RECOMBINANT VACCINIA VIRUS AND USE THEREOF

Information

  • Patent Application
  • 20190247487
  • Publication Number
    20190247487
  • Date Filed
    July 21, 2017
    7 years ago
  • Date Published
    August 15, 2019
    5 years ago
Abstract
The present invention relates to a recombinant vaccinia virus in which the expression of some genes is inhibited, and a use thereof. The recombinant vaccinia virus of the present invention selectively kills cancer cells, and has an excellent reproducibility in cancer cells. Also, the virus has a lower toxicity to normal cells, and thus has an advantage of being safe for a human body. Therefore, the recombinant vaccinia virus of the present invention can be effectively used as a composition for treating cancer.
Description
TECHNICAL FIELD

The present invention relates to a recombinant vaccinia virus in which expression of some genes is suppressed, and uses thereof.


BACKGROUND ART

Recently, studies on oncolytic viruses modified by genetically manipulating various viruses have been actively conducted for the purpose of developing cancer therapeutic agent. However, limitations of the oncolytic viruses have yet to be fully resolved. For example, in order to be developed into an anticancer agent, a virus having a tumor-selective replication ability was produced through genetic manipulation. However, there are limitations that the virus is replicated not only in cancer cells but also in normal cells, thereby killing the normal cells, or has insufficient anticancer effects. Accordingly, there is a continuing demand for the development of a technique which allows the oncolytic viruses to have increased selectivity and efficacy against cancer cells while minimizing influences on normal cells.


On the other hand, vaccinia virus is an enveloped DNA virus with double-stranded linear genomic DNA of about 200 kbp which encodes about 200 independent genes. The vaccinia virus was first used by Edward Jenner in the eighteenth century as a prophylactic vaccine for smallpox. Since then, the vaccinia virus has been developed into various prophylactic vaccines. In early vaccinia virus vaccines, a wild-type virus was used, and serious side effects such as systemic infection or progressive infection were seen in vaccinated patients. Therefore, in order to reduce side effects, modified vaccinia viruses with attenuated toxicity such as modified vaccinia Ankara (MVA), LC16m8 (derived from the Lister strain), and New York vaccinia virus (NYVAC, derived from the Copenhagen vaccinia strain) were developed. Vaccines that target various diseases have been developed based on these vaccinia viruses. Vaccinia virus strains such as Western Reserve (WR), NYVAC, Wyeth, and Lister are also being developed as oncolytic viruses.


TECHNICAL PROBLEM

An object of the present invention is to provide a recombinant vaccinia virus in which the expression of some genes is suppressed, and an anticancer composition containing the recombinant vaccinia virus as an active ingredient.


SOLUTION TO PROBLEM

In order to achieve the above object, the present invention provides a recombinant vaccinia virus in which expression of K3L, thymidine kinase (TK), and vaccinia growth factor (VGF) genes is suppressed.


In addition, the present invention provides a pharmaceutical composition for preventing or treating cancer which contains the recombinant vaccinia virus as an active ingredient.


Further, the present invention provides a method for preventing or treating cancer, comprising a step of administering the recombinant vaccinia virus to an individual.


ADVANTAGEOUS EFFECTS OF INVENTION

The recombinant vaccinia virus of the present invention selectively kills cancer cells and exhibits an excellent replication ability in cancer cells. In addition, due to having an excellent cancer cell-selective killing ability, the recombinant vaccinia virus has an advantage of being safer for use in the human body. Therefore, the recombinant vaccinia virus of the present invention can be usefully used as a composition for treating cancer.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic diagram showing a part of a construct of a shuttle plasmid which suppresses the expression of VGF gene of the present invention.



FIG. 2 is a schematic diagram showing a part of a construct of a shuttle plasmid which suppresses the expression of TK gene of the present invention.



FIG. 3 is a schematic diagram showing a part of a construct of a shuttle plasmid which suppresses the expression of K3L gene of the present invention.



FIG. 4A shows results which identify that various cancer cell lines as shown in Table 1-1 are killed by a recombinant virus in which expression of VGF, TK, and K3L genes is suppressed.












TABLE 1-1







Carcinoma
Cell line









Lung cancer
A549



Brain cancer
U-87MG



Breast cancer
T-47D



Ovarian cancer
A2780



Pancreatic cancer
MIA PaCa-2



Colorectal cancer
SW620











FIG. 4B shows results which identify that various cancer cell lines as shown in Table 1-2 are killed by the recombinant virus in which expression of VGF, TK, and K3L genes is suppressed.












TABLE 1-2







Carcinoma
Cell line









Liver cancer
Hep3B



Prostate cancer
DU145



Head and neck cancer
FaDu



Fibrosarcoma
HT-1080











FIG. 5 shows results which identify that a recombinant IHD-W vaccinia virus in which VGF, TK, and K3L genes are deleted or inactivated and expression of the genes is suppressed induces death of a colorectal cancer cell line. The meanings of abbreviations for the deleted genes are as shown in Table 2:










TABLE 2





Abbreviation
Meaning







VTK
All of VGF, TK, and K3L genes are deleted


ViTK
Expression of VGF gene is inactivated, and both TK and



K3L genes are deleted


VTiK
Expression of TK gene is inactivated, and both VGF and



K3L genes are deleted


VTKi
Expression of K3L gene is inactivated, and both VGF and



TK genes are deleted










FIGS. 6A and 6B are graphs which identify a killing ability of a recombinant vaccinia virus, in which expression of K3L only or, both VGF and TK, or all VGF and TK and K3L genes being suppressed, against cancer cells relative to normal cells. FIG. 6A is a graph obtained by making a comparison for a killing ability of a recombinant IHD-W-K, IHD-W-VT or IHD-W-VTK vaccinia virus against cancer cells relative to normal cells, based on a IHD-W-VTK value; and FIG. 6B is a graph obtained by making a comparison for a killing ability of a recombinant WR-ViTi or WR-ViTiKi vaccinia virus against cancer cells relative to normal cells, based on a WR-ViTiKi value.



FIGS. 7A and 7B are graphs obtained by observing changes in tumor size after administration of a recombinant vaccinia virus, in which expression of both VGF and TK or all VGF and TK and K3L genes being suppressed, to a colorectal cancer mouse model. FIG. 7A is a graph obtained by observing changes in tumor size after administration of a recombinant IHD-W-VT or IHD-W-VTK vaccinia virus to a colorectal cancer mouse model; and FIG. 7B is a graph obtained by observing changes in tumor size after administration of a recombinant WR-ViTi or WR-ViTiKi vaccinia virus to a colorectal cancer mouse model.



FIGS. 8A and 8B are graphs which identify changes in body weight of mice on an individual basis after administration of a recombinant vaccinia virus, in which expression of both VGF and TK or all VGF and TK and K3L genes being suppressed, to a colorectal cancer mouse model. FIG. 8A is a graph which identifies changes in body weight of mice on an individual basis after administration of a recombinant IHD-W-VT or IHD-W-VTK vaccinia virus to a colorectal cancer mouse model; and FIG. 8B is a graph which identifies changes in body weight of mice on an individual basis after administration of a recombinant WR-ViTi or WR-ViTiKi vaccinia virus to a colorectal cancer mouse model.



FIGS. 9A and 9B are graphs which identify a mortality rate of mice after administration of a recombinant vaccinia virus, in which expression of both VGF and TK or all VGF and TK and K3L genes being suppressed, to a colorectal cancer mouse model. FIG. 9A is a graph which identifies a mortality rate of mice after administration of a recombinant IHD-W-VT or IHD-W-VTK vaccinia virus to a colorectal cancer mouse model; and FIG. 9B is a graph which identifies a mortality rate of mice after administration of a recombinant WR-ViTi or WR-ViTiKi vaccinia virus to a colorectal cancer mouse model.



FIGS. 10A and 10B show results which identify inflammation reaction in tails of mice after administration of a recombinant IHD-W vaccinia virus, in which expression of both VGF and TK or all VGF and TK and K3L genes being suppressed, to a colorectal cancer mouse model. FIG. 10A shows results which identify inflammatory response in tails of mice to which a recombinant IHD-W-VT vaccinia virus was administered, and FIG. 10B shows results of confirming inflammatory reaction in tails of mice to which a recombinant IHD-W-VTK vaccinia virus was administered.





DETAILED DESCRIPTION OF INVENTION

Hereinafter, the present invention will be described in detail.


In an aspect of the present invention, there is provided a recombinant vaccinia virus in which expression of VGF, TK, and K3L genes is suppressed.


The term “VGF” as used herein means vaccinia growth factor. The vaccinia growth factor is an enzyme exhibiting a similar activity to epithelial growth factor. The vaccinia growth factor encoded by the VGF gene exhibits a growth factor activity in the case of being infected with the virus and can be synthesized at an initial stage of infection caused by the virus. The VGF may be a sequence of GenBank: AA089288.1, ABD52455.1, or AIX98927.1, but is not limited thereto. Specifically, the VGF may be a base sequence encoding an amino acid sequence represented by SEQ ID NO: 67, and the VGF gene may be a base sequence represented by SEQ ID NO: 66. The VGF or a gene thereof may have a homology of about 70% or 75% or more, and preferably about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, or 89% or more, to the amino acid sequence of SEQ ID NO: 67 or the base sequence of SEQ ID NO: 66. In addition, the VGF or a gene thereof may have a homology of about 90%, 91%, 92%, 93%, or 94% or more, preferably about 95%, 96%, 97%, 98%, or 99% or more, and most preferably about 99% or more, to the amino acid sequence of SEQ ID NO: 67 or the base sequence of SEQ ID NO: 66.


