted by centrifugation (2,000×g, 5 min) and resuspended in 0.5 ml of Eagle medium containing 2.5% fetal bovine serum.
    • (c) The transfected cells are harvested 48 hours post-infection and the progeny virus of recombinant synthetic horsepoxvirus comprising the engineered SARS-CoV-2 S gene and the synthetic VACV is released of with repeated cycles of freeze/thaw.
    • (d) Selection of recombinant viruses. Thymidine kinase negative poxvirus recombinants are selected by plaque assay in TK cells (e.g., TK Vero cells or TK BSC-40 cells) with a 1% low melting agarose overlay containing 25 μg/ml BrdU. After three days at 37° C., cell monolayers are stained with 0.005% neutral red, plaques are picked using a sterile Pasteur pipette and placed in 0.5 ml of Eagle medium containing 2.5% fetal bovine serum. The recombinant viral progeny is identified by growth in TK cells. If the SARS-CoV-2 S gene has been inserted into the virus thymidine kinase (TK) gene, viruses containing inserted DNA will be TK and can be selected on this basis (Mackett et al., (1982)). Confirmation of the S gene is performed by PCR sequence analysis.


Once a recombinant poxvirus has been identified, a variety of methods can be used to assay the expression of the polypeptide encoded by the inserted gene. These methods include, but are not limited to, black plaque assay (an in situ enzyme immunoassay performed on viral plaques), Western blot analysis, radioimmunoprecipitation (RIPA), and enzyme immunoassay (EIA). Antibodies that recognize the SARS-CoV-2 S may be used.


The sequence of one embodiment of a synthetic horsepox virus comprising a nucleic acid encoding a SARS-CoV-2 virus S protein is SEQ ID NO: 43. The sequence of one embodiment of a synthetic vaccinia virus comprising a nucleic acid encoding a SARS-CoV-2 virus S protein is SEQ ID NO: 44.


Example 5. Immunization of Mice with a Recombinant Poxvirus Comprising the Engineered SARS-CoV-2 S Protein

Primary chicken embryo fibroblasts (CEF) cells prepared from 10-day-old embryos are grown in minimum essential medium supplemented with 10% FBS and used to propagate and titer the recombinant poxvirus.


BALB/c mice are immunized by single-shot and prime-boost vaccination with 105, 106, 107 or 108 PFU of recombinant synthetic horsepox virus expressing SARS-CoV-2 protein via either scarification, intranasally, intramuscular or subcutaneous inoculations. Animals inoculated with non-recombinant virus (WT) or phosphate-buffered saline (Mock) are used as controls.


Four weeks after the immunization, animals are challenged intranasally with 104 tissue culture 50% infective dose (TCID50) of SARS-CoV-2 as described. (Subbarao, K et al. (2004) J. Virol. 78, 3572-3577). Two days later, the lungs and nasal turbinates of four animals in each group are removed and the SARS-CoV-2 titers are determined.


Example 6. Immunization of Humans with a Recombinant Poxvirus Engineered SARS-CoV-2 S Protein

Subjects at risk for infection by SARS-CoV-2 S are vaccinated using a recombinant poxvirus engineered SARS-CoV-2 S protein of this disclosure through scarification with a bifurcated needle (standard dose, 2.5×105 to 12.5×105 plaque-forming units) typically into the upper arm. The recombinant poxvirus engineered SARS-CoV-2 S protein can also be administered as a single dose one-shot vaccine (e.g., 1×106 PFU TNX-1800), in which vials containing 100 doses per vial are manufactured. The vaccination protects them from infection. However, subsequent vaccinations may be useful to boost immunity.


Methods regarding clinical trial testing of a vaccine have been previously described (Sadoff, J. et al. (2020) Safety and immunogenicity of the Ad26.COV2.S COVID-19 vaccine candidate: interim results of a phase 1/2a, double-blinded, randomized, placebo-controlled trial, MedRxiv, Pages 1-28; incorporated herein by reference in its entirety). A multi-center phase 1/2a randomized, double-blind, placebo-controlled clinical study designed to assess the safety, reactogenicity and immunogenicity of recombinant poxvirus engineered SARS-CoV-2 S protein is conducted. The engineered SARS-CoV-2 S protein is administered at a dose level, for example, between about 5×1010 to 1×1011 viral particles (vp) per vaccination, either as a single dose or as a two-dose schedule spaced by, for example, 56 days in healthy adults (18-55 years old) and healthy elderly (≥65 years old). Vaccine elicited S specific antibody levels are measured, for example, by ELISA and neutralizing titers are measured, for example, in a microneutralization assay (see, e.g., methods in Example 11). CD4+T-helper (Th)1 and Th2, and CD8+ immune responses are assessed, for example, by intracellular cytokine staining (ICS).


Example 7. Generation of Codon-Optimized SARS-CoV-2 Spike Protein (SARS-CoV-2-Spike-Co)

The SARS-CoV-2 Spike protein (SEQ ID NO: 45) was codon-optimized (SARS-CoV-2-Spike-co; SEQ ID NO: 50) for expression during poxvirus infection and was synthesized by GenScript. The synthesized DNA also contains a poxvirus synthetic early/late promoter at nucleotide position 10-48. The synthesized DNA was subcloned into a plasmid containing homology to either the HPXV095 gene locus (SEQ ID NO: 51) or the HPXV200 gene locus (SEQ ID NO: 52). Homologous recombination was used to insert the synthesized DNA by replacing the selectable markers that were previously inserted into the synthetic VACV (synVACV) or synthetic HPXV (scHPXV). The selectable markers were inserted as a fusion between yellow fluorescent protein (YFP) and guanine phosphoriosyltransferase (GPT) into either of the HPXV095 or A2K105 genes, respectively (see methods as disclosed in US 2018/0251736, incorporated herein by reference in its entirety).


Example 8: Generation of Synthetic Vaccinia Virus TNX-2200

The YFP-GPT selectable marker in the synVACV (see Example 2) thymidine kinase (TK) locus (also referred to as the A2K105 gene locus) is replaced using, for example, homologous recombination with a codon-optimized SARS-CoV-2 Spike (SARS-CoV-2-co) nucleotide sequence to generate the synthetic vaccinia virus TNX-2200. One exemplary procedure is as follows.


Approximately 20 μgrams of plasmid containing the SARS-CoV-2-Spike-co nucleotide sequence flanked by approximately 400 nucleotides homologous to the A2K105 gene was linearized using the restriction enzyme SacI. Following restriction enzyme digestion, the linearized plasmid was further purified to remove residual enzyme. BSC-40 cells were infected with synVACV expressing YFP-GPT in the A2K105 gene locus (synVACVΔ A2K105yfp-gpt) at a MOI of 0.1 for 1 hour. Following infection, the virus inoculum was replaced with OptiMEM media and was incubated for an additional 30 minutes at 37° C. Approximately 5 μgrams of purified linearized plasmid was mixed with Lipofectamine 2000 (ThermoFisher Scientific) at a ratio of 1 μgram of DNA to 3 μL of Lipofectamine 2000 in a total volume of 2 mL of OptiMEM. A DNA-lipid complex formed during approximately 10 minutes of incubation. It was then added to the virus-infected BSC-40 cells.


BSC-40 cells were incubated for 48 hours to allow for homologous recombination to occur. After 48 hours, the plates were scraped to lift virus-infected cells and the mixture was transferred to a conical tube. The cells were lysed following three rounds of freezing at −80° C. and thawing. An appropriate dilution, which can range from 1×10−2 to 1×10−5, of the infection/transfection mixture was plated onto BSC-40 cells followed by an agar overlay. Infected cell plates were incubated until non-fluorescent “recombinant” plaques were visualized. These non-fluorescent plaques were marked, and agar plugs were picked and added into a 10 mM Tris pH 8.0 solution. The plaques were subsequently used to infect BSC-40 cells in a second round of infection. This plaque picking process and infection of BSC-40 cells was repeated until YFP was undetectable in the infected cells (ranges between 4-6 rounds of purification). PCR analysis using primers (sA2K J2R Flank Forward Primer 5′ to 3′: ATGCGATTCAAAAAAGAATCAGC (SEQ ID NO: 56) and sA2K J2R Flank Reverse Primer 5′ to 3′: CAATTTCCTCAAAATACATAAACGG (SEQ ID NO: 57)) that amplify the A2K105 gene locus was performed to confirm that the SARS-CoV-2 Spike gene was inserted into the A2K105 locus.