The term “TK” as used herein means thymidine kinase. The thymidine kinase is an enzyme involved in the biosynthesis of nucleotides. The thymidine kinase encoded by the TK gene causes a phosphoric acid at a y position of ATP to bind to thymidine so that nucleotides constituting a viral DNA can be produced. The TK may be a sequence of GenBank: AAO89373.1, ABD52560.1, or AIX99011.1, but is not limited thereto. Specifically, the TK may be a base sequence encoding an amino acid sequence represented by SEQ ID NO: 69, and the TK gene may be a base sequence represented by SEQ ID NO: 68. The TK or a gene thereof may have a homology of about 70% or 75% or more, and preferably about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, or 89% or more, to the amino acid sequence of SEQ ID NO: 69 or the base sequence of SEQ ID NO: 68. In addition, the TK or a gene thereof may have a homology of about 90%, 91%, 92%, 93%, or 94% or more, preferably about 95%, 96%, 97%, 98%, or 99% or more, and most preferably about 99% or more, to the amino acid sequence of SEQ ID NO: 69 or the base sequence of SEQ ID NO: 68.


The term “K3L” as used herein means K3L protein. The K3L protein encoded by the K3L gene is a protein having homology to translation initiation factor-2a (eIF-2a) and can suppress an action of protein kinase R (PKR) which is an interferon activator. The K3L may be a sequence of GenBank: AAO89313.1, ABD52483.1, or AGB75754.1, but is not limited thereto. Specifically, the K3L may have a base sequence encoding an amino acid sequence represented by SEQ ID NO: 71, and the K3L gene may be a base sequence represented by SEQ ID NO: 70. The K3L or a gene thereof may have a homology of about 70% or 75% or more, and preferably about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, or 89% or more, to the amino acid sequence of SEQ ID NO:. 71 or the base sequence of SEQ ID NO: 70. In addition, the K3L or a gene thereof may have a homology of about 90%, 91%, 92%, 93%, or 94% or more, preferably about 95%, 96%, 97%, 98%, or 99% or more, and most preferably about 99% or more, to the amino acid sequence of SEQ ID NO: 71 or the base sequence of SEQ ID NO: 70.


Suppressed expression of a gene according to the present invention means that the gene is not expressed or only a part of the gene is expressed by partial or entire deletion of the gene or insertion of a foreign gene into the gene so that an activity of a protein encoded by the gene is not exhibited. A method for deleting the gene or inserting a foreign gene can be performed by a method well known in the art. For example, this can be performed by methods for inserting a foreign gene which is disclosed in Molecular Cloning, A Laboratory Manual, Second Edition, by J. Sambrook, E. F. Fritsch and T. Maniatis (2003), Cold Spring Harbor Laboratory Press, Virology Methods Manual, edited by Brian W J Mahy and Hillar O Kangro (1996) Academic Press and Expression of genes by Vaccinia virus vectors, and Current Protocols in Molecular Biology, published by John Wiley and Son (1998), Chapter 16. Specifically, in an embodiment of the present invention, a foreign gene was inserted using pGEM-T Easy (Promega, Cat No. A1360) or pGEM-T (Promega, Cat No. A3600) vector system.


The vaccinia virus may be selected from the group consisting of Western Reserve (WR), New York Vaccinia Virus (NYVAC), Wyeth (The New York City Board of Health; NYCBOH), LC16m8, Lister, Copenhagen, Tian Tan, USSR, TashKent, Evans, International Health Division-J (IHD-J), International Health Division-White (IHD-W), and variants thereof, but is not limited thereto. Specifically, the vaccinia virus may be WR, Lister, or IHD-W vaccinia virus, and may have a sequence of GenBank: AY243312.1, DQ121394.1, or AIX98951.1. In an embodiment of the present invention, the vaccinia virus may be IHD-W.


The term “V” or “virus V” as used herein means a recombinant vaccinia virus in which VGF which is a vaccinia growth factor gene is deleted, and the virus does not express VGF gene due to deletion of the VGF gene.


In addition, the term “Vi” or “virus Vi” as used herein means a recombinant vaccinia virus in which expression of vaccinia growth factor is inactivated, and the virus does not express VGF gene. Expression of the vaccinia growth factor can be suppressed by inserting a foreign gene into the VGF gene.


In addition, the term “T” or “virus T” as used herein means a recombinant vaccinia virus in which thymidine kinase (TK) gene is deleted, and the virus does not express the TK gene due to deletion of the TK gene.


In addition, the term “Ti” or “virus Ti” as used herein means a recombinant vaccinia virus in which expression of thymidine kinase is inactivated, and the virus does not express TK gene. Expression of the thymidine kinase can be suppressed by inserting a foreign gene into the TK gene.


In addition, the term “K” or “virus K” as used herein means a recombinant vaccinia virus in which K3L gene is deleted, and the virus does not express the K3L gene due to deletion of the K3L gene.


In addition, the term “Ki” or “virus Ki” as used herein means a recombinant vaccinia virus in which expression of K3L gene is inactivated, and the virus does not express K3L. Expression of the K3L protein can be suppressed by inserting a foreign gene into the K3L gene.


In addition, the term “VT” or “virus VT” as used herein means a recombinant vaccinia virus in which VGF and TK genes are deleted. In addition, the term “ViTi” or “virus ViTi” as used herein means a recombinant vaccinia virus in which expression of vaccinia growth factor and thymidine kinase are inactivated. Methods for inactivating expression of the vaccinia growth factor and thymidine kinase are as described above.


In addition, the term “VTK” or “virus VTK” as used herein means a recombinant vaccinia virus in which VGF, TK, and K3L genes are deleted. In addition, the term “ViTiKi” or “virus ViTiKi” as used herein means a recombinant vaccinia virus in which expression of vaccinia growth factor, thymidine kinase, and K3L protein are inactivated. Methods for inactivating expression of the vaccinia growth factor, thymidine kinase, and K3L protein are as described above.


In addition, the term “ViTK” or “virus ViTK” as used herein means a recombinant vaccinia virus in which expression of vaccinia growth factor is inactivated, and TK and K3L genes are deleted. In addition, the term “VTiK” or “virus VTiK” as used herein means a recombinant vaccinia virus in which expression of thymidine kinase is inactivated, and VGF and K3L genes are deleted. In addition, the term “VTKi” or “virus VTKi” as used herein means a recombinant vaccinia virus in which expression of K3L protein is inactivated, and VGF and TK genes are deleted.


In addition, an aspect of the present invention provides a pharmaceutical composition for preventing or treating cancer which contains the recombinant vaccinia virus as an active ingredient.


Here, the recombinant vaccinia virus may be one in which expression of VGF, TK, and K3L genes are suppressed, as described above. The VGF, TK, and K3L genes are as described above.


As an example of the recombinant vaccinia virus, the following can be mentioned. Variants of WR vaccinia virus may be WR-VTK, WR-ViTiKi, WR-ViTK, WR-VTiK, or WR-VTKi. In addition, variants of NYVAC vaccinia virus may be NYVAC-VTK, NYVAC-ViTiKi, NYVAC-ViTK, NYVAC-VTiK, or NYVAC-VTKi. Furthermore, variants of Wyeth vaccinia virus may be Wyeth-VTK, Wyeth-ViTiKi, Wyeth-ViTK, Wyeth-VTiK, or Wyeth-VTKi. In addition, variants of LC16m8 vaccinia virus may be LC16m8-VTK, LC16m8-ViTiKi, LC16m8-ViTK, LC16m8-VTiK, or LC16m8-VTKi. Furthermore, variants of Lister vaccinia virus may be Lister-VTK, Lister-ViTiKi, Lister-ViTK, Lister-VTiK, or Lister-VTKi. In addition, variants of Copenhagen vaccinia virus may be Copenhagen-VTK, Copenhagen-ViTiKi, Copenhagen-ViTK, Copenhagen-VTiK, or Copenhagen-VTKi. Furthermore, variants of TianTan vaccinia virus may be TianTan-VTK, TianTan-ViTiKi, TianTan-ViTK, TianTan-VTiK, or TianTan-VTKi. In addition, variants of USSR vaccinia virus may be USSR-VTK, USSR-ViTiKi, USSR-ViTK, USSR-VTiK, or USSR-VTKi. Furthermore, variants of TashKent vaccinia virus may be TashKent-VTK, TashKent-ViTiKi, TashKent-ViTK, TashKent-VTiK, or TashKent-VTKi. In addition, variants of Evans vaccinia virus may be Evans-VTK, Evans-ViTiKi, Evans-ViTK, Evans-VTiK, or Evans-VTKi. Furthermore, variants of IHD-J vaccinia virus may be IHD-J-VTK, IHD-J-ViTiKi, IHD-J-ViTK, IHD-J-VTiK, or IHD-J-VTKi. Furthermore, variants of IHD-W vaccinia virus may be IHD-W-VTK, IHD-W-ViTiKi, IHD-W-VTiK, or IHD-W-VTKi.


According to an embodiment, it was identified that the recombinant vaccinia virus in which VGF, TK, and K3L genes are deleted has a killing ability against various cancer cells (FIGS. 4A and 4B). In addition, comparison on a cancer cell-killing ability was made by treating a colorectal cancer cell line with recombinant IHD-W-VTK, IHD-W-ViTK, IHD-W-VTiK, and IHD-W-VTKi vaccinia viruses. As a result, it was identified that all of the vaccinia viruses exhibited an excellent killing ability. Therefore, it was identified that regardless of whether a gene is deleted or inactivated, all of the vaccinia viruses in which expression of VTK gene is suppressed have an anticancer activity (FIG. 5). In addition, in a case where normal cells and cancer cells are treated with recombinant IHD-W-K, IHD-W-VT, IHD-W-VTK, WR-K, WR-ViTi, and WR-ViTiKi vaccinia viruses, it was identified that the recombinant IHD-W-VTK or WR-ViTiKi vaccinia virus in which expression of VGF, TK, and K3L genes is simultaneously suppressed exhibits a relatively superior killing ability against cancer cells relative to normal cells as compared to the recombinant IHD-W-K or WR-K vaccinia virus in which the only expression of K3L gene is suppressed or the recombinant IHD-W-VT or WR-ViTi vaccinia virus in which expression of VGF and TK genes are simultaneously suppressed (FIGS. 6A and 6B).