Western blot analysis was performed to test for SARS-Spike-co protein expression in the BSC-40 cells infected with synVACVΔA2K105yfp-gpt or synVACVΔA2K105SARSCoV2-SPIKE-co:nm (TNX-2200) clones 1.1.1.1.1 or 2.1.1.1.1 (FIG. 11). BSC-40 cells were infected with MOI 1.0 with the indicated viruses or with an inoculum without virus (mock), and protein lysates were harvested using RIPA lysis buffer at the indicated time points. SDS-PAGE was used to separate protein lysates and then the protein was transferred onto a nitrocellulose membrane. The membrane was subsequently blotted using anti-SARS-CoV2 Spike (ProSci) or anti-VACV 13 antibodies. Primary antibody binding was detected by blotting the membrane with IRDye secondary antibodies detectable at 800 nm or 680 nm channels (LI-COR). The SARS CoV2 Spike antibody detected different forms of the SARS-CoV-2 Spike protein including the full-length, glycosylated full-length, cleaved, and multimeric forms.


Viral genomic DNA from synVACVΔA2K105SARSCoV2-SPIKE-co::nm (TNX-2200) clones 1.1.1.1.1 and 2.1.1.1.1 was isolated and the DNA was sequenced using Next Generation Sequencing (NGS) with the Illumina MiSeq platform. The sequencing data were analyzed by de novo assembly and mapped to reference software using the CLC Genomics Workbench software (Qiagen).


Example 9. Generation of Synthetic Horsepox Virus TNX-1800a

The YFP-GPT selectable marker in the scHPXV (see Example 7) thymidine kinase (TK) locus (also referred to as the HPXV095 gene locus) was replaced using, for example, homologous recombination with a codon-optimized SARS-CoV-2 Spike (SARS-CoV-2-co) nucleotide sequence to generate the synthetic vaccinia virus TNX-1800a. One exemplary procedure is as follows.


Approximately 20 μgrams of plasmid containing the SARS-CoV-2-Spike-co nucleotide sequence flanked by approximately 400 nucleotides homologous to the HPXV095 gene was linearized using the restriction enzyme, SacI. Following restriction enzyme digestion, the linearized plasmid was further purified to remove residual enzyme. BSC-40 cells were infected with scHPXV expressing YFP-GPT in the HPXV095 gene locus at a MOI of 0.1 for 1 hour. Following infection, the virus inoculum was replaced with OptiMEM media and was incubated for an additional 30 minutes at 37° C. Approximately 5 μgrams of purified linearized plasmid was mixed with Lipofectamine 2000 (ThermoFisher Scientific) at a ratio of 1 μgram of DNA to 3 of Lipofectamine 2000 in a total volume of 2 mL of OptiMEM. A DNA-lipid complex formed during approximately 10 minutes of incubation. It was then added to the virus-infected BSC-40 cells.


BSC-40 cells were incubated for 48 hours to 72 hours to allow for homologous recombination to occur. Subsequently, the plates were scraped to lift virus-infected cells and the mixture was transferred to a conical tube. The cells were lysed following 3 rounds of freezing at −80° C. and thawing. An appropriate dilution, which can range from 1×10−2 to 1×10−5, of the infection/transfection mixture was plated onto BSC-40 cells followed by an agar overlay. Infected cell plates were incubated until non-fluorescent “recombinant” plaques were visualized. These non-fluorescent plaques were marked, and agar plugs were picked and added into a 10 mM Tris pH 8.0 solution. The plaques were subsequently used to infect BSC-40 cells in a second round of infection. This plaque picking process and infection of BSC-40 cells was repeated until YFP was undetectable in the infected cells (ranges between 4-6 rounds of plaque purification). One non-fluorescent plaque was isolated from the low efficiency of homologous recombination in the HPXV-infected cells.


PCR analysis using primers (sA2K/HPXV J2R Flank Forward Primer 5′-3′: TATCGCATTTTCTAACGTGATGG (SEQ ID NO: 58) and sA2K/HPXV J2R Flank Reverse Primer 5′-3′: CCTCATTTGCACTTTCTGGTTC (SEQ ID NO: 59)) that amplify the HPXV095 gene locus was performed to confirm that the SARS-Spike-co gene was inserted into the HPXV095 locus. The viral genomic DNA was subsequently isolated from a preparation of sucrose-purified virus particles and used in Next Generation Sequencing with the Illumina MiSeq platform. The sequence data was analyzed by de novo assembly and mapped to reference software using the CLC Genomics Workbench software (Qiagen).


Example 10. Generation of Synthetic Horsepox Virus TNX-1800b

The YFP-GPT selectable marker in the scHPXV (see Example 7) HPXV200 gene locus (also referred to as the Variola virus B22R homolog locus) was replaced using, for example, homologous recombination with a codon-optimized SARS-CoV-2 Spike (SARS-CoV-2-co) nucleotide sequence to generate the synthetic vaccinia virus TNX-1800b. One exemplary procedure is as follows.


Approximately 20 μgrams of plasmid containing SARS-CoV-2-Spike-co flanked by approximately 400 nucleotides homologous to the HPXV200 gene was linearized using the restriction enzyme, SacI. Following restriction enzyme digestion, the linearized plasmid was further purified to remove residual enzyme. BSC-40 cells were infected with scHPXV expressing YFP-GPT in the HPXV200 gene locus at a MOI of 0.1 for 1 hour. Following infection, the virus inoculum was replaced with OptiMEM media and incubated for an additional 30 minutes at 37° C. Approximately 5 μgrams of purified linearized plasmid was mixed with Lipofectamine 2000 (ThermoFisher Scientific) at a ratio of 1 μgram of DNA to 3 μL of Lipofectamine 2000 in a total volume of 2 mL of OptiMEM. A DNA-lipid complex formed during approximately 10 minutes of incubation. It was then added to the virus-infected BSC-40 cells.


BSC-40 cells were incubated for 48 hours to 72 hours to allow for homologous recombination to occur. Subsequently, the plates were scraped to lift virus-infected cells and the mixture was transferred to a conical tube. The cells were lysed following three rounds of freezing at −80° C. and thawing. An appropriate dilution, which can range from 1×10−2 to 1×10−5, of the infection/transfection mixture was plated onto BSC-40 cells followed by an agar overlay. Infected cell plates were incubated until non-fluorescent “recombinant” plaques were visualized. These non-fluorescent plaques were marked, and agar plugs were picked and added into a 10 mM Tris pH 8.0 solution. These plaques were subsequently used to infect BSC-40 cells in a second round of infection. One non-fluorescent plaque was isolated due to low efficiency of homologous recombination in HPXV-infected cells compared to VACV-infected cells. The plaque picking process was repeated by infecting BSC-40 cells until YFP was undetectable (about 4-6 rounds of plaque purification).


PCR analysis using primers (sHPXV 200 Flank Forward Primer 5′-3′: ATAGCCACAATTATTGACGGGC (SEQ ID NO: 60) and sHPXV 200 Flank Reverse Primer 5′-3′: ggatgatatggtaatgtaactaccgatac (SEQ ID NO: 61)) that amplify the HPXV200 gene locus was performed to confirm that the SARS-Spike-co gene was inserted into the HPXV200 locus. The viral genomic DNA was subsequently isolated from a preparation of sucrose-purified virus particles and used for Next Generation Sequencing with the Illumina MiSeq platform. The sequence was analyzed by de novo assembly and mapped to reference software using the CLC Genomics Workbench software (Qiagen).