In addition, the recombinant IHD-W-VT and IHD-W-VTK vaccinia viruses and the recombinant WR-ViTi and WR-ViTiKi vaccinia viruses were administered to a tumor mouse model. As a result, it was identified that all of the viruses suppressed cancer growth (FIGS. 7A and 7B).


In addition, it was identified that a tumor mouse model to which the recombinant IHD-W-VTK or WR-ViTiKi vaccinia virus was administered exhibited lower weight loss and mortality rate than a tumor mouse model to which the recombinant IHD-W-VT or WR-ViTi vaccinia virus was administered (FIGS. 8A, 8B, 9A, and 9B). In addition, it was identified that mice to which the recombinant IHD-W-VTK vaccinia virus was administered exhibited a less inflammatory response in a tail region than mice to which the recombinant IHD-W-VT vaccinia virus was administered.


Accordingly, a pharmaceutical composition of the present invention for preventing or treating cancer which contains, as an active ingredient, a recombinant vaccinia virus in which expression of K3L, TK, and VGF genes is suppressed can be usefully used for preventing or treating cancer.


The term “cancer” as used herein may be solid cancer or blood cancer. Here, the solid tumor may be selected from the group consisting of lung cancer, colorectal cancer, prostate cancer, thyroid cancer, breast cancer, brain cancer, head and neck cancer, fibrosarcoma, esophageal cancer, skin cancer, thymic cancer, gastric cancer, colon cancer, liver cancer, ovarian cancer, uterine cancer, bladder cancer, rectal cancer, gallbladder cancer, biliary tract cancer, pancreatic cancer, and combinations thereof. According to an embodiment of the present invention, cancer may be lung cancer, liver cancer, prostate cancer, head and neck cancer, fibrosarcoma, brain cancer, breast cancer, ovarian cancer, pancreatic cancer, or colorectal cancer. In addition, the blood cancer may be selected from the group consisting of lymphoma, acute leukemia, multiple myeloma, and combinations thereof.


The pharmaceutical composition of the present invention may further contain one or more pharmaceutically acceptable additives selected from the group consisting of excipients, lubricants, wetting agents, sweeteners, fragrances, and preservatives.


The composition of the present invention may be formulated according to a conventional method. The composition of the present invention can be formulated employing a method known in the art so as to provide rapid, sustained, or delayed the release of an active ingredient, in particular after being administered to a mammal. According to the formulation, the composition of the present invention can be appropriately administered to an individual. Such administration may be parenteral administration, and examples thereof can include intra-cancer tissue, intradermal, intramuscular, intraperitoneal, intravenous, intraarterial, subcutaneous, intranasal, epidural, and oral route. A form of preparation for parenteral administration may be an injectable preparation.


In another aspect of the present invention, there is provided a method for preventing or treating cancer, comprising a step of administering the recombinant vaccinia virus to an individual.


The individual may be a mammal, in particular, a human. The composition of the present invention can be appropriately administered by a person skilled in the art depending on the patient's age, sex, weight, the severity of disease symptom, and route of administration. The administration may be once a day or several times a day.


A preferred dosage of the recombinant vaccinia virus of the present invention varies depending on condition and body weight of an individual, severity of disease, drug form, route of administration, and period, and can be appropriately selected by a person skilled in the art. Specifically, the dosage may be such that a patient receives virus particles, virus units having infectivity (TCID50), or plaque forming units (pfu) of 1×105 to 1×1018, and preferably 1×105, 2×105, 5×105, 1×106, 2×106, 5×106, 1×107, 2×107, 5×107, 1×108, 2×108, 5×108, 1×109, 2×109, 5×109, 1×1010, 5×1010, 1×1011, 5×1011, 1×1012, 1×1013, 1×1014, 1×1015, 1×1016, 1×1017 or more, in which various values and ranges therebetween can be included. In addition, a dosage of the virus may be 0.1 ml, 1 ml, 2 ml, 3 ml, 4 ml, 5 ml, 6 ml, 7 ml, 8 ml, 9 ml, 10 ml or more, and all values and ranges therebetween can be included.


Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the present invention, and the present invention is not limited thereto.


I. Production of Recombinant Vaccinia Virus


The present inventors constructed recombinant vaccinia virus vectors in which thymidine kinase (TK), vaccinia growth factor (VGF), and K3L genes are deleted or expression thereof is inactivated. Using these vectors, recombinant vaccinia viruses in which expression of the above genes is suppressed were produced and comparison was made for properties thereof as anti-cancer substances.


EXAMPLE 1
Production of Recombinant WR Vaccinia Virus
EXAMPLE 1.1
Construction of Recombinant WR Vaccinia Virus Vector in which VGF, TK, and K3L Genes are Inactivated or Deleted
EXAMPLE 1.1.1
Construction of Recombinant WR Vaccinia Virus Vector in which Expression of VGF Gene is Inactivated

Genes that flank VGF gene on both sides in the genomic DNA of WR vaccinia virus (ATCC, Cat No. VR-1354) were amplified by PCR and inserted into pGEM-T Easy, respectively, to construct pGEM-T Easy-VGF-L(WR) and pGEM-T Easy-VGF-R(WR). Information on primers used for the amplification of homologous base sequences that flank the VGF gene on both sides is shown in Table 3.











TABLE 3 





Name
Sequence (5′→3′)
SEQ ID NO







VGF-L forward
CGCAGCTGTGTTATCGATTGATA
SEQ ID NO: 1


(WR)
GTGGTGTCCT






VGF-L reverse
CTGCAGCGCTAGCACCGCATAAT
SEQ ID NO: 2


(WR)
CTGATAGCTGGAATA






VGF-R forward
CGGGATCCGTTAATTAAACTCGA
SEQ ID NO: 3


(WR)
CGAACTAAACTACCTATAC






VGF-R reverse
CGATATCGGAAAATGTCTGTTAG
SEQ ID NO: 4


(WR)
TAAATAACCATC






p11 promoter
CGGCTAGCTCTAGAAGCGATGCT
SEQ ID NO: 5


forward
ACGCTAG






p11 promoter
CAAGCTTCGGTTGCCTCGAGGAA
SEQ ID NO: 6


reverse
TTCATTTATAGCATAGAA






LacZ forward
CGCTCGAGGGATCCCGTCGTTTT
SEQ ID NO: 7





LacZ reverse
ACAACGTCAAGCTTCTTAATTAA
SEQ ID NO: 8



GGATCCCCCCTGCCCGGTTATTA




TTATTTTTGACACCAGACCAACT









LacZ, whose expression is regulated by the p11 promoter, was used as a marker for screening for a virus in which recombination had occurred at a position of the VGF gene. A p11 promoter site in the WR gDNA was amplified by PCR and LacZ gene in pAAV-LacZ (Stratagene, Cat No. 240071-52) was amplified by PCR. Then, the resultants were inserted into pGEM-T Easy and pGEM-T, respectively, to construct pGEM-T Easy-p11 and pGEM-T-LacZ, respectively. Information on primers used for the amplification of the p11 promoter and the LacZ is shown in Table 3.


In order to construct a shuttle plasmid in which a function of the VGF gene is partially deleted, the pGEM-T Easy-VGF-L(WR) was treated with PvuII and PstI, and ligated with a vector obtained by treating pSP72 (Promega, Cat No. P2191) with PvuII and PstI, to construct pSP72-VGF-L(WR). In addition, the pGEM-T Easy-VGF-L-VGF-R(WR) was treated with EcoRV and BamHI, and ligated with a vector obtained by treating the pSP72-VGF-L(WR) as constructed above with EcoRV and BamHI, to secure pSP72-VGF-L-VGF-R(WR). In order to introduce a LacZ expression cassette, the PGEM-T Easy-p11 was treated with SalI and NheI, and ligated with a vector obtained by treating the pSP72-VGF-L-VGF-R(WR) with SalI and NheI, to construct pSP72-VGF-L-p11-VGF-R(WR). The constructed pSP72-VGF-L-p11-VGF-R(WR) was treated with EcoRI and PacI, and then the pGEM-T-LacZ as constructed above was cut with EcoRI and PacI. The resultants were ligated to complete pSP72-VGF-L-p11-LacZ-VGF-R(WR) (hereinafter referred to as “WR VGF(i) shuttle plasmid”) which is a VGF shuttle plasmid.


EXAMPLE 1.1.2
Construction of Recombinant WR Vaccinia Virus Vector in which Expression of TK Gene is Inactivated

In order to secure genes that flank TK gene on both sides in the genomic DNA of WR vaccinia virus, the gDNA of WR was amplified by PCR, and then the base sequence segments which flank the TK gene on the left and right sides, and are homologous to each other were inserted into pGEM-T Easy, to construct pGEM-T Easy-TK-L(WR) and pGEM-T Easy-TK-R(WR). Information for primers used for the amplification of the base sequences which are homologous to both sides of the TK gene is shown in Table 4.