Example 11. SARS-CoV-2 Spike Protein Analysis in TNX-1800a and TNX-1800b

Western blot analysis was performed to assess SARS-Spike-co protein expression in the BSC-40 cells infected with TNX-801, TNX-1800a (clone TNX-1800a-1) and TNX-1800b (clone TNX-1800b-2) (FIG. 12). BSC-40 cells were infected with MOI 1.0 with the indicated viruses and protein lysates were harvested using RIPA buffer at the indicated time points. SDS-PAGE was used to separate protein lysates and then the protein was transferred onto a nitrocellulose membrane. The membrane was subsequently blotted using anti-SARS-CoV2 Spike (ProSci), anti-VACV 13 or anti-Tubulin antibodies. Fluorescently tagged secondary antibodies were used to detect the binding of primary antibodies. The SARS CoV2 Spike antibody detected different forms of the SARS-CoV-2 Spike protein including the full-length, glycosylated full-length, cleaved, and multimeric forms.


Example 12. Immunization of African Green Monkeys with a Recombinant Poxvirus Engineered SARS-CoV-2 S Protein

Methods of immunization and testing candidate vaccines in African Green Monkeys has been previously described (Hartman, A. et al. (2020) SARS-CoV-2 infection of African green monkeys result in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLOS Pathogens 16(9): e1008903; incorporated herein by reference in its entirety). African Green Monkeys (AGMs) were randomly separated into 6 groups (n=4) and vaccinated with different strains of a synthetic horsepox virus (HPXV). See Table 5 for strain and dose. At day 0, AGMs were vaccinated percutaneously via scarification using a bifurcated needle.









TABLE 5







Doses of HPXV strains Used to Vaccinate African Green Monkeys












Number of
Animal




Group
Animals
Number
HPXV strain
Dose (PFU)





1
4
1F 16986
TNX-801
2.9 × 106




1F 16994




1M 16975




1M 16977


2
4
2F 16985
TNX-801
1.06 × 106




2F 16991




2M 16980




2M 16983


3
4
3F 16988
TNX-
2.9 × 106




3F 16995
1800b-2




3M 16976




3M 16982


4
4
4F 16989
TNX-
1.06 × 106




4F 16990
1800b-2




4M 16972




4M 16973


5
4
5F 16992
TNX-
0.6 × 106




5F 16993
1800a-1




5M 16979




5M 16981


6
4
6M 16978
Vehicle
Not




6M 16974
Control
applicable




6F16987




6F16984









The inoculation site of the AGMs was monitored and after 7 days presented with a cutaneous reaction, also known as a “take”, when vaccinated with TNX-801, TNX-1800b-2 or TNX-1800a-1 regardless of the dose eliciting an immune response, including a T cell immune response (FIGS. 13-17). A “take” has been previously described as a biomarker of a positive vaccine response indicating protective immunity (e.g., T cell immunity) against a vaccinia virus, such as smallpox (Jenner, E., 1800, 2nd Ed. “An Inquiry into the Causes and Effects of the Variolae Vaccinae, a Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershire, and Known by the Name of The Cow Pox”). The “take” is a measure of functional T cell immunity validated by the eradication of smallpox, a respiratory-transmitted disease caused by variola, in the 1960's. The presence of a “take” sited on AGMs after vaccination with TNX-1800b-2 or TNX-1800a-1 is predictive that a T cell immune response will be activated due to the introduction of the SARS-CoV-S protein, a COVID-19 antigen. The T cell immune response is activated when naïve T cells are presented with antigens (e.g., SARS-CoV-2 S protein), leading to naïve T cell differentiation and proliferation. This response also leads to immunological memory by generating memory T cells which provide protection and an accelerated immune response from subsequent challenge by the same antigen. On day 60, the vaccinated AGMs are challenged with SARS-CoV-2 via the intratracheal route and the challenges show that the vaccination provides a protective immunity against the virus. The surviving animals are euthanized on Day 88.


A Microneutralization Assay was performed 14 days after the AGMs were vaccinated with the indicated HPXV strains to assess the anti-SARS-CoV-2 neutralizing titers in the serum. The assay was initially performed in duplicate and a third replicate was performed if the first two replicates were not within a 2-fold dilution of each other. Serum samples were initially heat inactivated at 56° C. for 30-60 minutes after being aliquoted onto a master plate. The master plates can be stored at 4-8° C. for seven days or at −20° C. for three months.


Vero E6 cells (ATCC) at a concentration 2×104 cells per well were seeded into 96-well plates 18-24 hours before addition of the serum test samples. On the day of the assay, master plates were thawed and nine serum test samples were 2-fold serial diluted from 1:5 to 1:640 on a separate 96-well plate/dilution block (columns 1-9). Additionally, each 96-well plate/dilution block contained a positive control serum (column 10), virus controls (column 11) and cell controls (column 12). After dilution, an equal volume of virus stock (1,000 TCID50/mL) is added to columns 1-11. In addition, assay quality control (QC) plates were set up at the same time consisting of positive control serum (columns 1-2), a negative control (columns 3-4), viral input back titer (columns 5-6), virus control (VC; columns 7-9) and cell controls (CC; columns 10-12). At least two QC plate were used per assay. Test and QC plates were incubated at 37° C. for 2-2.5 hours in a 5% CO2 incubator. After incubation, aliquots of mixtures (sera and virus) for both test and QC plates (including controls) were transferred onto the 96-well plates pre-seeded with Vero E6 cell and incubated for 72±4 hours. Following incubation, plates were removed from the incubator and allowed to rest at room temperature for 20-40 minutes. 100 uL of Cell Titer-Glo (Promega) was added to all wells in the plates, gently mixed and incubated at room temperature for 10-30 minutes. Luminescence was read using an appropriate photometer. Plate cut-off values were calculated using the following formula:





(Average of VC wells+Average of CC wells)/2


Samples with luminescence above or below the plate cut-off are positive and negative for neutralizing antibody, respectively. The individual replicate is assigned a titer that is the reciprocal of the dilution of the last positive dilution (i.e., 1:80=is reported as a titer of 80). Titers are reported as median and geometric mean titers of the accepted replicate titers.


Table 6 shows the level of anti-SARS-CoV-2 neutralizing titers measured in vaccinated AGMs after 14 days of a single vaccination. The AGMs vaccinated with TNX-1800b-2 and TNX1800a-1 generated neutralizing titers (≥1:40 titer) of antibodies against SARS-CoV-2. The TNX-801 (an scHPXV not carrying the S protein expression cassette) vaccinated control animals and the placebo group did not generate anti-SARS-CoV-2 neutralizing titers (≤1:10 titer). Both the 2.9×106 PFU and 1.06×106 PFU doses of TNX-801 and TNX-1800 were well-tolerated.









TABLE 6,







Anti-SARS-CoV-2 neutralizing titers in vaccinated African Green Monkeys



















Geometric


Animal
HPXV




Mean Titer


Number
strain
Dose
Titer 1
Titer 2
Median
(GMT)
















3M 16982
TNX-
2.9 × 106
640
20
NQ
NQ


D15
1800b-2


3M 16976
TNX-
2.9 × 106
640
320
480
452.55


D15
1800b-2


3F 16988
TNX-
2.9 × 106
320
160
240
226.27


D15
1800b-2


3F 16995
TNX-
2.9 × 106
640
640
640
640.00


D15
1800b-2


4M 16973
TNX-
1.06 × 106
160
160
160
160.00


D14
1800b-2


4M 16972
TNX-
1.06 × 106
640
640
640
640.00


D14
1800b-2


4F 16989
TNX-
1.06 × 106
80
80
 80
 80.00


D14
1800b-2


4F 16990
TNX-
1.06 × 106
320
320
320
320.00


D14
1800b-2


5M 16979
TNX-
0.6 × 106
320
320
320
320.00


D14
1800a-1


5M 16981
TNX-
0.6 × 106
640
320
480
452.55


D14
1800a-1


5F 16993
TNX-
0.6 × 106
320
320
320
320.00


D14
1800a-1


5F 16992
TNX-
0.6 × 106
320
640
480
452.55


D14
1800a-1









Example 13. Viral Growth Curves Measured in Cells Infected with Recombinant Poxvirus Engineered SARS-CoV-2 S Protein

BSC-40, HeLa and HEK 293 cells were seeded into a 6-well plate and subsequently infected with TNX-801, TNX-1800, TNX-1200, or TNX-2200 at a MOI of 0.01. After 48 hours of infection, cells were fixed and stained with 5% formaldehyde containing crystal violet. BSC-40 cells infected with TNX-801 and TNX-1800 had a significant cytopathic effect, while HeLa and HEK 293 cells showed minor and no cytopathic effect, respectively (FIG. 18). BSC-40 HeLa and HEK293 cells infected with TNX-1200 and TNX-2200 had a significant cytopathic effect in all infected cell lines (FIG. 18). Viral titer (PFU/mL) in BSC-40, HeLa and HEK 293 cells was measured over time after 24, 48 and 72 hours of infection with TNX-801, TNX-1800, TNX-1200, or TNX-2200 (FIGS. 19A-D), which corresponds to the cytopathic effect of the viruses as represented in FIG. 18.