TABLE 4





Name
Sequence (5′→3′)
SEQ ID NO:







TK-L 
AGGTCGACTTGCGATCAATA
SEQ ID NO: 9


forward(WR)
AATGGATCACAAC






TK-L 
TTAGCTGCAGTATGCGGCCG
SEQ ID NO: 10


reverse(WR)
CAACAATGTCTGGAAAGAAC




TGTCC






TK-R 
CGGAATTCTGTGAGCGTATG
SEQ ID NO: 11


forward(WR)
GCAA






TK-R 
TCGGGATCCTCAGTCTCATG
SEQ ID NO: 12


reverse(WR)
TTCTCACCGG






p7.5 promoter
AGGAAGCTTTCCAAACCCAC
SEQ ID NO: 13


forward
CCGCTTTTTAT






p7.5 promoter
GAATTCGCACTAGTTCCGAT
SEQ ID NO: 14


reverse
CGCCGTGCAATAAATTAGAA




TATACCC






EGFP forward
CGCTCGAGATGGTGAGCAAG
SEQ ID NO: 15



GGCGAGG






EGFP reverse
TGAGATCTTTACTTGTACAG
SEQ ID NO: 16



CTCGTCCATG






Gpt forward
CGACTAGTACACAAGACAGG
SEQ ID NO: 17



CTTGCGAG






Gpt reverse
CGGAATTCGGCCCACTCATA
SEQ ID NO: 18



AATCCAGTT






pSE/L promoter
CGAGCTGCAGATAAAAATTA
SEQ ID NO: 19


forward
ATTAATTACCCGGGTACCAG




GCCTAGATCTGTCGACTCGA




GCTTATTTATATTCCAAAAA




AAAAAAATAAAATTTCAATT




TTTAAGCTTCGGGATCCGCA




A






pSE/L promoter
TTGCGGATCCCGAAGCTTAA
SEQ ID NO: 20


reverse
AAATTGAAATTTTATTTTTT




TTTTTTGGAATATAAATAAG




CTCGAGTCGACAGATCTAGG




CCTGGTACCCGGGTAATTAA




TTAATTTTTATCTGCAGCTC




G






TF forward
ATCGGCGGCCGCTTTTTATC
SEQ ID NO: 21



TGCGCGGTTAACCGCCTTTT




TATCCATCAGGTGATCTGTT




TTTATTGTGGAGCTGCAGCG




AT






TF reverse
ATCGCTGCAGCTCCACAATA
SEQ ID NO: 22



AAAACAGATCACCTGATGGA




TAAAAAGGCGGTTAACCGCG




CAGATAAAAAGCGGCCGCCG




AT









EGFP, whose expression is regulated by pSE/L promoter, and Gpt whose expression is regulated by p7.5 promoter, were used as markers for screening for a virus in which recombination had occurred at a position of the TK gene. A p7.5 promoter site was amplified by PCR using the WR gDNA as a template, and EGFP gene in pEGFP-N3 (Clontech, Cat No. 6080-1) and Gpt gene in DH5α (Takara, Cat No. 9057) were also amplified by PCR. Then, the resultants were inserted into pGEM-T Easy, respectively, to construct pGEM-T Easy-p7.5, pGEM-T Easy-EGFP, and pGEM-T Easy-Gpt, respectively. In addition, pSE/L promoter and TF were constructed through primer annealing. Sequences of primers used in the experiments are shown in Table 4.


The pGEM-T Easy-p7.5 and the annealed pSE/L promoter were treated with BamHI and PstI, respectively, and ligated to construct pGEM-T Easy-pSE/L-p7.5. The constructed pGEM-T Easy-pSE/L-p7.5 and pGEM-T Easy-EGFP were respectively treated with BglII and XhoI, and then ligated, to construct pGEM-T Easy-pSE/L-p7.5.


In order to construct a shuttle plasmid in which a function of the TK gene is partially deleted, the pSP72 was treated with EcoRI and BamHI, and the pGEM-T Easy-TK-R(WR) was treated with EcoRI and BamHI. Then, the resultants were ligated to construct pSP72-TK-R(WR). The constructed pSP72-TK-R(WR) was treated with XhoI and PstI, and ligated with the pSEM-T Easy-TK-L obtained by being treated with SalI and PstI, to construct pSP72-TK-L-TK-R(WR). In order to introduce an EGFP expression cassette, the constructed pSP72-TK-L-TK-R(WR) and pGEM-T Easy-EGFP-pSE/L-p7.5 were respectively treated with EcoRI and PstI, and ligated to construct pSP72-TK-L-EGFP-pSE/L-p7.5-TK-R(WR).


In addition, the constructed pSP72-TK-L-EGFP-pSE/L-p7.5-TK-R(WR) and the annealed TF oligomer were respectively treated with PstI and NotI, and ligated to construct pSP72-TK-L-TF-EGFP-pSE/L-p7.5-TK-R(WR). In order to introduce a Gpt expression cassette, the constructed pSP72-TK-L-TF-EGFP-pSE/L-p7.5-TK-R(WR) and pGEM-T Easy-Gpt were respectively treated with EcoRI and SpeI, and ligated to finally construct pSP72-TK-L-TF-EGFP-pSE/L-p7.5-Gpt-TK-R(WR) (hereinafter referred to as “WR TK(i) shuttle plasmid”) which is a TK shuttle plasmid.


EXAMPLE 1.1.3
Construction of Recombinant WR Vaccinia Virus Vector in which K3L Gene is Deleted

Genes that flank K3L gene on both sides in the genomic DNA of WR vaccinia virus were amplified by PCR. Here, information on primers used for the amplification of homologous base sequences that flank the K3L gene on both sides is shown in Table 5. The amplified genes were respectively inserted into pGEM-T, to construct pGEM-T-K3L-L(WR) and pGEM-T-K3L-R(WR).











TABLE 5 





Name
Sequence (5′→3′)
SEQ ID NO:







K3L-L forward
TCGGTCGACCATATGTTT
SEQ ID NO: 23


(WR)
AAACGACGCATTATCTG






K3L-L reverse
TCGAAGCTTTTTTTATAC
SEQ ID NO: 24


(WR)
CGAACATAAAAATAAGGT




TAATTAT






K3L-R forward
TCGGATATCCTTGTTAAC
SEQ ID NO: 25


(WR)
GGGCTCGTAAATTGGG






K3L-R reverse
TCGGGATCCTGATAATAC
SEQ ID NO: 26


(WR)
ACATATTTATTTAGGAAG




CG






TF forward
ATCGGCGGCCGCTTTTTA
SEQ ID NO: 27



TCTGCGCGGTTAACCGCC




TTTTTATCCATCAGGTGA




TCTGTTTTTATTGTGGAG




CTGCAGCGAT






TF reverse
ATCGCTGCAGCTCCACAA
SEQ ID NO: 28



TAAAAACAGATCACCTGA




TGGATAAAAAGGCGGTTA




ACCGCGCAGATAAAAAGC




GGCCGCCGAT






p7.5 promoter
AGGAAGCTTTCCAAACCC
SEQ ID NO: 29


forward
ACCCGCTTTTTAT






p7.5 promoter
CGTGGATCCCCGTGCAAT
SEQ ID NO: 30


reverse
AAATTAGAATATA









In order to construct a shuttle plasmid in which the K3L gene was deleted, the TF primer shown in Table 5 was annealed, treated with EcoRI and EcoRV, and ligated with a vector obtained by treating the pSP72 with EcoRI and EcoRV, to construct pSP72-TF. In addition, pDsRed2 (Clontech, Cat No. 632404) was treated with EcoRI and BamHI, and ligated with a vector obtained by treating the pSP72-TF with EcoRI and BamHI, to construct pSP72-DsRed-TF. The pGEM-T-K3L-R(WR) as constructed above was treated with EcoRV and BamHI, and ligated with a vector obtained by treating the pSP72-DsRed-TF with EcoRV and BamHI, to construct pSP72-DsRed-TF-K3L-R(WR). Next, the pGEM-T-K3L-L(WR) as constructed above was treated with XhoI and HindIII, and ligated with a vector obtained by treating the pSP72-DsRed-TF-K3L-R(WR) with XhoI and HindIII, to construct pSP72-K3L-L-DsRed-TF-K3L-R(WR). Finally, the p7.5 promoter was amplified by PCR using the WR gDNA as a template and then inserted into pGEM-T Easy, to construct pGEM-T Easy-p7.5. Information on primers used in the PCR amplification is shown in Table 5. The pGEM-T Easy-p7.5 was treated with HindIII and BamHI, and ligated with a vector obtained by treating the pSP72-K3L-L-DsRed-TF-K3L-R(WR) with HindIII and BamHI, to construct pSP72-K3L-L-p7.5-DsRed-TF-K3L-R(WR) (hereinafter referred to as “WR K3L shuttle plasmid”).


EXAMPLE 1.1.4
Construction of Recombinant WR Vaccinia Virus Vector in which Expression of K3L Gene is Inactivated

A gene that flanks K3L gene on the left side and a part of the K3L gene in the genomic DNA of WR vaccinia virus were amplified by PCR. Here, the amplification was carried out with the start codon of the K3L gene being placed immediately after the K3L-L sequence, and primers used for the amplification of the homologous sequence on the left side of the K3L gene are shown in Table 6. Here, a K3L-L-K3Li(WR) fragment which was amplified and includes a part that excludes and follows the start codon of the K3L gene was obtained and then ligated with a pGEM-T Easy vector, to construct pGEM-T Easy-K3L-L-K3Li(WR).











TABLE 6 





Name
Sequence (5′→3′)
SEQ ID NO







K3L-Li forward
TGTACGTATATTTAGATGTT
SEQ ID NO: 31



TTCAGCT






K3L-Li reverse
ATAAGCTTCTTGCATTTTGT
SEQ ID NO: 32



TATTCGT






K3L-Ri forward
CGCAGATAAAAACATATCCT
SEQ ID NO: 33



TGTTAAC






K3L-Ri reverse
GTTAACAAGGATATGTTTTT
SEQ ID NO: 34



ATCTGCG









The WR K3L shuttle plasmid and pGEM-T Easy-K3L-L-K3Li(WR) as constructed in Example 1.1.3 were treated with SnaBI and HindIII, and ligated to construct pSP72-K3L-L-K3Li-p7.5-DsRed-TF-K3L-R(WR). In order to introduce the start codon of K3L into the constructed pSP72-K3L-L-K3Li-p7.5-DsRed-TF-K3L-R(WR), a point mutation was performed using primers as shown in Table 6, so that pSP72-K3L-L-K3Li-p7.5-DsRed-TF-K3LATG-K3L-R(WR) (hereinafter referred to as “WR K3L(i) shuttle plasmid”) was finally constructed.