BSC-40 cells were infected with HPXV clones (e.g., _TNX-801, scHPXVΔ095yfp-gpt, TNX-1800a-1, scHPXVΔ200yfp-gpt, or TNX-1800b-2; (FIGS. 20A-B)) or VACV clones (e.g., TNX-1200, TNX-2200 or synVACVΔA2K105yfp-gpt; (FIGS. 21A-B)) at a MOI of 0.01. Viral titer (PFU/mL) was measured at 0, 3, 6, 12, 24, 48 and 72 hours to determine viral growth in infected cells. The presence of SARS-CoV-2 Spike protein slows HPXV clone viral growth by approximately 0.5 log, while it slows VACV clone viral growth by approximately 1 log.


The cytopathic effect seen in Vero cells and BSC-40 cells infected with the various HPXV and VACV clones shows that these cell lines can be used to manufacture the viruses (e.g., TNX-1800 and TNX-801).


Example 14. Generation of a SARS-CoV-2 Spike Synthetic DNA Expression Cassette and Recombinant scHPXV Transfected with the Cassette

As illustrated in FIG. 22, SARS-CoV-2 Spike (S) nucleotide sequence (SEQ ID NO: 45) is modified by removing the Early Transcription Terminator Signal (T5NT) (SEQ ID NO: 14) using silent coding mutagenesis thereby retaining the SARS-CoV-2 Spike (S) protein coding sequences.


The location of an insertion site for the heterologous transgene SARS-CoV-2 Spike (S) within the DNA nucleotide sequence of a synthetic chimeric (sc) Horsepox genome is selected (for example the TK gene locus HPXV095; positions 992077-92610; SEQ ID NO:1). The DNA nucleotide sequences proximal to the left and right of the selected HPXV insertion site, which define the Left and Right Flanking arms, are identified (see FIG. 22). Those arms are used to drive homologous nucleotide site specific recombination between the rescue virus and heterologous transgene. A DNA nucleotide sequence encoding a poxvirus-based promoter for driving high levels of SARS-CoV-2 Spike (S) gene expression, such as the vaccinia virus Early/Late Promotor, is also selected.


One exemplary DNA nucleotide sequence of approximately 6 kb for a SARS-CoV-2 Spike (S) synthetic expression cassette, comprising the DNA nucleotide sequences of a Left Flanking Arm, a vaccinia virus Early/Late Promotor operably linked to the modified CoVID-SARS-2 Spike (S) nucleic acid sequence, and a Right Flanking Arm is then synthesized (e.g., by a commercial vendor (e.g., Genewiz)). See FIG. 22.


The SARS-CoV-2 Spike (S) Synthetic expression cassette DNA is then transfected into cells (e.g., BSC-40 cells) infected with an scHPXV. Recombinant horsepox viral progeny containing the SARS-CoV-2 Spike (S) synthetic expression cassette are selected using media containing BrdU so as to prevent viral amplification of the parental virus retaining the original insertion site viral genomic DNA sequences. The recombinant virus is purified using successive rounds of plaque purification. The nucleotide sequence from the purified virus across the entire SARS-CoV-2 Spike (S) heterologous transgene cassette is confirmed by sequence analysis (e.g., PCR sequence analysis). See SEQ ID NO: 63.


Similar constructs and steps can be carried out using a horsepox virus to generate a recombinant scHPXV containing a mouse adapted spike protein expression cassette (see SEQ ID NO: 64) and a vaccinia virus, using, for example, the vaccinia TK gene locus synVACV105; positions 83823-84344 (see SEQ ID NO: 2) to generate a recombinant vaccinia virus containing a mouse adapted spike protein expression cassette (see SEQ ID NO: 65).


Example 15. Efficacy of Recombinant Poxvirus Carrying an Expression Cassette Encoding a SARS-CoV-2 S Protein in Immunized African Green Monkeys Challenged with SARS-CoV-2

At day 0, African Green Monkeys (AGMs) were vaccinated percutaneously via scarification using a bifurcated needle as described in Example 12. Table 7 shows the level of anti-SARS-CoV-2 neutralizing titers measured in vaccinated AGMs after 0, 7, 15, 21, 29, 41 and 47 days of a single vaccination. The AGMs vaccinated with TNX-1800b-2 and TNX1800a-1 generated neutralizing titers (≥1:40 titer) of antibodies against SARS-CoV-2. The TNX-801 (an scHPXV not carrying the S protein expression cassette) vaccinated control animals and the placebo group did not generate anti-SARS-CoV-2 neutralizing titers (≤1:10 titer). Both the 2.9×106 PFU and 1.06×106 PFU doses of TNX-801 and TNX-1800 were well-tolerated.