EXAMPLE 1.2
Production of Recombinant WR Vaccinia Virus in which VGF, TK, and K3L Genes are Deleted or Inactivated
EXAMPLE 1.2.1
Production of WR Vaccinia Virus in which K3L Gene is Deleted

In order to secure a recombinant virus, HeLa (ATCC, Cat No. CCL-2) cells were prepared in a 6-well plate at a condition of 3×105 cells/well and in a state of MEM medium containing 2% fetal bovine serum. Then, the HeLa cells were transfected with 2 μg of the WR K3L shuttle plasmid as constructed in Example 1.1.3 using jetPRIME (Polyplus, Cat No. 114-07) and simultaneously treated with 0.05 MOI of WR wild-type vaccinia virus. After 4 hours of incubation, the medium was replaced with MEM medium containing 5% fetal bovine serum, and then the cells were further incubated for 48 hours. Finally, the infected cells were collected with 500 μl of the medium, and then the cells were lysed by repeating freezing and thawing three times. The cell lysate was called a crude virus. The produced crude virus was used and subjected to plaque isolation 6 times so that purely isolated recombinant WR vaccinia virus K was secured.


EXAMPLE 1.2.2
Production of Recombinant WR Vaccinia Virus in which Expression of VGF and TK Genes is Inactivated

First, recombinant WR vaccinia virus Vi in which expression of VGF gene is inactivated was obtained in the same conditions and methods as in Example 1.2.1, except that WR VGF(i) shuttle plasmid was used. Thereafter, recombinant WR vaccinia virus ViTi in which expression of VGF and TK genes is inactivated was obtained in the same methods as above, except that WR TK(i) shuttle plasmid and recombinant WR vaccinia virus Vi were used.


EXAMPLE 1.2.3
Production of Recombinant WR Vaccinia Virus in which Expression of VGF, TK, and K3L Genes is Inactivated

First, recombinant WR vaccine virus ViTiKi in which expression of VGF, TK, and K3L genes is inactivated was obtained in the same conditions and methods as in Example 1.2.1, except that WR K3L(i) shuttle plasmid and recombinant WR vaccinia virus ViTi were used.


EXAMPLE 2
Production of Recombinant IHD-W Vaccinia Virus
Example 2.1
Construction of Recombinant IHD-W Vaccinia Virus Vector in which VGF, TK, and K3L Genes are Deleted
EXAMPLE 2.1.1
Construction of Recombinant IHD-W Vaccinia Virus Vector in which VGF Gene is Deleted

Genes that flank VGF gene on both sides in the genomic DNA of IHD-W vaccinia virus (ATCC, Cat No. VR-1441) were amplified by PCR. Here, information on primers used for the amplification of homologous base sequences that flank the VGF gene on both sides is shown in Table 7. In such a manner, VGF-L(IHD-W) and VGF-R(IHD-W) fragments were obtained and then ligated with a pGEM-T Easy vector to construct pGEM-T Easy-VGF-L(IHD-W) or pGEM-T Easy-VGF-R(IHD-W).











TABLE 7 







SEQ ID


Name
Sequence (5′→3′)
NO







VGF-L forward
CGAAAGCTTGTAAGATGTTT
SEQ ID


(IHD-W)
AGAAAATGGATATTTC
NO: 35





VGF-L reverse
CTGGGATCCTAGGCTAGCGT
SEQ ID


(IHD-W)
GTAAATAATATAAAAATAAC
NO: 36



AATACAATATTG






VGF-R forward
CTGGAATTCGATTTAATTAA
SEQ ID


(IHD-W)
TTTTTATAAATTTTTTTTAT
NO: 37



GAGTATTTTTACAAAAAA






VGF-R reverse
TAGGGATCCCATCGATAGTA
SEQ ID


(IHD-W)
CAATAACTTTTATGAAAT
NO: 38









The above pGEM-T Easy-VGF-R(IHD-W) was treated with EcoRI and BamHI, and Psp72 was treated with EcoRI and BglII. Then, the resultants were ligated to construct pSP72-VGF-R(IHD-W). The constructed pSP72-VGF-R(IHD-W) and pGEM-T Easy-VGF-L(IHD-W) were respectively treated with HindIII and BamHI, and ligated to construct pSP72-VGF-L-VGF-R(IHD-W).


Next, in order to introduce the p11 promoter and the LacZ gene into the pSP72-VGF-L-VGF-R(IHD-W), the p11-LacZ expression cassette in the WR VGF shuttle plasmid of Example 1.1.1 and the pSP72-VGF-L-VGF-R(IHD-W) were treated with NheI and PacI, and ligated to construct pSP72-VGF-L-p11-LacZ-VGF-R(IHD-W) (hereinafter referred to as “IHD-W VGF shuttle plasmid”.


EXAMPLE 2.1.2
Construction of Recombinant IHD-W Vaccinia Virus Vector in which TK Gene is Deleted

In order to secure genes that flank TK gene on both sides in the genomic DNA of IHD-W vaccinia virus, PCR was performed, and as a result, TK-L(IHD-W) and TK-R(IHD-W) fragments were obtained. Here, primers used are shown in Table 8. The secured TK-R(IHD-W) fragment and the pSP72 vector were respectively treated with EcoRI and BglII, and ligated to construct pSP72-TK-R(IHD-W). In addition, the pSP72-TK-R(IHD-W) and the TK-L(IHD-W) fragment were respectively treated with PstI and BamHI, and ligated to construct pSP72-TK-L-TK-R(IHD-W).


The constructed pSP72-TK-L-TK-R(IHD-W) vector and the WR TK shuttle plasmid as constructed in Example 1.1.2 were respectively treated with EcoRI and NotI, and ligated to finally construct pSP72-TK-L-TF-EGFP-pSE/L-p7.5-Gpt-TK-R(IHD-W) (hereinafter referred to as “IHD-W TK shuttle plasmid”).











TABLE 8 





Name
Sequence (5′→3′)
SEQ ID NO







TK-L forward
GATCTGCAGCCCTCTTCAAGAA
SEQ ID NO:


(IHD-W)
CCCATTAG
39





TK-L reverse
TAGGGATCCTAGGCGGCCGCAT
SEQ ID NO:


(IHD-W)
GACAATAAAGAATTAATTATTG
40



TTCACTT






TK-R forward
CATGAATTCTATTATATTTTTT
SEQ ID NO:


(IHD-W)
ATCTAAAAAACTAAAAATAAAC
41



AT






TK-R reverse
AGATCTATCGCTTTAGTAGTAG
SEQ ID NO:


(IHD-W)
GAAATGTTTTATTG
42









EXAMPLE 2.1.3
Construction of Recombinant IHD-W Vaccinia Virus Vector in which K3L Gene is Deleted

Genes that flank K3L gene on both sides in the genomic DNA of IHD-W vaccinia virus were amplified by PCR and respectively inserted in pGEM-T Easy, to construct pGEM-T Easy-K3L-L(IHD-W) and pGEM-T Easy-K3L-R(IHD-W). Here, primers used are shown in Table 9.


In order to construct a gene expression cassette inside the K3L shuttle plasmid, p′7.5-DsRed gene cassette was amplified by PCR using the WR K3L shuttle plasmid as constructed in Example 1.1.3 as a template, and then inserted into pGEM-T Easy to construct pGEM-T Easy-p7.5-DsRed. Sequences of primers used for the amplification of the p7.5 promoter and the DsRed gene are shown in Table 9.











TABLE 9 





Name
Sequence (5′→3′)
SEQ ID NO







K3L-L forward
TCGGTCGACCATATGTTT
SEQ ID NO: 43


(IHD-W)
AAACGACGCATTATCTG






K3L-L reverse
TCGAAGCTTTTTTTATAC
SEQ ID NO: 44


(IHD-W)
CGAACATAAAAATAAGGT




TAATTAT






K3L-R forward
CGCAGATAAAAATCACTT
SEQ ID NO: 45


(IHD-W)
GTTAACGGGCTCGTAA






K3L-R reverse
AAGCGCTAACATGGATTA
SEQ ID NO: 46


(IHD-W)
GGAAGCGCTAACATGG






p7.5-DsRed 
AGGAAGCTTTCCAAACCC
SEQ ID NO: 47


forward
ACCCGCTTTTTAT






p7.5-DsRed 
CGGATATCTTTTTATCTG
SEQ ID NO: 48


reverse
CGCGGTTAAC









The constructed pGEM-T Easy-p7.5-DsRed and pSP72 vectors were respectively treated with HindIII and EcoRV, and then ligated to complete pSP72-p7.5-DsRed. In addition, the constructed pSP72-p7.5-DsRed was treated with EcoRV and BglII, and the pGEM-T Easy-K3L-R(IHD-W) as constructed above was treated with EcoRV and BamHI. Then, the resultants were ligated to construct pSP72-p7.5-DsRed-K3L-R(IHD-W). The constructed pSP72-p7.5-DsRed-K3L-R(IHD-W) was treated with XhoI and HindIII, and the pGEM-T Easy-K3L-L(IHD-W) was treated with SalI and HindIII. Then, the resultants were ligated to finally construct pSP72-K3L-L-p7.5-DsRed-K3L-R(IHD-W) (hereinafter referred to as “IHD-W K3L shuttle plasmid”).


EXAMPLE 2.1.4
Construction of Recombinant IHD-W Vaccinia Virus Vector in which Expression of VGF Gene was Inactivated

Genes that flank VGF gene on both sides and the VGF gene in the genomic DNA of IHD-W vaccinia virus were amplified by PCR. Here, the amplification was carried out with the start codon of the VGF gene being placed immediately after the VGF-L sequence, and the other sequences of the VGF gene being placed before the VGF-R sequence. Information on primers used for the amplification of the homologous sequences that flank the VGF gene on both sides is shown in Table 10. In such a manner, VGF-L-VGFATG(IHD-W) and VGFi-VGF-R(IHD-W) fragments were obtained, and then InFusion cloning thereof into the IHD-W VGF shuttle plasmid was performed.











TABLE 10 







SEQ ID


Name
Sequence (5′→3′)
NO







VGF-L-VGFATG
CGAGCAGCTGAAGCTTGTAAGA
SEQ ID


forward (IHD-W)
TGTTTAGAAAATGGATATTTCC
NO: 49





VGF-L-VGFATG
CGCTTCTAGAGCTAGCCATTTT
SEQ ID


reverse (IHD-W)
TGATGGATTTTGTGTTTATGCT
NO: 50





VGF-Ri forward
CAGGGGGGATCCTTAATTAATC
SEQ ID


(IHD-W)
GATGAAATATCTGATGTTGTTGTT
NO: 51





VGF-Ri reverse
TATAGTCAATAGATCTGGAAAA
SEQ ID


(IHD-W)
TGTCTGTTAGTAAATAACCA
NO: 52





VGFATGTAA
CATCGCTTCTAGAGCTAGCTTA
SEQ ID


forward (IHD-W)
CATTTTTGATGGATTTTGTGTTTA
NO: 53









The IHD-W VGF shuttle plasmid was treated with NheI and HindIII, and the amplified VGF-L-VGFATG(IHD-W) fragment was InFusion cloned thereinto, to construct pSP72-VGF-L-VGFATG-p11-LacZ-VGF-R (IHR-W). The constructed pSP72-VGF-L-VGFATG-p11-LacZ-VGF-R(IHD-W) was treated with PacI and BglII, and the amplified VGFi-VGF-R(IHD-W) fragment was InFusion cloned thereinto, to construct pSP72-VGF-L-VGFATG-p11-LacZ-VGFi-VGF-R(IHD-W).


Next, in order to introduce a stop codon after the start codon of VGF into the pSP72-VGF-L-VGFATG-p11-LacZ-VGF-Ri(IHD-W), a point mutation was performed using primers as shown in Table 10, to construct pSP72-VGF-L-VGFATGTAA-p11-LacZ-VGFi-VGF-R(IHD-W) (hereinafter referred to as “IHD-W VGF(i) shuttle plasmid”).


EXAMPLE 2.1.5
Construction of Recombinant IHD-W Vaccinia Virus Vector in which Expression of TK Gene is Inactivated

In order to acquire genes that flank TK gene on both sides and the TK gene from the genomic DNA of IHD-W vaccinia virus and the IHD-W TK shuttle plasmid, PCR was performed, and primers used are shown in Table 11. Here, the amplification was carried out with the start codon of the TK gene being placed immediately after the TK-L sequence, and the other sequences of the TK gene being placed before the TK-R sequence. In such a manner, TK-L-TKATG-TF-EGFP-pSE/L-p7.5-Gpt(IHD-W) fragment was obtained from the IHD-W TK shuttle plasmid and TK-TK-R(IHD-W) fragment was obtained from the IHD-W vaccinia genomic DNA. Then, InFusion cloning of the resultants into the IHD-W TK shuttle plasmid was performed.











TABLE 11 





Name
Sequence (5′→3′)
SEQ ID NO







TK-Li forward
TATTGTCATGCGGCCGCATGGTCGA
SEQ ID NO:


(IHD-W)
CAACGGCGGACATATTCAGTTGAT
54





TK-Li reverse
ATCATGATGGCGGCCGTCAATTAGC
SEQ ID NO:


(IHD-W)
ATCCATTTGATGATC
55





TK-Ri forward
ATTCTTTATTGTCATCATGGCGGCC
SEQ ID NO:


(IHD-W)
GCTTTTTATCTGCGCGGTTAACC
56





TK-Ri reverse
GTCCGCCGTTGTCGACGGCCCACTC
SEQ ID NO:


(IHD-W)
ATAAATCCAGTT
57









The IHD-W TK shuttle plasmid was treated with EagI and the amplified TKi-TK-R(IHD-W) fragment was InFusion cloned thereinto, to construct pSP72-TK-L-TKi-TK-R(IHD-W). The constructed pSP72-TK-L-TKi-TK-R(IHD-W) was treated with NotI and SalI, and the amplified TK-L-TKATG-TF-EGFP-pSE/L-p7.5-Gpt(IHD-W) fragment was InFusion cloned thereinto, to construct pSP72-TK-L-TKATG-TF-EGFP-pSE/L-p7.5-Gpt-TKi-TK-R(IHD-W) (hereinafter referred to as “IHD-W TK(i) shuttle plasmid”).


EXAMPLE 2.1.6
Construction of Recombinant IHD-W Vaccinia Virus Vector in which Expression of K3L Gene is Inactivated

A gene that flanks K3L gene on the left side and a part of the K3L gene in the genomic DNA of IHD-W vaccinia virus were acquired through PCR. Primers used are shown in Table 12. Here, a K3L-L-K3Li(IHD-W) fragment which was amplified and includes a part that excludes and follows the start codon of the K3L gene was obtained and then InFusion cloning thereof into the IHD-W K3L shuttle plasmid was performed.











TABLE 12





Name
Sequence (5′→3′)
SEQ ID NO







K3L-Li forward
GTTAGATCAGTGTACGTA
SEQ ID NO: 58


(IHD-W)
TATTTAGAT






K3L-Li reverse
TGGGTTTGGAAAGCTTCT
SEQ ID NO: 59


(IHD-W)
TGCATTTTGTTATTCGT






K3L-Ri forward
CGCAGATAAAAACATATC
SEQ ID NO: 60


(IHD-W)
CTTGTTAAC






K3L-Ri reverse
GTTAACAAGGATATGTTT
SEQ ID NO: 61


(IHD-W)
TTATCTGCG









The IHD-W K3L shuttle plasmid was treated with SnaBI and HindIII, and the amplified K3Li-L-K3L(IHD-W) fragment was InFusion cloned thereinto, to construct pSP72-K3L-L-K3Li(IHD-W). In order to introduce the start codon of K3L into the constructed pSP72-K3L-L-K3Li-p7.5-DsRed-TF-K3L-R(IHD-W), a point mutation was performed using primers as shown in Table 12, so that pSP72-K3L-L-K3Li-p7.5-DsRed-TF-K3LATG-K3L-R(IHD-W) (hereinafter referred to as “IHD-W K3L(i) shuttle plasmid”) was finally constructed.


EXAMPLE 2.2
Construction of Recombinant IHD-W Vaccinia Virus in which VGF, TK, and K3L Genes are Deleted
EXAMPLE 2.2.1
Production of Recombinant IHD-W Vaccinia Virus in which K3L Gene is Deleted

Using the IHD-W K3L shuttle plasmid as constructed in Example 2.1.3., a vaccinia virus in which K3L gene is deleted was produced by the following method.


In order to secure a recombinant virus, HeLa cells were prepared in a 6-well plate at a condition of 3×105 cells/well and in a state of MEM medium containing 2% fetal bovine serum. Then, the HeLa cells were transfected with 2μg of the IHD-W K3L shuttle plasmid using jetPRIME and simultaneously treated with 0.05 MOI of IHD-W wild-type vaccinia virus. After 4 hours of incubation, the medium was replaced with MEM medium containing 5% fetal bovine serum, and then the cells were further incubated for 48 hours. Finally, the infected cells were collected with 500 μl of the medium, and then the cells were lysed by repeating freezing and thawing three times. The cell lysate was repeatedly subjected to freezing and thawing three times, to obtain the crude virus. The crude virus was used and repeatedly subjected to plaque isolation by a conventional method so that purely isolated recombinant IHD-W vaccinia virus K was obtained.


EXAMPLE 2.2.2
Production of Recombinant IHD-W Vaccinia Virus in which VGF and TK Genes are Deleted

The VGF and TK shuttle plasmids as constructed in Examples 2.1.1. and 2.1.2, respectively, were used to produce a vaccinia virus in which VGF and TK genes are deleted. First, recombinant IHD-W vaccinia virus V in which VGF gene is deleted was obtained in the same conditions and methods as in Example 2.2.1, except that the IHD-W VGF shuttle plasmid was used. Thereafter, recombinant IHD-W vaccinia virus VT in which VGF and TK genes are deleted was obtained in the same methods as above, except that the IHD-W TK shuttle plasmid and the recombinant IHD-W vaccinia virus V were used.


EXAMPLE 2.2.3
Production of Recombinant IHD-W Vaccinia Virus in which VGF, TK, and K3L Genes are Deleted

The K3L shuttle plasmid as constructed in Example 2.1.3. was used to produce a recombinant IHD-W vaccinia virus in which VGF, TK, and K3L genes are deleted.


Recombinant IHD-W vaccinia virus VTK in which VGF, TK, and K3L genes are deleted was obtained in the same conditions and methods as in Example 2.2.1, except that the IHD-W K3L shuttle plasmid and the recombinant IHD-W vaccinia virus VT were used.


EXAMPLE 2.2.4
Production of Recombinant IHD-W Vaccinia Virus in which Expression of VGF Gene is Inactivated and TK and K3L Genes are Deleted

The VGF(i), TK, and K3L shuttle plasmids as constructed in Examples 2.1.4, 2.1.2, and 2.1.3, respectively, were used to produce a recombinant IHD-W vaccinia virus in which expression of VGF gene is inactivated, and TK and K3L genes are deleted.


First, recombinant IHD-W vaccinia virus T in which TK gene is deleted was obtained in the same conditions and methods as in Example 2.2.1, except that the IHD-W TK shuttle plasmid was used. Then, recombinant IHD-W vaccinia virus TK in which TK and K3L genes are deleted was obtained in the same methods as above, except that the IHD-W K3L shuttle plasmid and the recombinant IHD-W vaccinia virus T were used.


In addition, recombinant IHD-W vaccinia virus ViTK in which expression of VGF gene is inactivated, and TK and K3L genes are deleted was obtained in the same methods as above, except that the IHD-W VGF(i) shuttle plasmid and the recombinant IHD-W vaccinia virus TK were used.


EXAMPLE 2.2.5
Production of Recombinant IHD-W Vaccinia Virus in which Expression of TK Gene is Inactivated and VGF and K3L Genes are Deleted

The TK(i), VGF, and K3L shuttle plasmids as constructed in Examples 2.1.5, 2.1.1, and 2.1.3, respectively were used to produce a recombinant IHD-W vaccinia virus in which expression of TK gene is inactivated and VGF and K3L genes are deleted.