TABLE 7







Anti-SARS-CoV-2 neutralizing titers in vaccinated African Green Monkeys



















Titer
Titer
Titer
Titer





HPXV
Dose
Animal
Day
Day
Day
Day
Titer
Titer
Titer


strain
(PFU)
Number
0
7
15
21
Day 29
Day 41
Day 47





TNX-801
2.9 × 106
IM 16977
NQ
5.00
7.07
5.00
5.00
5.00
5.00




IM 16975
7.07
7.07
2.50
5.00
5.00
5.00
5.00




IF 16994
5.00
5.00
2.50
5.00
5.00
5.00
5.00




IF 16986
5.00
7.07
7.07
5.00
5.00
5.00
5.00


TNX-801
1.06 × 106
2M 16980
5.00
5.00
2.50
5.00
5.00
5.00
5.00




2M 16983
5.00
5.00
2.50
5.00
5.00
5.00
5.00




2F 16985
5.00
5.00
3.54
5.00
5.00
5.00
5.00




2F 16991
5.00
5.00
2.50
5.00
5.00
5.00
5.00


TNX-
2.9 × 106
3M 16982
5.00
5.00
113.14
113.14
40.00
56.57
1280.00


1800b-2

3M 16976
7.07
5.00
80.00
113.14
40.00
80.00
640.00




3F 16988
5.00
5.00
113.14
160.00
80.00
160.00
320.00




3F 16995
5.00
5.00
320.00
226.27
40.00
56.57
1280.00


TNX-
1.06 × 106
4M 16973
5.00
5.00
113.14
226.27
113.14
80.00
905.10


1800b-2

4M 16972
5.00
5.00
452.55
452.55
320.00
320.00
NQ




4F 16989
5.00
5.00
56.57
28.28
14.14
40.00
1280.00




4F 16990
5.00
5.00
320.00
226.27
80.00
160.00
905.10


TNX-
0.6 × 106
5M 16979
5.00
5.00
160.00
113.14
113.14
NQ
226.27


1800a-1

5M 16981
5.00
5.00
226.27
160.00
80.00
80.00
452.55




5F 16993
7.07
5.00
113.14
NQ
56.57
56.57
160.00




5F 16992
7.07
5.00
226.27
640.00
NQ
226.27
452.55


Vehicle
Not
6M 16978
5.00
5.00
2.50
5.00
5.00
5.00
5.00


Control
applicable
6M 16974
5.00
5.00
3.54
5.00
5.00
5.00
5.00




6F16987
7.07
5.00
3.54
5.00
5.00
5.00
5.00




6F16984
7.07
5.00
3.54
5.00
5.00
5.00
5.00









At day 41, the vaccinated AGMs were anesthetized and challenged (also referred to as inoculated) with approximately 2×106 TCID50/animal wild-type SARS-CoV-2 via the 1. intranasal and 2. intratracheal route. The volume of virus was split evenly between each of the two routes (1 mL per route with a 1×106 TCID50/mL virus stock). For the intranasal route, AGMs were anesthetized and inoculated by slowly pipetting 500 μL into each are followed by inhalation. For the intratracheal route, AGMs were anesthetized, and a tube was inserted into the trachea. After the end of the tube was situated approximately at the mid-point of the trachea, a syringe containing the inoculate with the virus was attached to the tube and the inoculate was slowly instilled into the trachea followed by an equal volume of PBS to flush the tube. After the AGMs were inoculated, the animal was returned to its home cage and monitored for recovery from the anesthesia.


An oropharyngeal swab specimen and a tracheal lavage specimen were collected on Day 41 and Day 47 from the inoculated AGMs. The specimens were processed by RT-qPCR methods to measure SARS-CoV-2 copy number. Table 8 shows the SARS-CoV-2 copy number from oropharyngeal swab specimens. Table 9 shows the SARS-CoV-2 copy number from tracheal lavage specimens. At Day 47, AGMs vaccinated with TNX-1800b-2 and TNX-1800a-1 developed protective immunity against SARS-CoV-2.









TABLE 8







RT-qPCR of SARS-CoV-2 Copy Number


per Swab from Oropharyngeal Swab














Day 41
Day 47


HPXV
Dose
Animal
(Copy number
(Copy number


strain
(PFU)
Number
per swab)
per swab)





TNX-801
2.9 × 106
1M 16977
0.00E+00
2.59E+06




1M 16975
0.00E+00
1.75E+05




1F 16994
0.00E+00
2.61E+03




1F 16986
0.00E+00
2.22E+04


TNX-801
1.06 × 106
2M 16980
0.00E+00
6.69E+03




2M 16983
0.00E+00
6.33E+04




2F 16985
0.00E+00
5.56E+04




2F 16991
2.47E+02
3.75E+03


TNX-
2.9 × 106
3M 16982
0.00E+00
0.00E+00


1800b-2

3M 16976
1.98E+02
0.00E+00




3F 16988
4.29E+02
0.00E+00




3F 16995
0.00E+00
0.00E+00


TNX-
1.06 × 106
4M 16973
7.59E+03
0.00E+00


1800b-2

4M 16972
0.00E+00
0.00E+00




4F 16989
0.00E+00
0.00E+00




4F 16990
0.00E+00
0.00E+00


TNX-
0.6 × 106
5M 16979
0.00E+00
0.00E+00


1800a-1

5M 16981
0.00E+00
0.00E+00




5F 16993
0.00E+00
4.68E+02




5F 16992
0.00E+00
0.00E+00


Vehicle
Not
6M 16978
0.00E+00
9.26E+03


Control
applicable
6M 16974
0.00E+00
3.66E+04




6F16987
0.00E+00
0.00E+00




6F16984
0.00E+00
1.53E+06
















TABLE 9







RT-qPCR of SARS-CoV-2 Copy Number


per ml. from Tracheal Lavage














Day 41
Day 47


HPXV
Dose
Animal
(Copy number
(Copy number


strain
(PFU)
Number
per mL)
per mL)





TNX-801
2.9 × 106
IM 16977
0.00E+00
2.11E+06




IM 16975
0.00E+00
0.00E+00




IF 16994
0.00E+00
5.31E+02




IF 16986
0.00E+00
3.61E+02


TNX-801
1.06 × 106
2M 16980
0.00E+00
4.50E+04




2M 16983
0.00E+00
0.00E+00




2F 16985
0.00E+00
3.95E+05




2F 16991
0.00E+00
1.72E+04


TNX-
2.9 × 106
3M 16982
0.00E+00
0.00E+00


1800b-2

3M 16976
0.00E+00
0.00E+00




3F 16988
0.00E+00
0.00E+00




3F 16995
0.00E+00
0.00E+00


TNX-
1.06 × 106
4M 16973
0.00E+00
8.42E+02


1800b-2

4M 16972
0.00E+00
0.00E+00




4F 16989
0.00E+00
0.00E+00




4F 16990
0.00E+00
0.00E+00


TNX-
0.6 × 106
5M 16979
0.00E+00
0.00E+00


1800a-1

5M 16981
0.00E+00
9.34E+03




5F 16993
0.00E+00
0.00E+00




5F 16992
0.00E+00
6.82E+02


Vehicle
Not
6M 16978
0.00E+00
1.91E+03


Control
applicable
6M 16974
0.00E+00
8.13E+03




6F16987
0.00E+00
1.43E+04




6F16984
0.00E+00
1.17E+03









Exemplary Embodiments





    • 1. A recombinant poxvirus comprising a nucleic acid encoding a SARS-CoV-2 virus protein, wherein the SARS-CoV-2 protein is selected from the group consisting of the spike protein (S), the membrane protein (M) and the nucleocapsid protein (N), or combinations of two or more of said proteins.

    • 2. The recombinant poxvirus according to embodiment 1, wherein the poxvirus is an orthopoxvirus.

    • 3. The recombinant poxvirus according to embodiment 2, wherein the orthopoxvirus is selected from the group consisting of camelpox (CMLV) virus, cowpox virus (CPXV), ectromelia virus (ECTV), horsepox virus (HPXV), monkeypox virus (MPXV), vaccinia virus (VACV), variola virus (VARV), rabbitpox virus (RPXV), raccoon poxvirus, skunkpox virus, Taterapox virus, Uasin Gishu disease virus and volepox virus.

    • 4. The recombinant poxvirus according to embodiment 2, wherein the orthopoxvirus is a horsepox virus.

    • 5. The recombinant poxvirus according to embodiment 4, wherein the horsepox virus is strain MNR-76.

    • 6. The recombinant poxvirus according to embodiment 2, wherein the orthopoxvirus is a vaccinia virus.

    • 7. The recombinant poxvirus according to embodiment 6, wherein the vaccinia virus is selected from the group of strains consisting of: Western Reserve, Western Reserve Clone 3, Tian Tian, Tian Tian clone TP5, Tian Tian clone TP3, NYCBH, NYCBH clone Acambis 2000 (ACAM 2000), Wyeth, Copenhagen, Lister, Lister 107, Lister-LO, Lister GL-ONC1, Lister GL-ONC2, Lister GL-ONC3, Lister GL-ONC4, Lister CTC1, Lister IMG2 (Turbo FP635), IHD-W, LC16m18, Lederle, Tashkent clone TKT3, Tashkent clone TKT4, USSR, Evans, Praha, L-IVP, V-VET1 or LIVP 6.1.1, Ikeda, EM-63, Malbran, Duke, 3737, CV-1, Connaught Laboratories, Serro 2, CM-01, NYCBH Dryvax clone DPP13, NYCBH Dryvax clone DPP15, NYCBH Dryvax clone DPP20, NYCBH Dryvax clone DPP17, NYCBH Dryvax clone DPP21, VACV-IOC, Mulford 1902, Chorioallantoid Vaccinia virus Ankara (CVA), Modified vaccinia Ankara (MVA), and MVA-BN.

    • 8. The recombinant poxvirus according to any one of embodiments 1-7, wherein the SARS-CoV-2 protein is S protein.

    • 9. The recombinant poxvirus according to any one of embodiments 1-8, wherein the amino acid sequence of the SARS-CoV-2 virus protein is modified with reference to a wild type protein.

    • 10. The recombinant poxvirus according to embodiment 8, wherein the SARS-CoV-2 virus S protein is modified to infect mice.

    • 11. The recombinant poxvirus according to embodiment 8, wherein the amino acid sequence of the SARS-CoV-2 virus S protein comprises one or more substitutions selected from Y459H, D614G, S943P, K986P and V987P, with reference to a wild type S protein (SEQ ID NO: 47).

    • 12. The recombinant poxvirus according to any one of embodiments 1-11, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located in a region of the poxvirus that is not essential for replication of the poxvirus.

    • 13. The recombinant poxvirus according to embodiment 12, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located in the thymidine kinase (TK) gene locus of the poxvirus.

    • 14. The recombinant poxvirus according to embodiment 12, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located in the B22R homolog gene locus of the poxvirus.

    • 15. The recombinant poxvirus according to any one of embodiments 1-14, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is operatively linked to a promoter.

    • 16. The recombinant poxvirus according to embodiment 15, wherein the promoter is a poxvirus-specific promoter.

    • 17. The recombinant poxvirus according to embodiment 16, wherein the poxvirus specific promoter is a vaccinia virus early promoter.

    • 18. The recombinant poxvirus according to embodiment 16, wherein the poxvirus specific promoter is a vaccinia virus late promoter.

    • 19. The recombinant poxvirus according to embodiment 16, wherein the poxvirus specific promoter is a tandem of a vaccinia virus early and late promoter.

    • 20. The recombinant poxvirus according to any one of embodiments 1-19, wherein the poxvirus is a synthetic poxvirus.

    • 21. The recombinant poxvirus according to embodiment 20, wherein the recombinant poxvirus is selected from the group consisting of TNX-2200 (synVACVΔA2K105SARS-CoV2-Spike-co), TNX-2200 clone 1.1.1.1.1, TNX-2200 clone 2.1.1.1.1, TNX-1800 (scHPXVΔ200SARS-COV2-Spike-co), TNX-1800a, TNX-1800a-1, TNX-1800b, and TNX-1800b-2.

    • 22. The recombinant poxvirus according to embodiment 21, wherein the recombinant poxvirus is TNX-1800b-2.

    • 23. The recombinant virus according to embodiment 21, wherein the recombinant poxvirus is TNX-1800a-1.

    • 24. The recombinant poxvirus according to embodiment 20, wherein the recombinant poxvirus comprises any one of SEQ ID NOs: 63, 64 or 65.

    • 25. A pharmaceutical composition comprising a recombinant poxvirus according to any one of embodiments 1-24 and a pharmaceutically acceptable carrier.

    • 26. The pharmaceutical composition according to embodiment 25, wherein the recombinant poxvirus is selected from the group consisting of TNX-2200 (synVACVΔA2K105SARS-CoV2-Spike-co), TNX-2200 clone 1.1.1.1.1, TNX-2200 clone 2.1.1.1.1, TNX-1800 (scHPXVΔ200SARS-COV2-Spike-co), TNX-1800a, TNX-1800a-1, TNX-1800b, and TNX-1800b-2.

    • 27. The pharmaceutical composition according to embodiment 25, wherein the recombinant poxvirus comprises any one of SEQ ID Nos: 63, 64 or 65.

    • 28. The pharmaceutical composition according to embodiment 26, wherein the recombinant poxvirus is TNX-1800b-2.

    • 29. The pharmaceutical composition according to embodiment 26, wherein the recombinant poxvirus is TNX-1800a-1.

    • 30. A cell infected with a recombinant poxvirus according to any one of embodiments 1-29.

    • 31. The cell according to embodiment 30, wherein the cell is a mammalian cell.

    • 32. The cell according to embodiment 31, wherein the mammalian cell is a Vero cell, a Vero E6 cell or a BSC-40 cell.

    • 33. The cell according to embodiment 31, wherein the mammalian cell is a Vero adherent cell, a Vero suspension cell, a BHK-21 cell, an ACE2 Knockout Vero cell, or an MRC-5 cell.

    • 34. The MRC-5 cell according to embodiment 33, grown in the presence of 5% fetal calf serum.

    • 35. The cell according to embodiment 30, wherein the cell is an avian cell.

    • 36. The cell according to embodiment 35, wherein the avian cell is a chicken embryo fibroblast, a duck embryo-derived cell, an EB66® cell, an AGE1.CRpIX® cell, or a DF-1 cell.

    • 37. The cell according to embodiment 30, wherein the cell is an adherent cell.

    • 38. The cell according to embodiment 30, wherein the cell is a suspension cell.

    • 39. A method for selecting a cell that expresses a SARS-CoV-2 virus protein, comprising infecting said cell with a recombinant poxvirus according to any one of embodiments 1-24 and selecting the infected cell expressing said SARS-CoV-2 virus protein.

    • 40. The method for selecting a cell that expresses a SARS-CoV-2 virus protein according to embodiment 39, wherein the recombinant poxvirus selected from the group consisting of TNX-2200 (synVACVΔA2K105SARS-CoV2-Spike-co), TNX-2200 clone 1.1.1.1.1, TNX-2200 clone 2.1.1.1.1, TNX-1800 (scHPXVΔ200SARS-COV2-Spike-co), TNX-1800a, TNX-1800a-1, TNX-1800b, and TNX-1800b-2.

    • 41. The method for selecting a cell that expresses a SARS-CoV-2 virus protein according to embodiment 39, wherein the recombinant poxvirus comprises any one of SEQ ID Nos: 63, 64 or 65.

    • 42. The method for selecting a cell that expresses a SARS-CoV-2 virus protein according to embodiment 40, wherein the recombinant poxvirus is TNX-1800b-2.

    • 43. The method for selecting a cell that expresses a SARS-CoV-2 virus protein according to embodiment 40, wherein the recombinant poxvirus is TNX-1800a-1.

    • 44. A method of inducing an immune response against a SARS-CoV-2 virus in a subject, comprising administering to said subject an immunologically effective amount of the recombinant poxvirus according to any one of embodiments 1-24 or the pharmaceutical composition according to any one of embodiments 25-29.

    • 45. The method of inducing an immune response against a SARS-CoV-2 virus in a subject according to embodiment 44, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification.

    • 46. The method of inducing an immune response against a SARS-CoV-2 virus in a subject according to embodiment 44, wherein said immune response comprises antibodies that are capable of neutralizing the SARS-CoV-2 virus.

    • 47. The method of inducing an immune response against a SARS-CoV-2 virus in a subject according to embodiment 44, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from SARS-CoV-2 virus.

    • 48. The method of inducing an immune response against a SARS-CoV-2 virus in a subject according to embodiment 44, wherein the immunologically effective amount of a recombinant poxvirus reduces or prevents the progression of the virus after SARS-CoV-2 infection in the subject.

    • 49. The method of inducing an immune response against a SARS-CoV-2 virus in a subject according to embodiment 44, wherein the immune response is a T-cell immune response.

    • 50. A method of inducing an immune response against a SARS-CoV-2 virus and a poxvirus comprising administering to said subject an immunologically effective amount of a recombinant poxvirus according to any one of embodiments 1-24 or the pharmaceutical composition according to any one of embodiments 25-29.

    • 51. The method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus according to embodiment 50, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification.

    • 52. The method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus according to embodiment 50, wherein said immune response comprises antibodies that are capable of neutralizing the SARS-CoV-2 virus and the poxvirus.

    • 53. The method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus according to embodiment 50, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from the SARS-CoV-2 virus and the poxvirus.

    • 54. The method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus according to embodiment 50, wherein the immunologically effective amount of a recombinant poxvirus reduces or prevents the progression of the SARS-CoV-2 virus infection and/or the poxvirus infection in the subject.

    • 55. The method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus according to embodiment 50, wherein the immune response is a T-cell immune response.

    • 56. The method of inducing an immune response against the SARS-CoV-2 virus and the poxvirus according to any one of embodiments 50-55, wherein the poxvirus is vaccinia virus, variola, horsepox virus or monkeypox virus.