First, recombinant IHD-W vaccinia virus V in which VGF gene is deleted was obtained in the same conditions and methods as in Example 2.2.1, except that the IHD-W VGF shuttle plasmid was used. Thereafter, recombinant IHD-W vaccinia virus VK in which VGF and K3L genes are deleted was obtained in the same methods as above, except that the IHD-W K3L shuttle plasmid and the recombinant IHD-W vaccinia virus V were used.


In addition, recombinant IHD-W vaccinia virus VTiK in which expression of TK gene is inactivated and VGF and K3L genes are deleted was obtained in the same methods as above, except that the IHD-W TK(i) shuttle plasmid and the recombinant IHD-W vaccinia virus VK were used.


EXAMPLE 2.2.6
Production of Recombinant IHD-W Vaccinia Virus in which Expression of K3L gene is inactivated and VGF and TK genes are deleted

The K3L(i), VGF, and TK shuttle plasmids as constructed in Examples 2.1.6, 2.1.1, and Example 2.1.2, respectively, were used to produce a recombinant IHD-W vaccinia virus in which expression of K3L gene is inactivated and VGF and TK genes are deleted.


First, recombinant IHD-W vaccinia virus V in which VGF gene is deleted was obtained in the same conditions and methods as in Example 2.2.1., except that the IHD-W VGF shuttle plasmid was used. Thereafter, recombinant IHD-W vaccinia virus VT in which the VGF and TK genes are deleted was obtained in the same methods as above, except that the IHD-W TK shuttle plasmid and the recombinant IHD-W vaccinia virus V were used.


In addition, recombinant IHD-W vaccinia virus VTKi in which expression of K3L gene is inactivated, and VGF and TK genes are deleted was obtained in the same methods as above, except that the IHD-W K3L(i) shuttle plasmid and the recombinant IHD-W vaccinia virus VT were used.


EXAMPLE 3
Production of Recombinant Lister Vaccinia Virus
EXAMPLE 3.1
Construction of Recombinant Lister Vaccinia Virus Vector in which VGF, TK, and K3L Genes are Deleted
EXAMPLE 3.1.1
Construction of Recombinant Lister Vaccinia Virus Vector in which K3L Gene is Deleted

Genes that flank K3L gene on both sides in the genomic DNA of Lister vaccinia virus (ATCC, VR-1549) were amplified by PCR. Here, information on primers used for the amplification of homologous base sequences that flank the K3L gene on both sides is shown in Table 13. In such a manner, K3L-L(Lister) and K3L-R(Lister) fragments were obtained and then InFusion cloning thereof was performed using the pSP72-p7.5-DsRed generated in the construction process of the IHD-W K3L shuttle plasmid.











TABLE 13 





Name
Sequence (5′→3′)
SEQ ID NO







VGF-R forward
CGCAGATAAAAAGATATCCTTGT
SEQ ID 


(Lister)
TAACGGGCTCGTAAATTG
NO: 62





VGF-R reverse
GGAGACCGGCAGATCTTGATAAT
SEQ ID 


(Lister)
ACACATATTTATTTAGGAAGCG
NO: 63





VGF-L forward
CACTATAGAACTCGAGCATATGT
SEQ ID 


(Lister)
TTAAACGACGCATTATCTG
NO: 64





VGF-L reverse
TGGGTTTGGAAAGCTTTTTTTAT
SEQ ID 


(Lister)
ACCGAACATAAAAATAAGG
NO: 65









The pSP72-p7.5-DsRed was treated with EcoRV and BglII, and the amplified K3L-R(Lister) fragment was InFusion cloned thereinto, to construct pSP72-p7.5-DsRed-K3L-R(Lister). The constructed pSP72-p7.5-DsRed-K3L-R(Lister) was treated with XhoI and HindIII, and the amplified K3L-L(Lister) fragment was InFusion cloned thereinto, to construct pSP72-K3L-L-p7.5-DsRed-K3L-R(Lister) (hereinafter referred to as Lister K3L shuttle plasmid) which is a K3L shuttle plasmid.


EXAMPLE 3.2
Production of Recombinant Lister Vaccinia Virus in which VGF, TK, and K3L Genes are Deleted
EXAMPLE 3.2.1
Production of Recombinant Lister Vaccinia Virus in which VGF and TK Genes are Deleted

In order to secure a recombinant virus, HeLa cells were prepared in a 6-well plate at a condition of 3×105 cells/well and in a state of MEM medium containing 2% fetal bovine serum. Then, the HeLa cells were transfected with 2 μg of the IHD VGF shuttle plasmid as constructed in Example 2.1.1. using jetPRIME and simultaneously treated with 0.05 MOI of Lister wild-type vaccinia virus. After 4 hours of incubation, the medium was replaced with MEM medium containing 5% fetal bovine serum, and then the cells were further incubated for 48 hours. Finally, the infected cells were collected with 500 μl of the medium, and then the cells were lysed by repeating freezing and thawing three times. The cell lysate was called crude virus. The produced crude virus was used and subjected to plaque isolation 6 times, so that purely isolated recombinant Lister vaccinia virus V was secured.


Recombinant Lister vaccinia virus VT in which the VGF and TK genes are deleted was secured in the same conditions and methods as described above, except that the recombinant Lister vaccinia virus V and the IHD-W TK shuttle plasmid as constructed in Example 2.1.2. were used.


EXAMPLE 3.2.2
Production of Recombinant Lister Vaccinia Virus in which VGF, TK, and K3L Genes are Deleted

In order to secure a recombinant virus, recombinant Lister vaccinia virus TK in which VGF, TK, and K3L genes are deleted was obtained in the same conditions and methods as in Example 3.2.1, except that the Lister K3L shuttle plasmid and the recombinant Lister vaccinia virus VT were used.


II. Identification of Tumor-Killing Ability of Recombinant Vaccinia Virus In Vitro


EXPERIMENTAL EXAMPLE 1
Identification of Cancer Cell-Killing Ability of Recombinant Vaccinia Virus in which VGF, TK, and K3L Genes are Deleted

CCK-8 analysis was performed to identify whether the recombinant vaccinia virus VTK as produced in Example I. has a killing ability against various types of cancer cells.


In order to identify a cell-killing ability of the recombinant virus in various human cancer cell lines, cancer cell lines were prepared as shown in Table 14, incubated in an incubator under a condition of 37° C. and 5% CO2, and then aliquoted into 96-well plates.











TABLE 14





Carcinoma
Cell line
Medium used







Brain cancer
U-87MG (ATCC, HTB-14)
MEM medium containing 10% fetal bovine


Liver cancer
Hep3B (ATCC, HB-8064)
serum


Prostate cancer
DU145 (ATCC, HTB-81)


Head and neck
FaDu (ATCC, HTB-43)


cancer


Fibrosarcoma
HT-1080 (KCLB, 10121)


Breast cancer
T-47D (ATCC, HTB-133)
RPMI medium containing 10% fetal bovine




serum and recombinant insulin


Pancreatic cancer
MIA PaCa-2 (KCLB, 21420)
DMEM medium containing 10% fetal




bovine serum


Colorectal cancer
SW620 (KCLB, 60068)
RPMI medium containing 10% fetal bovine


Ovarian cancer
A2780 (Sigma-Aldrich,
serum



93112519)


Lung cancer
A549 (ATCC, Cat No. CCL-185)









Here, aliquoting was carried out such that the number of cells per well was 5×104 for SW620, 2×104 for A2780, A549, DU145, T-47D, and FaDu, 1×104 for Hep3B and HT-1080, and 5×103 for MIA PaCa-2 and U-87 MG. After 24 hours of the incubation, the cell lines were infected with the recombinant IHD-W vaccinia virus VTK, the recombinant WR vaccinia virus ViTiKi, or the recombinant Lister vaccinia virus VTK so that 0.5 MOI was achieved for each virus. Here, cells which had not been treated with a virus were used as a control group. After 3 to 5 days, the cells were stained with CCK-8 (Dojindo, Cat No. CK04) solution to identify survival rates of the cancer cell lines. The results are shown in FIGS. 4A and 4B.


As shown in FIGS. 4A and 4B, it was identified that in a case where the VGF, TK, and K3L genes are deleted or expression thereof is inactivated, a killing ability against various types of cancer cells was exhibited regardless of a strain of vaccinia.


EXPERIMENTAL EXAMPLE 2
Identification of Cancer Cell-Killing Ability of Recombinant Vaccinia Virus in which VGF, TK, and K3L Genes are Deleted or Expression thereof is Inactivated

In order to identify whether the genes of the present invention whose expression is suppressed in a recombinant vaccinia virus exhibit a different killing ability against cancer cells depending on methods of suppressing expression thereof, a degree of death of the colorectal cancer cell line SW620 caused by the recombinant IHD-W vaccinia viruses VTK, ViTK, VTiK, and VTKi as produced in Examples 1.2.9. to 1.2.12. was identified.


First, the human colorectal cancer cell line SW620 was incubated in an incubator under a condition of 37° C. and 5% CO2 using RPMI medium containing 2% fetal bovine serum, and aliquoted into a 96-well plate. Here, the SW620 cells were aliquoted to be 5×104 per well. After 24 hours of the incubation, the cell line was respectively infected with recombinant IHD-W vaccinia viruses VTK, ViTK, VTiK, and VTKi so that 0.001, 0.01, 0.1, or 1 MOI was achieved. After 3 days, the cells were stained with the CCK-8 solution to identify ED50. The results are shown in FIG. 5.


As can be seen from the results, both the virus in which the VTK genes are deleted and expression thereof is completely suppressed and the virus in which expression of the VTK genes is inactivated by structural destruction of the genes exhibited an excellent cancer cell-killing ability without a statistically significant difference.


EXPERIMENTAL EXAMPLE 3
Identification of Cancer Cell-Selective Killing Ability of Recombinant Vaccinia Virus in which VGF, TK, and K3L Genes are Deleted

Identification was made as to whether a recombinant vaccinia virus in which expression of the three genes of VGF, TK, and K3L required for proliferation of a vaccinia virus in cells is simultaneously suppressed has a selectively increased killing ability against cancer cells relative to normal cells as compared with a case of a recombinant vaccinia virus in which expression of the two genes of VGF and TK is simultaneously suppressed or a recombinant vaccinia virus in which expression of one gene of K3L is suppressed.