    • 57. A method of inducing T cell immunity against a SARS-CoV-2 virus comprising administering to said subject an immunologically effective amount of a recombinant poxvirus according to any one of embodiments 1-24 or the pharmaceutical composition according to any one of embodiments 25-29.

    • 58. The method of inducing T cell immunity against a SARS-CoV-2 virus according to embodiment 57, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification.

    • 59. The method of inducing T cell immunity against a SARS-CoV-2 virus according to embodiment 57, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from SARS-CoV-2 virus.

    • 60. The method of inducing T cell immunity against a SARS-CoV-2 virus according to embodiment 57, wherein the immunologically effective amount of a recombinant poxvirus reduces or prevents the progression of the SARS-CoV-2 infection in the subject.

    • 61. A method of inducing T cell immunity against a SARS-CoV-2 virus and a poxvirus comprising administering to said subject an immunologically effective amount of a recombinant poxvirus according to any one of embodiments 1-24 or the pharmaceutical composition according to any one of embodiments 25-29.

    • 62. The method of inducing T cell immunity against the SARS-CoV-2 virus and the poxvirus according to embodiment 61, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification.

    • 63. The method of inducing T cell immunity against the SARS-CoV-2 virus and the poxvirus according to embodiment 61, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from the SARS-CoV-2 virus and the poxvirus.

    • 64. The method of inducing T cell immunity against the SARS-CoV-2 virus and the poxvirus according to embodiment 61, wherein the immunologically effective amount of a recombinant poxvirus reduces or prevents the progression of the SARS-CoV-2 infection and/or poxvirus infection in the subject.

    • 65. The method of inducing T cell immunity against the SARS-CoV-2 virus and the poxvirus according to any one of embodiments 61-64, wherein the poxvirus is vaccinia virus, variola, horsepox virus or monkeypox virus.

    • 66. A method of generating a recombinant poxvirus according to any one of embodiments 1-65, the method comprising:
      • (a) Infecting a host cell with a poxvirus;
      • (b) Transfecting the infected cell of step (a) with a nucleic acid encoding a SARS-CoV-2 virus protein to generate a recombinant poxvirus; and
      • (c) Selecting a recombinant poxvirus, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located, upon transfection, in a region of the poxvirus that is not essential for the replication of the poxvirus.

    • 67. The method according to any one of embodiments 39-66, wherein the SARS-CoV-2 protein is selected from the group consisting of the S spike protein, the M protein and the N protein, or combinations of two or more of said proteins.

    • 68. The method according to any one of embodiments 39-67, wherein the poxvirus is an orthopoxvirus.

    • 69. The method according to embodiment 68, wherein the orthopoxvirus is selected from the group consisting of camelpox (CMLV) virus, cowpox virus (CPXV), ectromelia virus (ECTV), horsepox virus (HPXV), monkeypox virus (MPXV), vaccinia virus (VACV), variola virus (VARV), rabbitpox virus (RPXV), raccoon poxvirus, skunkpox virus, Taterapox virus, Uasin Gishu disease virus and volepox virus.

    • 70. The method according to embodiment 68, wherein the orthopoxvirus is a horsepox virus.

    • 71. The method according to embodiment 70, wherein the horsepox virus is strain MNR-76.

    • 72. The method according to embodiment 68, wherein the orthopoxvirus is a vaccinia virus.

    • 73. The method according to embodiment 72, wherein the vaccinia virus is selected from the group of strains consisting of: Western Reserve, Western Reserve Clone 3, Tian Tian, Tian Tian clone TP5, Tian Tian clone TP3, NYCBH, NYCBH clone Acambis 2000, Wyeth, Copenhagen, Lister, Lister 107, Lister-LO, Lister GL-ONC1, Lister GL-ONC2, Lister GL-ONC3, Lister GL-ONC4, Lister CTC1, Lister IMG2 (Turbo FP635), IHD-W, LC16m18, Lederle, Tashkent clone TKT3, Tashkent clone TKT4, USSR, Evans, Praha, L-IVP, V-VET1 or LIVP 6.1.1, Ikeda, EM-63, Malbran, Duke, 3737, CV-1, Connaught Laboratories, Serro 2, CM-01, NYCBH Dryvax clone DPP13, NYCBH Dryvax clone DPP15, NYCBH Dryvax clone DPP20, NYCBH Dryvax clone DPP17, NYCBH Dryvax clone DPP21, VACV-IOC, Chorioallantoid Vaccinia virus Ankara (CVA), Modified vaccinia Ankara (MVA), and MVA-BN.

    • 74. The method according to any one of embodiments 39-73, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located in a region of the poxvirus that is not essential for replication of the poxvirus.

    • 75. The method according to embodiment 74, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located in the thymidine kinase (TK) gene locus of the poxvirus.

    • 76. The method according to embodiment 74, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located in the B22R homolog gene locus of the poxvirus.

    • 77. The method according to any one of embodiments 39-76, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is operatively linked to a promoter.

    • 78. The method according to embodiment 77, wherein the promoter is a poxvirus specific promoter.

    • 79. The method according to embodiment 78, wherein the poxvirus specific promoter is a vaccinia virus early promoter.

    • 80. The method according to embodiment 78, wherein the poxvirus specific promoter is a vaccinia virus late promoter.

    • 81. The method according to embodiment 78, wherein the poxvirus specific promoter is a tandem of a vaccinia virus early and late promoter.

    • 82. The method according to any one of embodiments 39-81, wherein the poxvirus is a synthetic poxvirus.

    • 83. A method of reducing or preventing the progression of a SARS-CoV-2 virus infection in a subject in need or at risk thereof comprising administering to said subject an immunologically effective amount of the recombinant poxvirus according to any one of embodiments 1-24 or the pharmaceutical composition according to any one of embodiments 25-29.

    • 84. A method of reducing or preventing the progression of a SARS-CoV-2 virus and a poxvirus infection in a subject in need or at risk thereof comprising administering to said subject an immunologically effective amount of the recombinant poxvirus according to any one of embodiments 1-24 or the pharmaceutical composition of any one of embodiments 25-29.

    • 85. The method of reducing or preventing the progression of a SARS-CoV-2 virus and a poxvirus, wherein the poxvirus is vaccinia virus, variola, horsepox virus or monkeypox virus.

    • 86. A vaccine against a SARS-CoV-2 virus comprising a recombinant virus according to embodiments 1-24 or a pharmaceutical composition according to embodiments 25-29.

    • 87. A bivalent vaccine against a SARS-CoV-2 virus and a poxvirus comprising a recombinant virus according to embodiments 1-24 or a pharmaceutical composition according to embodiments 25-29.

    • 88. A bivalent vaccine against a SARS-CoV-2 virus and a poxvirus, wherein the poxvirus is a vaccinia virus, variola, horsepox virus or monkeypox.




Claims
  • 1. A recombinant poxvirus comprising a nucleic acid encoding a SARS-CoV-2 virus protein, wherein the SARS-CoV-2 protein is selected from the group consisting of the spike protein (S), the membrane protein (M) and the nucleocapsid protein (N), or combinations of two or more of said proteins.
  • 2. The recombinant poxvirus according to claim 1, wherein the poxvirus is an orthopoxvirus.
  • 3. The recombinant poxvirus according to claim 2, wherein the orthopoxvirus is selected from the group consisting of camelpox (CMLV) virus, cowpox virus (CPXV), ectromelia virus (ECTV), horsepox virus (HPXV), monkeypox virus (MPXV), vaccinia virus (VACV), variola virus (VARV), rabbitpox virus (RPXV), raccoon poxvirus, skunkpox virus, Taterapox virus, Uasin Gishu disease virus and volepox virus.
  • 4. The recombinant poxvirus according to claim 2, wherein the orthopoxvirus is a horsepox virus or a vaccinia virus.
  • 5. The recombinant poxvirus according to claim 4, wherein the horsepox virus is strain MNR-76 and wherein the vaccinia virus is selected from the group of strains consisting of: Western Reserve, Western Reserve Clone 3, Tian Tian, Tian Tian clone TP5, Tian Tian clone TP3, NYCBH, NYCBH clone Acambis 2000 (ACAM 2000), Wyeth, Copenhagen, Lister, Lister 107, Lister-LO, Lister GL-ONC1, Lister GL-ONC2, Lister GL-ONC3, Lister GL-ONC4, Lister CTC1, Lister IMG2 (Turbo FP635), IHD-W, LC16m18, Lederle, Tashkent clone TKT3, Tashkent clone TKT4, USSR, Evans, Praha, L-IVP, V-VET1 or LIVP 6.1.1, Ikeda, EM-63, Malbran, Duke, 3737, CV-1, Connaught Laboratories, Serro 2, CM-01, NYCBH Dryvax clone DPP13, NYCBH Dryvax clone DPP15, NYCBH Dryvax clone DPP20, NYCBH Dryvax clone DPP17, NYCBH Dryvax clone DPP21, VACV-IOC, Mulford 1902, Chorioallantoid Vaccinia virus Ankara (CVA), Modified vaccinia Ankara (MVA), and MVA-BN.
  • 6-7. (canceled)
  • 8. The recombinant poxvirus according to claim 1, wherein the SARS-CoV-2 protein is the S protein.
  • 9. The recombinant poxvirus according to claim 1, wherein the amino acid sequence of the SARS-CoV-2 virus protein is modified with reference to a wild type protein or modified to infect mice.
  • 10. (canceled)
  • 11. The recombinant poxvirus according to claim 8, wherein the amino acid sequence of the SARS-CoV-2 virus S protein comprises one or more substitutions selected from Y459H, D614G, S943P, K986P and V987P, with reference to a wild type S protein (SEQ ID NO: 47).
  • 12. The recombinant poxvirus according to claim 1, wherein the nucleic acid encoding the SARS-CoV-2 virus protein is located in a region of the poxvirus that is not essential for replication of the poxvirus.
  • 13. The recombinant poxvirus according to claim 12, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located in the thymidine kinase (TK) gene locus of the poxvirus or in the B22R homolog gene locus of the poxvirus.
  • 14. (canceled)
  • 15. The recombinant poxvirus according to claim 1, wherein the nucleic acid encoding the SARS-CoV-2 virus protein is operatively linked to a promoter.
  • 16. The recombinant poxvirus according to claim 15, wherein the promoter is a poxvirus-specific promoter.
  • 17. The recombinant poxvirus according to claim 16, wherein the poxvirus specific promoter is a vaccinia virus early promoter, a vaccinia virus late promoter, or a tandem of a vaccinia virus early and late promoter.
  • 18-19. (canceled)
  • 20. The recombinant poxvirus according to claim 1, wherein the poxvirus is a synthetic poxvirus.
  • 21. The recombinant poxvirus according to claim 20, wherein the synthetic poxvirus is selected from the group consisting of TNX-2200 (synVACVΔA2K105SARS-CoV2-Spike-co), TNX-2200 clone 1.1.1.1.1, TNX-2200 clone 2.1.1.1.1, TNX-1800 (scHPXVΔ200SARS-COV2-Spike-co), TNX-1800a, TNX-1800a-1, TNX-1800b, and TNX-1800b-2.
  • 22. The recombinant poxvirus according to claim 21, wherein the recombinant poxvirus is TNX-1800b-2 or TNX-1800a-1.
  • 23. (canceled)
  • 24. The recombinant poxvirus according to claim 20, wherein the synthetic poxvirus comprises any one of SEQ ID NOs: 63, 64 or 65.
  • 25. A pharmaceutical composition comprising a recombinant poxvirus according to claim 1 and a pharmaceutically acceptable carrier.
  • 26-29. (canceled)
  • 30. A cell infected with a recombinant poxvirus according to claim 1, wherein the cell is an adherent cell or a suspension cell.
  • 31. The cell according to claim 30, wherein the cell is a mammalian cell or an avian cell.
  • 32. The cell according to claim 31, wherein the mammalian cell is a Vero cell, a Vero E6 cell, a BSC-40 cell, a Vero adherent cell, a Vero suspension cell, a BHK-21 cell, an ACE2 Knockout Vero cell, or an MRC-5 cell, and wherein the avian cell is a chicken embryo fibroblast, a duck embryo-derived cell, an EB66® cell, an AGE1.CRpIX® cell, or a DF-1 cell.
  • 33-38. (canceled)
  • 39. A method for selecting a cell that expresses a SARS-CoV-2 virus protein, comprising infecting a cell with a recombinant poxvirus according to claim 1 and selecting the infected cell expressing said SARS-CoV-2 virus protein.
  • 40-43. (canceled)
  • 44. A method of inducing an immune response against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus in a subject, comprising administering to said subject an immunologically effective amount of the recombinant poxvirus according to claim 1.
  • 45. The method of inducing an immune response against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus in a subject according to claim 44, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification.
  • 46. The method of inducing an immune response against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus in a subject according to claim 44, wherein said immune response comprises antibodies that are capable of neutralizing the SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus.
  • 47. The method of inducing an immune response against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus in a subject according to claim 44, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus, or reducing or preventing the progression of a SARS-CoV-2 virus or a SARS-COV-2 and poxvirus infection in the subject.
  • 48. (canceled)
  • 49. The method of inducing an immune response against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus in a subject according to claim 44, wherein the immune response is a T-cell immune response.
  • 50-55. (canceled)
  • 56. The method of inducing an immune response against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus according to claim 44, wherein the poxvirus is vaccinia virus, variola, horsepox virus or monkeypox virus.
  • 57. A method of inducing T cell immunity against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus comprising administering to said subject an immunologically effective amount of a recombinant poxvirus according to claim 1.
  • 58. The method of inducing T cell immunity against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus according to claim 57, wherein said immunologically effective amount of the recombinant poxvirus is administered by scarification.
  • 59. The method of inducing T cell immunity against a SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus according to claim 57, wherein the immunologically effective amount of a recombinant poxvirus is capable of protecting the subject from SARS-CoV-2 virus or a SARS-CoV-2 virus and a poxvirus, or reduces or prevents the progression of a SARS-CoV-2 virus or a SARS-CoV-2 and a poxvirus infection in the subject.
  • 60-64. (canceled)
  • 65. The method of inducing T cell immunity against a SARS-CoV-2 virus or SARS-CoV-2 virus and a poxvirus according to claim 57, wherein the poxvirus is vaccinia virus, variola, horsepox virus or monkeypox virus.
  • 66. A method of generating a recombinant poxvirus according to claim 1, the method comprising: (a) Infecting a host cell with a poxvirus;(b) Transfecting the infected cell of step (a) with a nucleic acid encoding a SARS-CoV-2 virus protein to generate a recombinant poxvirus; and(c) Selecting a recombinant poxvirus, wherein the nucleic acid encoding a SARS-CoV-2 virus protein is located, upon transfection, in a region of the poxvirus that is not essential for the replication of the poxvirus.
  • 67-82. (canceled)
  • 83. A method of reducing or preventing the progression of a SARS-CoV-2 virus infection or a SARS-CoV-2 and poxvirus infection in a subject in need or at risk thereof comprising administering to said subject an immunologically effective amount of the recombinant poxvirus according to claim 1.
  • 84-85. (canceled)
  • 86. A vaccine against a SARS-CoV-2 virus comprising a recombinant virus according to claim 1.
  • 87. A bivalent vaccine against a SARS-CoV-2 virus and a poxvirus comprising a recombinant virus according to claim 1.
  • 88. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority and benefit from U.S. Provisional Application No. 62/981,997, filed Feb. 26, 2020 and U.S. Provisional Application No. 63/114,514, filed Nov. 16, 2020, the contents of which are hereby incorporated by reference in its entirety.

Provisional Applications (2)
Number Date Country
63114514 Nov 2020 US
62981997 Feb 2020 US