First, NHBE (Lonza, CC-2540) which is a normal human cell line and SW620 which is a human colorectal cancer cell line were incubated in an incubator under a condition of 37° C. and 5% CO2 using BEBM Basal medium (Lonza, 3171) containing BEGM SingleQuot Kit Suppl. & Growth Factors (Lonza, CC-4175) for NHBE and RPMI medium containing 10% fetal bovine serum for SW620, and aliquoted into 96-well plates. Here, the NHBE and SW620 cells were respectively aliquoted so as to be 5×103 and 5×104 per well. After 24 hours of the incubation, the cell lines were respectively infected with recombinant vaccinia virus IHD-W K, VT, VTK, or WR K, ViTi, ViTiKi so that 0.001, 0.01, 0.1, or 1 MOI was achieved. After 3 days, the cells were stained with a CCK-8 solution to obtain ED50 values. The ED50 against the cancer cells was divided by the ED50 of the normal cells, and then a comparison of a selective killing ability against cancer cells relative to normal cells was made based on a value corresponding to VTK(IHD-W) or ViTiKi(WR) in each virus group. The results are shown in FIGS. 6A and 6B.


As shown in FIGS. 6A and 6B, in a case of the recombinant IHD-W vaccinia virus, it can be identified that the IHD-W VT or VTK virus exhibits a superior killing ability against cancer cells relative to normal cells as compared to the IHD-W K virus in which expression of one gene of K3L is suppressed. In addition, it can be identified that the IHD-W VTK virus exhibits a superior cancer cell-selective killing ability relative to the IHD-W VT virus. In a case of the recombinant WR vaccinia virus, it can be identified that a killing ability of WR ViTiKi in which expression of the three genes is suppressed is superior as compared with WR ViTi. Here, ED50 could not be obtained for WR K in which expression of one gene of K3L is suppressed due to a very low killing ability thereof against normal cells and cancer cells.


In conclusion, it can be identified that the recombinant vaccinia virus in which expression of the three genes of VGF, TK, and K3L is suppressed exhibits a superior cancer cell-selective killing ability as compared with the recombinant vaccinia virus in which expression of the K3L gene or the VGF and TK genes is suppressed.


III. Identification of Anti-Cancer Effects of Recombinant Vaccinia Virus In Vivo


EXPERIMENTAL EXAMPLE 4
Identification of Anti-Cancer Effects of Recombinant Vaccinia Virus in which Expression of VGF, TK, and K3L Genes is Suppressed in Tumor Animal Model

Anti-tumor effects of the recombinant IHD-W vaccinia viruses VT and VTK, or the recombinant WR vaccinia viruses ViTi and ViTiKi, as produced in Example I, were identified in a mouse model.


First, SW620 cell line which is a colorectal cancer cell line was prepared by being incubated in RPMI medium containing 10% fetal bovine serum. In a case where cells that were being incubated in an incubator under a condition of 37° C. and 5% CO2 occupy 70% to 80% of a dish, the cells were prepared for cancer cell inoculation. Prepared respective cancer cells were centrifuged at 1,500 rpm for 5 minutes at 4° C. to remove all supernatant, and the cells were prepared by adding an excipient (RPMI medium) thereto. 5×106 cells thus prepared were injected subcutaneously in the right flank of a nude mouse (nu/nu BALB/c mouse; Charles River Japan (Yokohama)) to prepare a colorectal cancer mouse model. After one week, in a case where a tumor grew to a size of approximately 70 to 100 mm3, the prepared mouse models were divided into groups to be treated with PBS, IHD-W VT, IHD-W VTK, WR ViTi, and WR ViTiKi with 6 mice per group, and then viruses were administered once into the tumor at 5×106 TCID50. The results of identifying a size of cancer cells after the administration of the viruses are shown in FIGS. 7A and 7B.


As shown in FIG. 7, the growth of cancer cells was suppressed in the recombinant IHD-W or WR vaccinia virus-treated group as compared with PBS (Welgene, Cat No. LB001-02)-treated group which is a control group. However, it was identified that there was no significant difference in anti-cancer effects between the recombinant IHD-W vaccinia virus and the WR vaccinia virus.


EXPERIMENTAL EXAMPLE 5
Identification of Safety of Recombinant Vaccinia Virus in which Expression of VGF, TK, and K3L Genes is Suppressed

In order to evaluate the safety of the recombinant vaccinia viruses VT (ViTi) and VTK (ViTiKi) of IHD-W and WR strains as produced in Example I, weight change, mortality rate, and inflammatory response of mice receiving the viruses were identified and are shown in FIGS. 8A to 10B.


As shown in FIGS. 8A and 8B, at days 49 after the administration of the recombinant IHD-W vaccinia viruses, the VT-administered group showed a weight loss rate of 25%, whereas the VTK-administered group showed a weight loss rate of about 5%. In addition, on days 44 after the administration of the recombinant WR vaccinia viruses, some individuals showed a weight loss rate of 45% in the ViTi-treated group, whereas no individual showed a weight loss rate in the ViTiKi-treated group. In addition, as shown in FIGS. 9A and 9B, following days 49 after the administration of the recombinant vaccinia viruses, for both IHD-W and WR strains, the VT (ViTi)-administered groups showed a mortality rate of 34%, whereas all individuals survived in the VTK (ViTiKi)-administered groups.


In addition, as shown in FIGS. 10A and 10B, it could be identified that mice which survived after the administration of VT of IHD-W strain showed a greater amount of inflammatory response in a tail region than mice receiving VTK of IHD-W strain.


From the above results, it can be seen that a case where expression of the three genes of VGF, TK, and K3L is suppressed in the recombinant vaccinia virus is remarkably superior in terms of safety in vivo as compared with a case where expression of the two genes of VGF and TK is suppressed in the recombinant vaccinia virus.

Claims
  • 1. A recombinant vaccinia virus in which expression of K3L, TK, and VGF genes is suppressed.
  • 2. The recombinant vaccinia virus of claim 1, wherein the expression of the genes is suppressed by partial or entire deletion of the genes, and/or the insertion of a foreign gene into the genes.
  • 3. The recombinant vaccinia virus of claim 1, wherein the VGF gene is a polynucleotide consisting of the base sequence of SEQ ID NO: 66.
  • 4. The recombinant vaccinia virus of claim 1, wherein the TK gene is a polynucleotide consisting of the base sequence of SEQ ID NO: 68.
  • 5. The recombinant vaccinia virus of claim 1, wherein the K3L gene is a polynucleotide consisting of the base sequence of SEQ ID NO: 70.
  • 6. The recombinant vaccinia virus of claim 1, wherein the vaccinia virus is any one selected from the group consisting of Western Reserve (WR), New York Vaccinia Virus— (NYVAC), Wyeth (The New York City Board of Health), LC16m8, Lister, Copenhagen, Tian Tan, USSR, TashKent, Evans, International Health Division-J (IHD-J), International Health Division-White (IHD-W), and a variant thereof.
  • 7. The recombinant vaccinia virus of claim 6, wherein the vaccinia virus is IHD-W.
  • 8. A composition comprising the recombinant vaccinia virus of claim 1, as an active ingredient.
  • 9-11. (canceled)
  • 12. A method for preventing or treating a cancer in a subject, comprising administering an effective amount of the recombinant vaccinia virus of claim 1 to the subject.
  • 13. The method of claim 12, wherein the cancer is any one selected from the group consisting of lung cancer, colorectal cancer, prostate cancer, breast cancer, brain cancer, head and neck cancer, esophageal cancer, skin cancer, liver cancer, ovarian cancer, pancreatic cancer, and a combination thereof.
  • 14. (canceled)
  • 15. (canceled)
  • 16. The composition of claim 8, which is a pharmaceutical composition and comprises pharmaceutically acceptable carrier.
  • 17. The composition of claim 8, which is a vaccine.
  • 18. The composition of claim 17, which is an anti-cancer vaccine.
  • 19. The method of claim 12, wherein the VGF gene is a polynucleotide consisting of the base sequence of SEQ ID NO: 66.
  • 20. The method of claim 12, wherein the TK gene is a polynucleotide consisting of the base sequence of SEQ ID NO: 68.
  • 21. The method of claim 12, wherein the K3L gene is a polynucleotide consisting of the base sequence of SEQ ID NO: 70.
  • 22. The method of claim 12, wherein the vaccinia virus is any one selected from the group consisting of Western Reserve (WR), New York Vaccinia Virus (NYVAC), Wyeth (The New York City Board of Health), LC16m8, Lister, Copenhagen, Tian Tan, USSR, TashKent, Evans, International Health Division-J (IHD-J), International Health Division-White (IHD-W), and a variant thereof.
  • 23. The method of claim 22, wherein the vaccinia virus is IHD-W.
  • 24. The method of claim 12, wherein the cancer is solid cancer or blood cancer.
  • 25. The method of claim 12, wherein the solid cancer is any one selected from the group consisting of lung cancer, colorectal cancer, prostate cancer, thyroid cancer, breast cancer, brain cancer, head and neck cancer, esophageal cancer, skin cancer, thymic cancer, gastric cancer, colon cancer, liver cancer, ovarian cancer, uterine cancer, bladder cancer, rectal cancer, gallbladder cancer, biliary tract cancer, pancreatic cancer, and combinations thereof.
  • 26. The method of claim 12, wherein the blood cancer is any one selected from the group consisting of lymphoma, acute leukemia, multiple myeloma, and combinations thereof.
Priority Claims (1)
Number Date Country Kind
10-2016-0092684 Jul 2016 KR national
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a National Stage of International Application No. PCT/KR2017/007896 filed Jul. 21, 2017, claiming priority based on Korean Patent Application No. 10-2016-0092684 filed Jul. 21, 2016.

PCT Information
Filing Document Filing Date Country Kind
PCT/KR2017/007896 7/21/2017 WO 00